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APPROXIMATION, MARKOV MOMENT PROBLEM AND 
RELATED INVERSE PROBLEMS 

Octav OLTEANU1 
 

 We give necessary and sufficient conditions for the existence of a unique 
solution of a multidimensional real classical Markov moment problem, in terms of 
quadratic forms. Next, we consider applications of a sufficient condition to solving 
geometrically nonlinear systems with infinite many equations and unknowns 
(inverse problems solved starting from the moments). Thus, one solves problems 
studied in the literature by some other methods. Our way of treating these problems 
works in several dimensions. In the end, one considers a problem not necessarily 
involving polynomials.  
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1. Introduction 

The moment problem is an interpolation - type problem, with one or 
several constraints. The construction of the solution (if it does exist and is 
unique), is an inverse problem, and so is solving related systems of equations. For 
similar problems solved by some other methods see [12]. Usually, constructing 
the solution requires that it is an element of a 2L  space. In this case, its Fourier 
coefficients are writable in terms of the moments. On the other hand, using 
polynomial decomposition and approximation in studying the moment problem is 
a natural and well-known method [1] - [5], [11] - [22]. The present paper applies 
the determinacy of a given measure to prove density results in ܮଵ spaces. The first 
aim of the present work is to characterize a classical multidimensional real 
Markov moment problem by means of quadratic forms, similarly to the one-
dimensional case. A similar method of using approximation, but in solving 
complex moment problems appears in [16]. The proofs are completely different to 
those of the real case, although the statements in the latter work are in terms of 
(complex) quadratic forms. On the other hand, we consider applications to solving 
related systems of nonlinear equations with infinite many equations and 
unknowns (see Section 2 of the present work, [12], and also [20], Section 4). 
Thirdly, this work contains an application of extension of linear operators with 
two constraints to the Markov moment problem (Sections 3). The background of 
this paper is contained in [1], [4], [9], [10]. For uniqueness of the solution see [1], 
[5], [11], [13]. Evaluations and expansions related to generalized differential 
operators and PDE’s are contained in [6, 7]. We start by recalling some known 
results on polynomial approximation on unbounded subsets. We recall that a 
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determinate ( −M  determinate) measure is, by definition, uniquely determinate 
by its moments [1], [5], [11], [13]. 
Theorem 1.1. (see [17], [19]). Let nRA ⊂  be an unbounded closed subset and ν  
a positive M - determinate regular Borel measure on ,A  with finite moments of 
all orders. Then for any nonnegative continuous vanishing at infinity function 

( )( ) ,0 +∈ ACψ  there is a sequence ( )mmp  of polynomials on ,A

ψψ →≥ mm pp ,  in ( ).1 ALν  In particular, one deduces 

∫ ∫=
A A

m ddp ,lim νψν  

the cone +P  of positive polynomials is dense in ( )( )+AL1
ν  and P  is dense in 

( ).1 ALν  
Theorem 1.2. Let nννν ××= "1  be a product of n  −M  determinate positive 
regular Borel measures on ,R  with finite moments of all natural orders. Then any 
nonnegative continuous compactly supported function ψ  is approximated in 

( )nRL1
ν  by means of sums of tensor products ,1 npp ⊗⊗"  jp  nonnegative 

polynomial on the real line, in variable .,...,1, njt j =  

Proof. If K  is the support of a function ( )( ) ,+∈ n
c RCψ  then 
( ) .,...,1,,1 njKprKKKK jjn ==××⊂ "  

In order to prove the claimed result, consider a parallelepiped 
[ ] [ ] ,,...,1,sup,inf,,, 11 njKbKababaP jjjjnn ===××= "  

containing the above Cartesian product of compacts and apply uniform 
approximation of ψ  on ܲ by means of Bernstein polynomials of ݊ variables. 
Recall that the explicit form of these polynomials is given by 
,ଵݐ௠ሺ߰ሻሺܤ … , ௡ሻݐ

