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APPROXIMATION, MARKOV MOMENT PROBLEM AND
RELATED INVERSE PROBLEMS

Octav OLTEANU!

We give necessary and sufficient conditions for the existence of a unique
solution of a multidimensional real classical Markov moment problem, in terms of
quadratic forms. Next, we consider applications of a sufficient condition to solving
geometrically nonlinear systems with infinite many equations and unknowns
(inverse problems solved starting from the moments). Thus, one solves problems
studied in the literature by some other methods. Our way of treating these problems
works in several dimensions. In the end, one considers a problem not necessarily
involving polynomials.

Key words: approximation, Markov moment problem, inverse problems
2010 Mathematics Subject Classification: 41A10, 47A57, 45Q05

1. Introduction

The moment problem is an interpolation - type problem, with one or
several constraints. The construction of the solution (if it does exist and is
unique), is an inverse problem, and so is solving related systems of equations. For
similar problems solved by some other methods see [12]. Usually, constructing

the solution requires that it is an element of a I’ space. In this case, its Fourier
coefficients are writable in terms of the moments. On the other hand, using
polynomial decomposition and approximation in studying the moment problem is
a natural and well-known method [1] - [5], [11] - [22]. The present paper applies
the determinacy of a given measure to prove density results in L! spaces. The first
aim of the present work is to characterize a classical multidimensional real
Markov moment problem by means of quadratic forms, similarly to the one-
dimensional case. A similar method of using approximation, but in solving
complex moment problems appears in [16]. The proofs are completely different to
those of the real case, although the statements in the latter work are in terms of
(complex) quadratic forms. On the other hand, we consider applications to solving
related systems of nonlinear equations with infinite many equations and
unknowns (see Section 2 of the present work, [12], and also [20], Section 4).
Thirdly, this work contains an application of extension of linear operators with
two constraints to the Markov moment problem (Sections 3). The background of
this paper is contained in [1], [4], [9], [10]. For uniqueness of the solution see [1],
[5], [11], [13]. Evaluations and expansions related to generalized differential
operators and PDE’s are contained in [6, 7]. We start by recalling some known
results on polynomial approximation on unbounded subsets. We recall that a
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determinate (M — determinate) measure is, by definition, uniquely determinate
by its moments [1], [S], [11], [13].

Theorem 1.1. (see [17], [19]). Let A< R" be an unbounded closed subset and v
a positive M - determinate regular Borel measure on A, with finite moments of

all orders. Then for any nonnegative continuous vanishing at infinity function
v e (CO(A))+, there is a sequence (pm )m of polynomials on A,

Pm 2V, Py DV in L%/ (A). In particular, one deduces
lim.[pmdv = Il//dv,
A A
the cone P, of positive polynomials is dense in (L}/ (A))+ and P is dense in
1

Ly (4)

Theorem 1.2. Let v =v; x---xv,, be a product of n M — determinate positive
regular Borel measures on R, with finite moments of all natural orders. Then any
nonnegative continuous compactly supported function w is approximated in
L},( ") by means of sums of tensor products p; ®---® p,, p; nonnegative

polynomial on the real line, in variable t ;, j =1,...,n.

Proof. If K is the support of a function y € (C c (R" )) ., then
KcKyx-xK,,K;=pri(K), j=1...n
In order to prove the claimed result, consider a parallelepiped
P=lay,by]x--x[a,.b,)a; =infK;,b; =supK;,j=1..n,
containing the above Cartesian product of compacts and apply uniform
approximation of y on P by means of Bernstein polynomials of n variables.

Recall that the explicit form of these polynomials is given by
Bm (l/)) (tlr ey tn)

k
= Z pmk1 (tl) pmkn(tn)ll) (al + (bl - al) El, e, ap
k1=0,...,m
kn=0,.,m
k
+ (bn - an) #);

ti—a b

my ([t —a;\ (b=t \" .
pmki(tj)z(kj)<bj—aj) <bj—aj) G elap],  j=1.m,

B (i) = 1h,m — oo,
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the convergence being uniform on P. Each term of such a polynomial is a tensor
product p; ®---® p,, of nonnegative polynomials in each variable, on the

corresponding compact interval [aj, bj], j =1,..,n. This follows from the above
representation and from the hypothesis on {5, which is nonnegative. Extend each
P such that, by definition, it vanishes outside [aj,bj], j=1,..,n. Notice that

such a function might have salts at the ends of the interval [aj, bj], and equals p j

on the interval [aj, bj]. In order to avoid such discontinuities and apply theorem
1.1, we approximate the obtained compactly supported nonnegative measurable
functions by compactly supported nonnegative continuous functions, in the spaces
L},}. (R), j=1,...,n. These approximations are done by means of Luzin’s theorem,
cf. [23, p.51, and p.65 ]. One obtains approximation by sums of tensor products
of nonnegative continuous compactly supported functions, in each variable

tj,j=L...n, in the spaces LL . (R), j =1,...,n. Application of Theorem 1.1 to
J

n=1,A=R, leads to approximation of each such function in each separate
variable by dominating (positive) polynomials overall real axes in the space

