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Γ-SEMIHYPERGROUPS AND THEIR PROPERTIES

Dariush HEIDARI1, Sohrab Ostadhadi DEHKORDI2, Bijan DAVVAZ3

Algebraic hyperstructures are a suitable generalization of classical
algebraic structures. In a classical algebraic structure, the composition of
two elements is an element, while in an algebraic hyperstructure, the com-
position of two elements is a set. The concept of Γ-semihypergroups is
a generalization of semigroups, a generalization of semihypergroups and a
generalization of Γ-semigroups. In this paper, we define the notion of ideal,
prime ideal, extension of an ideal in Γ-semihypergroups then we prove some
results in respect and present many examples of Γ-semihypergroup. Also, we
introduce the notions of quotient Γ-semihypergroup by using a congruence
relation, and introduce the notion of right Noetherian Γ-semihypergroups.
Finally, we study some properties of fundamental relations on a special kind
of Γ-semihypergroups.
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1. Introduction

In 1986, Sen and Saha [28] defined the notion of a Γ-semigroup as a gen-
eralization of a semigroup. One can see that Γ-semigroups are a generalizations
of semigroups. Many classical notions of semigroups have been extended to
Γ-semigroups and a lot of results on Γ-semigroups are published by a lot of
mathematicians, for instance, Chattopadhyay [3, 4], Hila [16, 17], Saha [24],
Sen and et. al. [25, 26, 27, 28, 32] and Seth [29].

Let S and Γ be non-empty sets. Then S is called a Γ-semigroup if there
exists a map S × Γ× S −→ S, written (a, γ, b) by aγb, such that satisfies the
identities (aαb)βc = aα(bβc) for all a, b, c ∈ S and α, β ∈ Γ. Let S be an arbi-
trary semigroup and Γ any non-empty set. Define a map S × Γ× S −→ S by
aαb = ab for all a, b ∈ S and α ∈ Γ. It is easy to see that S is a Γ-semigroup.
Thus a semigroup can be considered as a Γ-semigroup. Many classical notions
of semigroups have been extended to Γ-semigroups.
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Hyperstructures represent a natural extension of classical algebraic struc-
tures and they were introduced by the French mathematician F. Marty [20].
Algebraic hyperstructures are a suitable generalization of classical algebraic
structures. In a classical algebraic structure, the composition of two elements
is an element, while in an algebraic hyperstructure, the composition of two
elements is a set.

Let H be a non-empty set. Then the map ◦ : H ×H −→ ℘∗(H) is called
a hyperoperation, where ℘∗(H) is the family of non-empty subsets of H. (H, ◦)
is called a semihypergroup if for every x, y ∈ H, we have x◦ (y ◦z) = (x◦y)◦z.
If for every x ∈ H, x ◦H = H = H ◦ x, then (H, ◦) is called a hypergroup. In
the above definition, if A and B are two non-empty subsets of H and x ∈ H,
then we define

A ◦B =
⋃

a ∈ A
b ∈ B

a ◦ b, x ◦ A = {x} ◦ A and A ◦ x = A ◦ {x}.

Since then, hundreds of papers and several books have been written on this
topic, see [5, 7, 8, 30]. A recent book on hyperstructures [7] points out on
their applications in cryptography, codes, automata, probability, geometry,
lattices, binary relations, graphs and hypergraphs. Another book [8] is de-
voted especially to the study of hyperring theory. Several kinds of hyperrings
are introduced and analyzed. The volume ends with an outline of applications
in chemistry and physics, analyzing several special kinds of hyperstructures:
e-hyperstructures and transposition hypergroups. The theory of suitable mod-
ified hyperstructures can serve as a mathematical background in the field of
quantum communication systems. The concept of Hv-structures [30] constitute
a generalization of the well-known algebraic hyperstructures (hypergroup, hy-
perring, hypermodule and so on). Actually some axioms concerning the above
hyperstructures such as the associative law, the distributive law and so on are
replaced by their corresponding weak axioms. Also, many authors studied dif-
ferent aspects of semihypergroups, for instance, P. Bonansinga and P. Corsini
[2], Corsini [6], Davvaz [9], Davvaz and N.S. Poursalavati [10], Fasino and Freni
[12], Gutan [14], Hasankhani [15], Leoreanu [19] and Onipchuk [23]. The con-
cept of a Γ-semihypergroup is a generalization of a semigroup, a generalization
of a semihypergroup and a generalization of a Γ-semigroup. Recently, Davvaz
and et. al. [22] introduced the notion of Γ-semihypergroups.

2. Γ-semihypergroups and examples

In this section, we recall the concept of a Γ-semihypergroup and give
some examples.