ൌ ෍ ௠௞భ݌
௞భୀ଴,…,௠………………
௞೙ୀ଴,…,௠

ሺݐଵሻ ڮ ௠௞೙݌
ሺݐ௡ሻ߰ ൬ܽଵ ൅ ሺܾଵ െ ܽଵሻ

݇ଵ

݉ , … , ܽ௡

൅ ሺܾ௡ െ ܽ௡ሻ
݇௡

݉
൰, 

௝൯ݐ௠௞ೕ൫݌ ൌ ቀ
݉

௝݇
ቁ ቆ

௝ݐ െ ௝ܽ

௝ܾ െ ௝ܽ
ቇ

௞ೕ

ቆ ௝ܾ െ ௝ݐ

௝ܾ െ ௝ܽ
ቇ

௠ି௞ೕ

, ௝ݐ א ൣ ௝ܽ, ௝ܾ൧, ݆ ൌ 1, … , ݊, 

௠ሺ߰ሻܤ ՜ ߰, ݉ ՜ ∞, 
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the convergence being uniform on ܲ.  Each term of such a polynomial is a tensor 
product ,1 npp ⊗⊗"  of nonnegative polynomials in each variable, on the 
corresponding compact interval ൣ ௝ܽ, ௝ܾ൧, ݆ ൌ 1, … , ݊. This follows from the above 
representation and from the hypothesis on ψ, which is nonnegative. Extend each 

jp  such that, by definition, it vanishes outside ൣ ௝ܽ, ௝ܾ൧, ݆ ൌ 1, … , ݊.  Notice that 

such a function might have salts at the ends of the interval ൣ ௝ܽ, ௝ܾ൧,  and equals  ݌௝ 
on the interval ൣ ௝ܽ , ௝ܾ൧. In order to avoid such discontinuities and apply theorem 
1.1, we approximate the obtained compactly supported nonnegative measurable 
functions by compactly supported nonnegative continuous functions, in the spaces 
ఔೕܮ

ଵ ሺܴሻ, .,...,1 nj = These approximations are done by means of Luzin’s theorem, 
cf. [23, p.51, and p.65 ].  One obtains approximation by sums of tensor products 
of nonnegative continuous compactly supported functions, in each variable 

,,...,1, njt j =  in the spaces  ( ) .,...,1,1 njRL
j

=ν  Application of Theorem 1.1 to 

,,1 RAn ==  leads to approximation of each such function in each separate 
variable by dominating (positive) polynomials overall real axes in the space 

( ) .,...,1,1 njRL
j

=ν  Finally, Fubini’s theorem, yields an approximating process 

in ܮఔ
ଵ ሺܴ௡ሻ.  This concludes the proof.                                                                ᇝ  

Remark 1.1. Notice that the preceding arguments do not use the uniform 
approximation on   ൣ ௝ܽ, ௝ܾ൧  of a possible strictly positive function, by means of 
Bernstein polynomials, ݆ ൌ 1, … , ݊. For functions of one variable, only ܮଵ 
approximation is used, on the whole real line. On the other hand, our hypothesis 
on  ߥ௝  imply that   ߥ௝ሺܴሻ ൏ ∞.  This yields: ߥ௝൫݌௝ ൅ ൯ߝ െ ௝൯݌௝൫ߥ ൌ ௝ሺܴሻߥߝ ՜
0, ߝ ՜ 0, so that ܮଵ  approximation by nonnegative polynomials implies ܮଵ  
approximation by positive polynomials.  Observe also that in the preceding proof 
we always have        ܭ: ൌ ߰ݐݎ݋݌݌ݑݏ ك ܲ. 
Example 1.1. Let ݊ ൌ 2, ԡሺݐଵ, ଶሻԡଵݐ ൌ |ଵݐ| ൅ ,ଵݐଶ|, ሺݐ| ଶሻݐ א ܴଶ, ଵܤ ൌ
ሼሺݐଵ, ;ଶሻݐ ԡሺݐଵ, ଶሻԡଵݐ ൑ 1 ሽ, 

ψଵሺݐଵ, ଶሻݐ ൌ 1 െ ԡሺݐଵ, ,ଶሻԡଵݐ ԡሺݐଵ, ଶሻԡଵݐ ൏ 1, ψଵሺݐଵ, ଶሻݐ ൌ 0 otherwise, 
ψଶሺݐଵ, ଶሻݐ ൌ ଵ

ଷ
െ ቛቀݐଵ െ ଶ

ଷ
, ଶݐ െ ଶ

ଷ
ቁቛ

ଵ
,  ቛቀݐଵ െ ଶ

ଷ
, ଶݐ െ ଶ

ଷ
ቁቛ

ଵ
൏ ଵ

ଷ
, ψଶሺݐଵ, ଶሻݐ ൌ 0  

otherwise,        ψ: ൌ ψଵ ൅ ψଶ. 
Then we have 
ܭ  ؔ ψݐݎ݋݌݌ݑݏ ൌ ψଵݐݎ݋݌݌ݑݏ ׫ ψଶݐݎ݋݌݌ݑݏ ൌ ଵܤ ׫ ቀቄቀଶ