Definition 2.1. Let S and Γ be two non-empty sets. Then S is called a Γ-
semihypergroup if each γ ∈ Γ be a hyperoperation on S, i.e., xγy ⊆ S for every
x, y ∈ S, and for every α, β ∈ Γ and x, y, z ∈ S we have the associative property
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that is xα(yβz) = (xαy)βz. If for every γ ∈ Γ, (S, γ) is a hypergroup, then S
is called a Γ-hypergroup. The Γ-semihypergroup S is called commutative if for
every x, y ∈ S and for every γ ∈ Γ, we have xγy = yγx. A non-empty subset
A of S is called a Γ-subsemihypergroup of S if AΓA ⊆ A.

Let A and B be two non-empty subsets of S. Then, we define

AΓB =
⋃
γ∈Γ

AγB = ∪{aγb | a ∈ A, b ∈ B and γ ∈ Γ}.

Let (S, ◦) be a semihypergroup and let Γ = {◦}. Then S is a Γ-
semihypergroup. So every semihypergroup is a Γ-semihypergroup.

Now, we give some other examples of Γ-semihypergroups.

Example 2.1. Let S be a non-empty set and let Γ be a non-empty subset
of S. If we define xγy = {x, γ, y}, for every x, y ∈ S and γ ∈ Γ, then S is a
Γ-semihypergroup.

Example 2.2. Let (S, ◦) be a hypergroup and Γ = {α, β}. We define xαy = S
and xβy = x ◦ y, for every x, y ∈ S. Then S is a Γ-semihypergroup.

Example 2.3. Let S be a semigroup and P1, P2, · · · , Pk be non-empty subsets
of S. Let Γ = {α1, α2, · · · , αk}. We define xαiy = xPiy for every x, y ∈ S and
αi ∈ Γ, 1 ≤ i ≤ k. Then S is a Γ-semihypergroup.

Example 2.4. Let (S,≤) be a totally ordered set and Γ be a non-empty subset
of S. We define xγy = {z ∈ S | z ≥ max{x, γ, y}}, for every x, y ∈ S and
γ ∈ Γ. Then S is a Γ-semihypergroup.

Let S be a Γ-semihypergroup. We define a relation ρ on S×Γ as follows:

(x, α)ρ(y, β) ⇐⇒ xαs = yβs, ∀s ∈ S.

Obviously ρ is an equivalence relation. Let [x, α] denote the equivalence class
containing (x, α). Let M = {[x, α] : x ∈ S, α ∈ Γ}. We define hyperoperation
◦ on M as follows: [x, α] ◦ [y, β] = {[z, β] | z ∈ xαy}, for all x, y, z ∈ S and
α, β, γ ∈ Γ. Since (xαy)βz = xα(yβz) in S, then

[x, α] ◦ ([y, β] ◦ [z, γ]) = ([x, α] ◦ [y, β]) ◦ [z, γ].

Thus, hyperoperation ◦ is associative, so (M, ◦) is a semihypergroup. This
semihypergroup is called the left operator semihypergroup of S.

Example 2.5. If we put S = {1, 2, 3, 4, 5} and Γ = {4, 5} in Example 2.4,
then we have

[1, 4] = {(1, 4), (2, 4), (3, 4), (4, 4)},
[1, 5] = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (5, 4)}.

So M = {[1, 4], [1, 5]} and the table of hyperoperation ◦ is as follows:

◦ [1, 4] [1, 5]
[1, 4] M [1, 5]
[1, 5] [1, 5] [1, 5]
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We see that (M, ◦) is a semihypergroup.

3. Ideals of Γ-semihypergroup

In this section, we define the notion of a Γ-hyperideal of a Γ-semihypergroup
and study some properties of it. Also, we consider the extension of a Γ-
hyperideal in the commutative Γ-semihypergroups. Finally, prime Γ-hyperideals
are defined.

Definition 3.1. A non-empty subset I of a Γ-semihypergroup S is called a
left (right) Γ-hyperideal, “ideal, for short” of S, if SΓI ⊆ I (IΓS ⊆ I). S is
called a left (right) simple Γ-semihypergroup if has no proper left (right) ideal.
S is called a simple Γ-semihypergroup if S has no proper ideal both left and
right.

Example 3.1. Consider Example 2.4. Put S = N with natural order. Then
the subset In = {n, n + 1, n + 2, · · · } is an Ideal of S, for every n ∈ N.

Let S be a Γ-semihypergroup and α ∈ Γ, if we define a◦b = aαb for every
a, b ∈ S, then (S, ◦) becomes a semihypergroup, we denote this semihypergroup
by Sα.

Theorem 3.1. Let S be a Γ-semihypergroup. Then S is a simple Γ-semihyper-
group if and only if Sα is a hypergroup for every α ∈ Γ.

Proof. Let S be a simple Γ-semihypergroup and α ∈ Γ, we show that Sα is a
hypergroup. For this, we verify the reproduction axiom. Let I = aαS where
a ∈ S. Then I is a right ideal of S, indeed IΓS = (aαS)ΓS ⊆ aαS = I. Since
S has no proper right ideal, then I = aαS = S so Sα is a hypergroup.

Conversely, let φ 6= I be a left ideal of S. Let s ∈ S and a ∈ I. Since Sα

is a hypergroup so there exists t ∈ S such that s ∈ t ◦ a = tαa ⊆ SαI ⊆ I, so
S = I. Similarly, one can prove that S has no proper right ideal. Therefore S
is simple. ¤
Corollary 3.1. Let S be a Γ-semihypergroup. If for some α ∈ Γ, Sα is a
hypergroup, then for every β ∈ Γ, Sβ is a hypergroup.

Proof. Since Sα is a hypergroup, then by previous theorem, S is a simple Γ-
semihypergroup. Thus, for every β ∈ Γ, Sβ is a hypergroup. ¤
Corollary 3.2. Let S be a Γ-semihypergroup. If for some α ∈ Γ, Sα is a
hypergroup, then S is a Γ-semihypergroup.

Proof. By Corollary 3.1, it is trivial. ¤
Definition 3.2. Let A be a non-empty subset of a Γ-semihypergroup S. Then
intersection of all ideals of S containing A is an ideal of S generated by A, and
denoted by < A >.

Lemma 3.1. Let S be a Γ-semihypergroup. If A is a non-empty subset of S,
then < A >= A ∪ AΓS ∪ SΓA ∪ SΓAΓS.
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Proof. Let B = A ∪ AΓS ∪ SΓA ∪ SΓAΓS. Then B is an ideal of S, because

BΓS = (A ∪ AΓS ∪ SΓA ∪ SΓAΓS)ΓS
= AΓS ∪ AΓ(SΓS) ∪ SΓAΓS ∪ SΓAΓ(SΓS)
⊆ AΓS ∪ AΓS ∪ SΓAΓS ∪ SΓAΓS
= AΓS ∪ SΓAΓS ⊆ B.

Similarly, SΓB ⊆ B, so B is an ideal of S.
Now, we show that if C is an ideal of S contains A, then B ⊆ C. Since

A ⊆ C and C is an ideal of S, then we have AΓS ⊆ CΓS ⊆ C and SΓA ⊆
SΓC ⊆ C. Hence, AΓSΓA ⊆ CΓA ⊆ C, therefore B ⊆ C and the proof is
completed. ¤

One can see that, if S is a commutative Γ-semihypergroup and φ 6= A ⊆
S, then < A >= A ∪ AΓS.

Definition 3.3. Let I be an ideal of commutative Γ-semihypergroup S and
φ 6= A ⊆ S. Then the extension of I by A defined as follows:

(A : I) = {x ∈ S | AΓx ⊆ I}.
If A = {a}, then we also write < {a} : I > as < a : I >. If I is an ideal

of S and φ 6= A ⊆ B ⊆ S, then (B : I) ⊆ (A : I).

Lemma 3.2. Let S be a commutative Γ-semihypergroup. If I is an ideal of S,
φ 6= A ⊆ S and γ ∈ Γ, then the following statement are true:

(1) (A : I) is an ideal of S;
(2) I ⊆ (A : I) ⊆ (AΓA : I) ⊆ (AγA : I);
(3) If A ⊆ I, then (A : I) = S.

Proof. (1) Let x ∈ (A : I), y ∈ S and γ ∈ Γ. Then

AΓ(xγy) = (AΓx)γy ⊆ Iγy ⊆ IΓS ⊆ I

so (A : I) is an ideal of S.
(2) If x ∈ I, then IΓx ⊆ SΓI ⊆ I. Thus x ∈ (A : I). If x ∈ (A : I), then

(AΓA)Γx = AΓ(AΓx) ⊆ AΓI ⊆ I. Thus x ∈ (AΓA : I). Finally, if
x ∈ (AΓA : I), then (AγA)Γx ⊆ (AΓA)Γx ⊆ I. So x ∈ (AγA : I).

(3) Let A ⊆ I and x ∈ S. Then AΓx ⊆ IΓS ⊆ I, so x ∈ (A : I). Hence
(A : I) = S.

¤
Lemma 3.3. Let S be a commutative Γ-semihypergroup. Let I be an ideal of
S and φ 6= A ⊆ S. Then

(A : I) =
⋂
a∈A

(a : I) = (A \ I : I).