ଷ
, ଶ

ଷ
ቁቅ ൅ ଵ

ଷ
ଵቁܤ , ܲ ൌ

ሾെ1,1ሿ ൈ ሾെ1,1ሿ. 
 The paper is organized as follows. Section 2 contains applications of the above 
approximation results to the multidimensional Markov moment problem. It also 
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contains a sufficient condition for the existence of the solution, and related 
applications to solving systems of infinitely many nonlinear equations, starting 
from the moments (inverse problems). One solves by another method a problem 
similar to that from [12]. Our proofs work in several dimensions. Section 3 is 
devoted to an application to the abstract 1L  spaces of a result on the abstract 
moment problem. Section 4 concludes the paper. 

 
2. On Markov moment problem and related systems of equations 

Let ( ) ( )n
kj

nNjj jjjm ,...,, 1
1

=
≥

∈  be a given sequence of real numbers, 

nννν ××= "1  be as in Theorem 1.2. The next problem concerns characterizing 

the existence of a function ( ),nRLh ∞∈ ν  such that 

( ) ( ) ,,...,1,...,0 11
n

nn Rtttth ∈∀≤≤                                       (2.1) 

( )

( ) { }( ) .0\,...,

,,...,1,1,,...,

1

1
111

11

n
n

k
nR

n
nj

n
j

nj

Njjj

nkjdtthttjjm

∈=

=≥⋅= ∫ −− ν""
                  (2.2) 

One denotes  
߮௝ሺݐሻ ൌ njj "1

11
1

1 −− njn
j tt " ݐ , ൌ ሺݐଵ, … , ௡ሻݐ א Թ௡, ݆ ൌ ሺ݆ଵ, … , ݆௡ሻ א Գ௡, ݆௞ ൒ 1. 

Theorem 2.1. The following statements are equivalent: 
(a) there exists a unique function ( )nRLh ∞∈ ν  with the properties (2.1), (2.2); 
(b) for any finite subset ܬ଴ ؿ ሺԳ\ሼ0ሽሻ௡ and any real numbers ߙ௝, ݆ א  ଴, weܬ

have:  
෍ ௝ߙ
௝א௃బ

߮௝ሺݐሻ ൒ ݐ׊ 0 א Թ௡ ֜ ෍ ௝ߙ
௝א௃బ

௝݉ א Թା; 

for any finite subsets { },...2,1,...,1 ⊂nJJ  and any { } ,,...,1,; nkJj kkkj =∈α  
the following relation holds 

( ) ( )

.
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Proof. (a) ֜ (b) is straightforward. For the converse, define the linear form 0F  on 
the space of polynomials, such that the moment conditions ܨ଴൫߮௝൯ ൌ ௝݉, ݆ א
ሺԳ\ሼ0ሽሻ௡ are true. Then using the form of positive polynomials on the real line 
[1], a straightforward computation shows that (b) is equivalent to ܨ଴ሺ݌ሻ ൒ 0 for 
any nonnegative polynomial on Թ௡, and 

( ) ( ) [ ] ( ) .,...,1,0,,110 njRttptRpdppppF jjjjj
nR

nn =∈∀>∈⊗⊗≤⊗⊗ ∫ ν""

Let ψ  be a nonnegative continuous compactly supported function. Application of 
theorem 1.2, leads to the existence of approximating sequence 

,,
)(

0
,,,.1, ∞→→⊗⊗∑

=
mpp

mk

l
lnmlm ψ"

 
in the space ( ) ( ) ( ).,...,1,,...,1,,0, ,,

1 mklnjRttpRL jjljm
n ==∈∀>ν  On the other 

hand, the linear positive form 0F  has a linear positive extension F  to the space of 

all integrable functions with their absolute value dominated on nR  by a 
polynomial (cf. [8] or [10, p. 160]). This space contains the space of continuous 
compactly supported functions. Hence F  can be represented by a regular positive 
Radon measure. Moreover, using (b) and applying  Fatou’s lemma, one obtains: 

( )
( )

( ) ( )( ) .,lim

inflim0

)(

0
,,,1,

0
,,,1,

+
=

=

∈=⊗⊗

≤
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⊗⊗≤≤

∫∑ ∫

∑

n
c

nR

mk

j nR

jnmjmm

mk

j
jnmjmm

RCddpp

ppFF

ψνψν

ψ

"