Proof. By Lemma 3.2, we have (A : I) ⊆ ⋂
a∈A(a : I). Let x ∈ ⋂

a∈A(a : I).
Then, aΓx ⊆ I for all a ∈ A. So

⋂
a∈A(a : I) ⊆ (A : I). Hence (A : I) =⋂

a∈A(a : I). By Lemma 3.2(3), we have (A : I) =
⋂

a∈A(a : I) = (A\I : I). ¤
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Definition 3.4. A proper ideal P of a Γ-semihypergroup S is called a prime
ideal, if for every ideal I, J of S, IΓJ ⊆ P implies I ⊆ P or J ⊆ P . If Γ-
semihypergroup S is commutative, then a proper ideal P is prime if and only
if aΓb ⊆ P implies a ∈ P or b ∈ P , for any a, b ∈ S.

Example 3.2. Consider Example 2.4. Put S = Γ = {1, 2, · · ·n} for some
n ∈ N. Then all ideals of S are of the form Ii = {i, i+1, · · ·n}, for every i ∈ S
and I2 is a prime ideal of S.

Theorem 3.2. Let S be a Γ-semihypergroup and P be a left ideal of S. Then
P is prime if and only if for all x, y ∈ S,

xΓSΓy ⊆ P implies x ∈ P or y ∈ P.

Proof. If x, y ∈ S and xΓSΓy ⊆ P , then SΓxΓSΓy ⊆ SΓP ⊆ P . Since SΓx
and SΓy are left ideals of S, we have either SΓx ⊆ P or SΓy ⊆ P . Suppose
that SΓx ⊆ P . Let I = SΓx∪{x} be the left ideal of S generated by x. Then
IΓI ⊆ SΓx ⊆ P whence we obtain I ⊆ P . Hence x ∈ P . Similarly, we can
show that if SΓy ⊆ P then y ∈ P .

Conversely, suppose that IΓJ ⊆ P and I * P . Then, we show that
J ⊆ P . Let x ∈ I \ P . Then for all y ∈ J we have xΓSΓy ⊆ IΓJ ⊆ P . Since
x /∈ P , then y ∈ P , so J ⊆ P . ¤
Lemma 3.4. Let S be a commutative Γ-semihypergroup and let I be an ideal
of S. Then I is a prime ideal of S if and only if (A : I) = I for all A * I.

Proof. Assume that I is a prime ideal of S and A * I. Choose a ∈ A such
that a /∈ I. Let x ∈ (A : I). Then aΓx ⊆ I. Since I is prime, thus x ∈ I. So
(A : I) ⊆ I. Now, by 3.2(ii) we have (A : I) = I.

Conversely, let (A : I) = I, for every A * I. If A,B are ideals of S such
that AΓB ⊆ I and A * I, then B ⊆ (A : I) = I, so I is a prime ideal of S. ¤

4. Right Noetherian Γ-semihypergroups

In this section, we introduce the notion of right Noetherian Γ-semihyper-
groups.

Definition 4.1. Let S be a Γ-semihypergroup. Then S is said right Noether-
ian, if S satisfies the ascending chain condition on right ideals. That is, for
any sequence of right ideals {Ii}∞i=1 of S such that I1 ⊆ I2 ⊆ · · · ⊆ Ii · · · , there
exists n ∈ N such that Im = In for each m ∈ N,m ≥ n.

Example 4.1. Let (F, +, ·) be a field and G be a subgroup of (F \{0}, ·). Let
F/G = {aG | a ∈ F} and Γ = {α, β}. Then consider the hyperoperations α
and β as follows: (aG)α(bG) = {cG | c ∈ aG + bG} and (aG)β(bG) = F/G.
Then F/G is a simple Γ-semihypergroup, so it is right Noetherian.

Example 4.2. Let S = {1, 2, 3. · · · } and Γ = {α1, α2, · · · , αk} for some k ∈ N.
Consider the hyperoperations αi as follows: xαiy = {z ∈ S | z ≤ min{x, i, y}}.
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Then S is a Γ-semihypergroup. Now, we find a chain of right ideals of S that is
not satisfied ascending chain condition. For every n ∈ N, let In = {1, 2, · · · , n}.
Then In is an ideal of S and we have I1  I2  · · · . So S is not right Noetherian
Γ-semihypergroup.

Example 4.3. Let An = (n − 1, n), S =
⋃∞

n=1 An and Γ = {αi | i ∈ N}. For
every x, y ∈ S and αi ∈ Γ, we define xαiy = An.i.m, where x ∈ An and y ∈ Am.
Then S is a right Noetherian Γ-semihypergroup.

Let (H, ◦) be a semihypergroup. A non-empty subset I of H is called a
left (right) hyperideal of H, if H ◦ I ⊆ I (I ◦H ⊆ I).

Let S be a Γ-semihypergroup and M be the left operator semihypergroup
of it. Then for A ⊆ M we define A+ = {x ∈ S | [x, α] ∈ M, ∀ α ∈ Γ}.
Similarly, for I ⊆ S we define I+′ = {[x, α] ∈ M : xαs ⊆ I, ∀s ∈ S}.
Theorem 4.1. Let S be a Γ-semihypergroup and M be its left operator semi-
hypergroup. Then the following statements are true:

(i) If A is a right hyperideal of M , then A+ is a right ideal of S.
(ii) If I is a right ideal of S then, I+′ is a right hyperideal of M .

Proof. (i) Let x ∈ A+, y ∈ S and α ∈ Γ. Then [x, α] ∈ A and since A is
a hyperideal of M , thus [x, α] ◦ [y, α] ⊆ A. So {[t, α] : t ∈ xαy} ⊆ A then
xαy ⊆ A+. Therefore A+ is a right ideal of S.

(ii) Let [x, α] ∈ I+′ and [y, β] ∈ M . Then for all s ∈ S, xαs ⊆ I. Now,

[x, α] ◦ [y, β] = {[t, β] : t ∈ xαy} ⊆ I+′

Therefore, I+′ is a hyperideal of M . ¤

Let S be a Γ-semihypergroup and M be the left operator hypergroup of
it. Let I be an ideal of S and A be a hyperideal of M . Then it is easy to see
that I ⊆ (I+)+′ and A ⊆ (A+′)+. In the following theorem we prove that if I
and A are prime then the equality holds.

Theorem 4.2. Let S be a Γ-semihypergroup and M be the left operator hy-
pergroup of it. Let P be a right prime ideal of S. Then P = (P+′)+.

Proof. Suppose that P be prime and x ∈ (P+′)+. Then xΓS ⊆ P . So xΓSΓx ⊆
xΓS ⊆ P . Since P is a prime right ideal of S, then by Theorem 3.2, x ∈ P .
So (P+′)+ ⊆ P . Therefore, (P+′)+ = P . ¤

Let S be a Γ-semihypergroup. If their exist elements e ∈ S and δ ∈ Γ
such that eδx = x for every x ∈ S, then S is said to have a left unity. It is easy
to check that if S has a left unity, then [e, δ] is a left unity of the left operator
semihypergroup M .

Theorem 4.3. Let S be a Γ-semihypergroup and M be its left operator semi-
hypergroup. If I is a right ideal of S, then I = (I+′)+.
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Proof. Let x ∈ (I+′)+. Then [x, α] ∈ I+′ for every α ∈ Γ. So xαs ⊆ I for
every s ∈ S. Since S has a left unity, thus x ∈ I. So I = (I+′)+. ¤

Theorem 4.4. Let S be a Γ-semihypergroup with a left unity. If the left oper-
ator semihypergroup M of S is right Noetherian, then S is right Noetherian.

Proof. Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an ascending chain of right ideals of S. Then
I+′
1 ⊆ I+′

2 ⊆ I+′
3 ⊆ · · · is an ascending chain of right ideals of M . Since M is

right Noetherian, thus there exists a positive integer n such that I+′
n = I+′

n+k.

Hence previous theorem In = (I+′
n )+ = (I+′

n+k)
+ = In+k, for k = 1, 2, · · · . So S

is right Noetherian. ¤

Let S be a Γ-semihypergroup. If every non-empty set of right ideals
of S, partially ordered by set inclusion, has a maximal element, we say that
maximum condition holds for right ideals of S. That is, for each non-empty
set A of ideals of S, there is an element M ∈ A such that there is no element
T ∈ A such that T ⊃ M . Equivalently, if T ∈ A such that T ⊇ M , then
T = M .

Theorem 4.5. Let S be a Γ-semihypergroup. Then the following are equiva-
lent:

(i) S is right Noetherian;
(ii) S satisfies the maximum condition for right ideals;
(iii) Every right ideal of S is finitely generated.

Proof. (i)⇒(ii) Assume by contradiction that there is a non-empty set of ideals
of S, say A, which has no maximum element. If I1 ∈ A then there exists an
element I2 ∈ A such that I1 ( I2; since A has no maximum element. Also,
there exists an element I3 ∈ A, such that I2 ( I3. By continuing this process
we have the acceding chain I1 ( I2 ( I3 ( · · · , which is impossible.

(ii)⇒(iii) Let I be an ideal of S. Then we show that I is finitely generated.
Let A = {< A >: A is a finite subset of I}. By (ii), A has a maximal element,
say < A0 > where A0 is finite subset of I. Now, if a ∈ I then < A0∪{a} >∈ A.
Then by maximality of < A0 > we have a ∈< A0 >. Therefore, I is a finitely
generated ideal of S.