"

 

Then for an arbitrary continuous function with compact support, we have: 
( ) ( ) ( ) .1ϕνϕϕϕϕ =≤+≤ ∫−+ dFFF

nR

 

By a standard density argument, F  has a linear positive extension of norm at 
most one, to the space ( ).1 nRLν  This extension has a representation by a function 
h  with the qualities mentioned at the point (a). This concludes the proof.    □ 
Corollary 2.1. Let [ ] [ ] n

nn RbabaK ⊂××= ,, 11 "  be a parallelepiped,
.1 nK dtdtd "χν =   

The following statements are equivalent: 
(a) there exists ( )nRLh ∞∈ ν  such that (2.1) and 
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( )

( ) { }( ) .0\,...,

,,...,1,1,,...,

1

1
111

11

n
n

k
K

n
nj

n
j

nj

Njjj

nkjdtthttjjm

∈=

=≥⋅= ∫ −− ν""
 

hold; 
(b) for any finite subset ܬ଴ ؿ ሺԳ\ሼ0ሽሻ௡ and any real numbers ߙ௝, ݆ א  ଴, theܬ 
following implication holds 

෍ ௝ߙ
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The next result uses the following theorem on the abstract moment problem [18]. 
For the classical formulation, see [14]. 
Theorem 2.2. (Theorem 4 [18]). Let X  be an ordered vector space, Y  an order 
complete vector lattice, { } { } YyXx JjjJjj ⊂⊂

∈∈
,  given families and 

( )YXLFF ,, 21 ∈  two linear operators. The following statements are equivalent: 
(a) there is a linear operator ( )YXLF ,∈  such that 

( ) ( ) ( ) ( ) ;,21 JjyxFXxxFxFxF jj ∈∀=∈∀≤≤ +  

(b) for any finite subset JJ ⊂0  and any { } ,
0

RJjj ⊂
∈

λ  we have: 
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Theorem 2.3. Let [ ] [ ] .,,, |111 Knnn dtdtbabaK "" =××= ν  Consider the 

following statements 
(a) there exists a unique ( ) ( ) .,.1,...,0, 1 eatthKLh n ≤≤∈ ∞

ν  such that 
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(b) for any finite subset { } { },..2,1,..2,1 ××⊂ "S  and any { } ,; RSjj ⊂∈λ  we have 
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Hence the implication from (b), Theorem 2.2 is accomplished. Application of the 
latter theorem leads to the existence of a linear functional F  on ( ),1 KLX ν=  such 

that ( ) .,0 1 +∈∀⋅≤≤ ∫ XdtdtF
K

n ψψψ "  

The functional F  has a representation by means of a function ,h  that has all the 
properties mentioned at point (a) by measure theory arguments.           □          
The preceding theorem 2.3 suggests the following algorithm in solving the system 
of equations (2.3) from below. 
(i)Step 1. Assume that the moments verify condition (b) of Theorem 2.3. Find an 
approximation of the solution h  in terms of the moments .1, ≥kj jm  To this end, 

since ( ) ( ),2 KLKLh ⊂∈ ∞  it has a Fourier expansion with respect to the Hilbert 
base ( ) 1≥kjjψ  associated following Gram-Schmidt procedure to the complete 

system of linearly independent polynomials ( ) .1≥kjjϕ  The Fourier coefficients 

〉〈 jh ψ,  are given by: ,,,

,...,1
,

,...,1
,

l

nk
kjkl

ll
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kjkl

lj mhh ∑∑
=
≤

=
≤

=〉〈=〉〈 αϕαψ  

where lα  are given by the Gram-Schmidt procedure, so that we know h  in terms 
of the moments. Recall that there exists a subsequence of the sequence of Fourier 
partial sums, which converges pointwise to .h  Hence, we can write: ,~hh ≈  where 
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h~  is a partial sum of the Fourier series of .h  Note that all these partial sums are 
polynomials, so that they are continuous.  
Step 2. (i) Let h~  be a partial sum of the Fourier series with respect to the 
orthogonal polynomials ( ) .1≥kjjψ  By using Schwarz inequality, one deduces 
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The above computation contains terms involving the approximation of the 
polynomial h~  by simple functions [23] 

( ) ( ),,...,,...,~
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qpn ttctth χ∑