(iii)⇒(i) Let {Ii : i ∈ N} be a sequence of ideals of S, such that I1 ⊆ I2 ⊆
· · · ⊆ Ii ⊆ · · · , and let I =

⋃∞
i=1 Ii. One can easily see that I is an ideal of S.

Then, by (iii), there exist a1, a2, · · · , at ∈ S such that I =< a1, a2, · · · , at >.
Clearly a1, a2, · · · , at ∈ I. Let ik ∈ N such that ak ∈ Iik , for k = 1, 2, · · · , t.
We put n := max{i1, i2, · · · , it}. Since ik ≤ n for all k = 1, 2, · · · , t, we have
Iik ⊆ In, for all k = 1, 2, · · · , t. Hence ak ∈ In, for all k = 1, 2, · · · , t. Since In is
an ideal of S, thus < a1, a2, · · · , at >⊆ In. So I =< a1, a2, · · · , at >⊆ In ⊆ I.
Then, In = I. So Im = In, for all m ∈ N such that m ≥ n. Indeed, let m ≥ n.
Then I = In ⊆ Im ⊆ I, thus Im = In. ¤
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5. (S, Γ)-semihypergroups

In this section, we introduce the quotient Γ-semihypergroup by using
a congruence relation. Also, we investigate the fundamental relations on Γ-
semihypergroups. Then we present a special kind of Γ-semihypergroups which
is called (S, Γ)-semihypergroup and (Γ, ∆)-semihypergroup.

An equivalence relation R on a Γ-semihypergroup S is called a congruence
relation, if for any a, b, c ∈ S, γ ∈ Γ and for every t ∈ aγc, there exists t′ ∈ bγc
such that tRt′.

Let R be a congruence relation on a Γ-semihypergroup S. We set S/R =
{R(x) | x ∈ S} and Γ̇ = {γ̇ | γ ∈ Γ} and γ̇ ∈ Γ̇ and for every x, y ∈ S we
define R(x)γ̇R(y) = {R(z) | z ∈ xγy}.
Lemma 5.1. If R is a congruence relation on a Γ-semihypergroup S, then
S/R is a Γ̇-semihypergroup.

Proof. Let x, x′, y, y′ ∈ S and γ ∈ Γ. We show that if xRx′ and yRy′ then
R(x)γ̇R(y) = R(x′)γ̇R(y′). Suppose that R(z) ∈ R(x)γ̇R(y). Then z1 ∈
xγy, where z1Rz′, thus R(z) = R(z1) = R(z′), so R(x)γ̇R(y) ⊆ R(x′)γ̇R(y′).
Similarly, one can see that R(x′)γ̇R(y′) ⊆ R(x)γ̇R(y). Now, let x, y, z ∈ S and
α, β ∈ Γ. Then

(R(x)α̇R(y))β̇R(z) = ({R(t) | t ∈ xαy})β̇R(z)
= {R(s) | s ∈ tβz, t ∈ xαy}
= {R(s) | s ∈ (xαy)βz}
= {R(s) | s ∈ xα(yβz)}
= R(x)α̇(R(y)β̇R(z)).

Therefore, S/R is a Γ-semihypergroup. ¤

Let S be a Γ-semihypergroup and R be an equivalence relation on S. If
A and B are non-empty subsets of S, then

A ¯̄RB means that ∀a ∈ A, b ∈ B, we have aRb.

An equivalence relation R is called strongly regular on the right (on the

left), if for all x ∈ S, aRb implies (aαx) ¯̄R(bαx) ((xαa) ¯̄R(xαb)), for every α ∈ Γ.

Definition 5.1. Let S be a Γ-semihypergroup and θ be an equivalence relation
on S. We say that θ is a fundamental relation on S, if θ is the smallest strongly
regular equivalence relation on S.

In fact, the fundamental relation θ is the smallest equivalence relation
on Γ-semihypergroup S such that the quotient S/θ is a Γ̇-semigroup. The fun-
damental relation was introduced on hypergroups by Koskas [18], and studied
by many authors, for example, Corsini, Davvaz, Freni, Leoreanu, Vougiouklis
and others [5, 7, 1, 11, 13, 21, 30, 31].

Let S be a Γ-semihypergroup and a, b ∈ S. For every n ∈ N we define
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the relation ρ on S as follows:

(a, b) ∈ ρn ⇐⇒ ∃ a1, . . . an+1 ∈ S, γ1, . . . , γn ∈ Γ
3 {a, b} ⊆ a1γ1a2γ2 . . . anγnan+1,

Now, set ρ =
⋃∞

n=1 ρn. It is easy to check that ρ is reflexive and symmet-
ric. Let ρ∗ be the transitive closure of the relation ρ.