≤
≈  

where p  is large and qm  is suitable chosen for approximating .~h  For the one-
dimensional case and for a finite number of equations see [20], Remark 29. The 
conclusion is that we can determine (approximating) the “unknowns” 

nkxy qpmkqpmk ,...,1,, ,,,,,, =  by means of the cell decomposition of the subsets 

qpD ,  associated to the known polynomial .~h  Namely, the “unknowns” are the 
coordinates of the vertices of the cells from the cell – decomposition of the open 
subsets ܦ௣,௤. The basic relations can be summarized as 
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where jm  are given, qpc ,  are known from Step 1, and the unknowns can be 
determined in terms of the cell decomposition of the intersection of sublevel and 
upper level sets of the known polynomial .~h  The numbers qpc ,  are the values of 

h~  at some points in ( ) ( )
⎭
⎬
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⎧ +
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solved by using other methods see [12]. 
(ii) Let consider the functions 
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Then it is easy to see that the condition: 
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following a similar proof to that of Theorem 2.3. Using the notations of the Step 2 
(i), we have: 
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The “unknowns” are the coordinates of the vertices of the cells from the cell – 
decomposition of the open subsets ܦ௣,௤ mentioned at point (i), Step 2. Notice that 
we can assume that { } δ<− qpmkqpmk xy ,,,,,,sup  for arbitrary 0>δ  (the solution 
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is not unique: a big cell can be written as a joint of small cells). This remark 
justify the approximations from above, so that the solution can be approximated 
by means of the cell - decomposition of some known open sets depending on .~h  
 

3. A moment problem not involving polynomials 

 We consider an application of Theorem 2.2 to an arbitrary ( )MLX 1
ν=  

space, where M  is a measure space. Let Y  be an order complete Banach lattice 
with solid norm: .2121 yyyy ≤⇒≤  Let ( )YXBF ,2 ∈  be a linear positive 
bounded operator from X  into ,Y  and let { } { } YyX

JjjJjj ⊂⊂
∈∈

,ϕ  be given 

arbitrary families. 
Theorem 3.1. Consider the following statements: 

(a) there exists ( )YXBF ,∈  such that 
( ) ( ) ( ) ;,,0,, 22 FFXFFJjyF jj ≤∈≤≤∈= +ψψψϕ

 
(b) for any finite subset JJ ⊂0  and any { } ,; 0 RJjj ⊂∈λ  we have 
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Proof. We verify the implication from (b), Theorem 2.2: 
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The implication ( )ab ⇒)(  of Theorem 2.2 leads to the existence of a linear 
operator F  from X  into Y  such that 
( ) ( ) ( ) .,,,0 2 JjyFXFF jj ∈=∈∀≤≤ + ϕψψψ  

If X∈ϕ  is arbitrary, we have 

( ) ( ) ( ) ( ).2 ϕϕϕϕ FFFF ≤+≤ −+  
Since the norm on Y  is solid, we derive that 

( ) ( ) .,122 XFFF ∈∀⋅≤≤ ϕϕϕϕ  

Consequently, one obtains .2FF ≤  This concludes the proof.                  □ 
 Here is the “scalar” version of the above theorem. 
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Corollary 3.1. Let ν,RY =  a −σ  finite measure on .M  Consider the following 
statements: 

(a) there exists ( ) ( ) ..10, eathMLh ≤≤∈ ∞
ν  in ,M  such that 

;, Jjyhd j
M

j ∈=⋅∫ νϕ  

(b) for any finite subset JJ ⊂0  and any { } ,; 0 RJjj ⊂∈λ  we have 

νϕλλ dy
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j
Jj

jj
Jj

j ∫∑∑
∈∈

≤

00

 

Then ( ) ( ).ab ⇒  
Remark 3.1. In the above statements of this Section, M  can be a closed 
unbounded non semi-algebraic subset of .2, ≥nRn  

4. Conclusions 

In section 1 one recalls some results on polynomial approximation on 
unbounded subsets. On the other hand, one formulates the aims and the content of 
this work, as well as some related results in the literature. The main new results of 
section 2 concern solving (approximately) systems of nonlinear systems of 
infinitely many equations with infinitely many unknowns, as inverse problems 
solved starting from the moments (see also [12]). A related generalization of a 
result of M. G. Krein is also stated (Theorem 2.2). Finally, in section 3 an 
application of Theorem 2.2 to a sufficient condition for the existence of the 
solution of a moment problem on the space of absolutely integrable functions is 
discussed. The scalar version is stated as well. 
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