If a1, . . . an+1 ∈ S and γ1, . . . , γn ∈ Γ, then we use following notation

a1γ1a2γ2 . . . γn−1an−1γnan+1 =
n∏

i=1

aiγiai+1.

Theorem 5.1. [22]. Let S be a Γ-semihypergroup. Then the relation ρ∗ is a
strongly regular equivalence relation on S.

Corollary 5.1. [22]. Let S be a Γ-semihypergroup. Then the quotient S/ρ∗ is
a Γ̇-semigroup.

Theorem 5.2. [22]. Let S be a Γ-semihypergroup. Then the equivalence rela-
tion ρ∗ is the smallest strongly regular equivalence relation on S and so ρ∗ = θ,
where θ is the fundamental relation on S.

Now, we present a way to obtain a Γ-semihypergroup with a semigroup.

Definition 5.2. Let (Γ, ·) be a semigroup and {Aγ}γ∈Γ be a collection of non-
empty disjoint sets and S =

⋃
γ∈Γ Aγ. For every x, y ∈ S and γ ∈ Γ the we

define xγy = Aγxγγy , where x ∈ Aγx and y ∈ Aγy for some γx ∈ Γ and γy ∈ Γ.
Then S is a Γ-semihypergroup and we call it a (S,Γ)-semihypergroup.

Theorem 5.3. Let S be a (S,Γ)-semihypergroup. Then S is Γ-heypergroup if
and only if Γ is a group.

Proof. Let S be a Γ-heypergroup. We show that for every α, β ∈ Γ, there
exists γ ∈ Γ such that αγ = β. Choose x ∈ Aβ and y ∈ Aα. Since S is a
Γ-heypersemigroup, thus by Corollary 3.1, for every θ ∈ Γ, Sθ is a hypergroup.
So there exists z ∈ S. Then there exists δ ∈ Γ such that z ∈ Aδ and x ∈ yθz =
Aαθδ, since {Aα}α∈Γ are disjoint, then Aβ = Aαθδ this means that α(θδ) = β.

Conversely, let Γ be a group. Then by Corollary 3.1, we should show
that Sθ is a hypergroup for every θ ∈ Γ. If x ∈ S, then there exists β ∈ Γ such
that x ∈ Aβ. So

xθS =
⋃

y∈Aα

Aβθα =
⋃
γ∈Γ

Aγ = S.

Therefore, (S.θ) is a hypergroup. ¤
Now, we present a way to obtain a Γ-semihypergroup with a ∆-semigroup.

Definition 5.3. Let Γ be a ∆-semigroup, {Aγ}γ∈Γ be a collection of non-
empty distinct sets and S =

⋃
γ∈Γ Aγ. For every x, y ∈ S and δ ∈ ∆, we

define xδy = Aαδβ where x ∈ Aα and y ∈ Aβ for some α, β ∈ Γ. Then S is a
∆-semihypergroup and we call a (Γ, ∆)-semihypergroup.
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We will prove some properties of (Γ, ∆)-semihypergroups.

Lemma 5.2. Let S be a (Γ, ∆)-semihypergroups. Then S is a commutative
∆-semihypergroup if and only if Γ is a commutative ∆-semihypergroup.

Proof. The proof is trivial. ¤

Lemma 5.3. Let S be a (Γ, ∆)-semihypergroups. If I is an ideal of Γ, then
SI =

⋃
θ∈I Aθ is an ideal of S. Conversely, if SI =

⋃
θ∈I Aθ is an ideal of S,

then I is an ideal of Γ.

Proof. Let I E Γ, x ∈ S and δ ∈ ∆. If x ∈ Aα and α ∈ Γ, then

xδSI = xδ

(⋃

θ∈I

Aθ

)
=

(⋃

θ∈I

xδAθ

)
=

⋃
α∈I

Aαδθ ⊆ SI .

Conversely, suppose that SI is an ideal of S. If γ ∈ Γ, δ ∈ ∆ and θ ∈ I,
we should show that γδθ ⊆ I. Choose x ∈ Aγ and y ∈ Aθ. Then xδy ⊆ SI , on
the other hand xδy = Aγδθ ⊆ SI . So there exists θ

′ ∈ I such that Aγδθ = Aθ′ ,
so γδθ = θ′ ∈ I. ¤

Lemma 5.4. Let S be a commutative (Γ, ∆)-semihypergroups and P be an
ideal of Γ. Then P is a prime ideal of Γ if and only if SP =

⋃
θ∈P Aθ is a

prime ideal of S.

Proof. Let P be a prime ideal of Γ and a∆b ⊆ SP , where a ∈ Aα, b ∈ Aβ and
α, β ∈ Γ. Then

⋃
δ∈∆ Aαδβ ⊆ SP . Hence α∆β ⊆ P . Since P is a prime ideal

of Γ, thus α ∈ P or β ∈ P . Therefore, a ∈ Aα ⊆ SP or b ∈ Aβ ⊆ SP .
Conversely, let SP be a prime ideal of S and α∆β ⊆ P . If we choose

x ∈ Aα and y ∈ Aβ, then x∆y = Aα∆β ⊆ SP so x ∈ SP or y ∈ SP . Therefore,
α ∈ P or β ∈ P . ¤

Let S be a Γ-semigroup and Ṡ be a Γ̇-semigroup. If there exists a map
Φ : S −→ Ṡ and a bijection f : Γ −→ Γ̇ such that

Φ(xγy) = Φ(x)f(γ)Φ(y),

for all x, y ∈ S and γ ∈ Γ. Then we say (Φ, f) is a homomorphism between
S and Ṡ. Also, if Φ is a bijection then (Φ, f) is called an isomorphism, and S
and Ṡ are isomorphic.

If Γ is a ∆-semigroup, then we say that Γ is idempotent whenever Γ =
Γ∆Γ. If S is a (Γ, ∆)-semihypergroup where Γ is an idempotent ∆-semigroup
and ρ∗ is the fundamental relation on it, then by Corollary 5.1 the quotient of
S on ρ∗ is a Γ̇-semigroup and we will prove that it is isomorphic to Γ.

Theorem 5.4. Let S be a (Γ, ∆)-semihypergroup such that S =
⋃

γ∈Γ Aγ and
Γ is a idempotent ∆-semigroup. If ρ∗ is the fundamental relation on S then
S/ρ∗ ∼= Γ.
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Proof. If x ∈ S then there exists γx ∈ Γ such that x ∈ Aγx . Now, we define
the map Φ as follows:

Φ : S/ρ∗ −→ Γ
ρ∗(x) 7−→ γx

and f : Γ̇ −→ Γ by f(γ̇) = γ, for all γ̇ ∈ Γ̇.
Let ρ∗(x) = ρ∗(y). Then there exist x = x1, x2, · · · , xn = y ∈ S such

that x = x1ρx2ρx3 · · · , xn−1ρxn = y. Thus, there exist k1, k2, · · · kn ∈ N, {uij ∈
Aγij

: 1 ≤ i ≤ n, 1 ≤ j ≤ ki} and {δij ∈ Γ : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ ki− 1} such
that

{xi, xi+1} ⊆
ki−1∏
j=1

uijδijui(j+1) = A∏ki−1
j=1 γijδijγi(j+1)

,

for 1 ≤ i ≤ n − 1. Now, since the elements of {Aγ : γ ∈ Γ} are disjoint and
for every 1 ≤ i ≤ n, we have

xi ∈ A∏ki−1
j=1 γ(i−1)jδ(i−1)jγ(i−1)(j+1)

∩ A∏ki−1
j=1 γijδijγi(j+1)

,

then
A∏ki−1

j=1 γ(i−1)jδ(i−1)jγ(i−1)(j+1)
= A∏ki−1

j=1 γijδijγi(j+1)
.

If we put γ =
∏k1−1

j=1 γ1jδ1jγ1(j+1) then x, y ∈ Aγ, so

Φ(ρ∗(x)) = γ = Φ(ρ∗(y)).

Thus Φ is well-defined.
Now, we show that (Φ, f) is a homomorphism. If x, y ∈ S and δ ∈ ∆

then x ∈ Aγ1 and y ∈ Aγ2 for some γ1, γ2 ∈ Γ. Then

Φ(ρ∗(x)δ̇ρ∗(y)) = Φ({ρ∗(z) : z ∈ xδy})
= Φ({ρ∗(z) : z ∈ Aγ1δγ2})
= Φ(ρ∗(x))δΦ(ρ∗(y))

= Φ(ρ∗(x))f(δ̇)Φ(ρ∗(y)).

Let Φ(ρ∗(x)) = Φ(ρ∗(y)) and γ ∈ Γ such that x, y ∈ Aγ. Then there
exist α, β ∈ Γ and δ ∈ ∆ such that γ = αδβ. Now, if we choose an element
z1 ∈ Aα and z2 ∈ Aβ, then {x, y} ⊆ Aγ = Aαδβ = z1δz2. Thus ρ∗(x) = ρ∗(y).
Obviously, Φ is onto. Therefore, (Φ, f) is an isomorphism and the proof is
completed. ¤
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