LL _ (R), j =1,...,n. Finally, Fubini’s theorem, yields an approximating process
J

in L} (R™). This concludes the proof. m|
Remark 1.1. Notice that the preceding arguments do not use the uniform
approximation on [aj, bj] of a possible strictly positive function, by means of
Bernstein polynomials, j = 1,..,n. For functions of one variable, only L!
approximation is used, on the whole real line. On the other hand, our hypothesis
on v; imply that v;(R) <oo. This yields: vj(pj + e) - vj(pj) = evj(R) -
0,6 > 0, so that L' approximation by nonnegative polynomials implies L
approximation by positive polynomials. Observe also that in the preceding proof
we always have K:= supporty € P.
Example 1.1. Let n=2]|(t,t)lly = lts]+1t5], (t1,t,) ERE B, =
{(t, 625 It )Nl = 13,

Pty tz) = 1= Ity e Ml1, (s, el < 1,41 (8, t5) = O otherwise,
Yo (ty, tp) = i_ ||(t1 - g;tz - §)| (t1 _g'tz - §)||1 < i:wz(tp t) =0
otherwise, Y=Yy + §,.
Then we have
K = supporty = supporty, U supporty, = B; U ({G,%)} + §B1) ,P=
[-1,1] x [-1,1].
The paper is organized as follows. Section 2 contains applications of the above
approximation results to the multidimensional Markov moment problem. It also

]
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contains a sufficient condition for the existence of the solution, and related
applications to solving systems of infinitely many nonlinear equations, starting
from the moments (inverse problems). One solves by another method a problem
similar to that from [12]. Our proofs work in several dimensions. Section 3 is

devoted to an application to the abstract ! spaces of a result on the abstract
moment problem. Section 4 concludes the paper.

2. On Markov moment problem and related systems of equations

Let (mj )jeN” ,J= (jl,...,jn) be a given sequence of real numbers,
Jk=1
v =vy x---xv, be as in Theorem 1.2. The next problem concerns characterizing

the existence of a function % € L;; (R") such that
0 <h(tyynty)<1 V(t1,.nt, )€ R, 2.1)

m; jt” - T 1 B(tysenty )V, jp 2L k=1,...,n,
(2.2)
J :(jl""’jn)e(N\{O}) .
One denotes
. -1 i —1 , , , .
;i) = j1- Jn t]1 -t,{” ,t=(ty, ... tn) ER™Sj = (i, ., jn) €N = 1.
Theorem 2.1. The following statements are equivalent:
(a) there exists a unique function h e L, (R" ) with the properties (2.1), (2.2);
(b) for any finite subset Jo € (N\{0})" and any real numbers a;,j € J,, we
have:
Z (l](p](t) >0VteR" > Z a; m; € ]R_'_;
Jj€Jo Jj€Jo
for any finite subsets Jy,...,J, C {1,2,...} and any {ajk s Jk €Jk }, k=1,..n,

the following relation holds

m
i1+ j1=Lip+jp—1

e . . e (Y- . e | <
' z ' Z all a]l alna]n (il +j1 _1)(ln +jn _1) =
ll’]le‘ll ln’JnEJn

. s eeeqy . h+j=2 It jn—2

z Z G xjy X, A, Itl In dv

i, 1€d; iy, Jn€Jy R"
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Proof. (a) = (b) is straightforward. For the converse, define the linear form F; on

the space of polynomials, such that the moment conditions F0(<pj) =m;,j €
(N\{0})™ are true. Then using the form of positive polynomials on the real line
[1], a straightforward computation shows that (b) is equivalent to Fy(p) = 0 for
any nonnegative polynomial on R", and

FO(PI ®---®pn)S J.(pl ®---®pn)dv, Dj eR[tjlpj(tj)>0‘v’tj eR, j=1..,n
Rl’l
Let  be a nonnegative continuous compactly supported function. Application of

theorem 1.2, leads to the existence of approximating sequence
k(m)

zpm,l,.l ®"'®pm,n,l —> Y, m—>x,
=0

in the space L%, (R”)> Pm,j,l(fj)> 0, ‘v’lj eR,j=1..,nl= 1,...,k(m). On the other
hand, the linear positive form F{, has a linear positive extension F to the space of

all integrable functions with their absolute value dominated on R" by a
polynomial (cf. [8] or [10, p. 160]). This space contains the space of continuous
compactly supported functions. Hence F can be represented by a regular positive
Radon measure. Moreover, using (b) and applying Fatou’s lemma, one obtains:

k(m)
0< F(y)<liminf,, F| Y puy j®® pp i | <
=0
k(m)
limy, > [(Pis) ®® P Jdv = [wdv, v e (&),
jZO Rn Rl’l

Then for an arbitrary continuous function with compact support, we have:

F(p) < Flo* )+ Flo™)< [lolav =,

Rl’l

By a standard density argument, F' has a linear positive extension of norm at
most one, to the space L}, (R" This extension has a representation by a function
h with the qualities mentioned at the point (a). This concludes the proof. ©
Corollary 2.1. Let K =[aj,b]x---x[a,,b,]c R" be a parallelepiped,
dv = ygdt---dt,.
The following statements are equivalent:
(a) there exists he L, (R" ) such that (2.1) and



218 Octav Olteanu

m;=ji -J'tljl_l ettt )V, i 2Lk =1,
K
J = s ) (N V{O])".
hold;

(b) for any finite subset |, € (N\{O})™ and any real numbers a;,j € Jo, the
following implication holds

Ea](p](t)ZOVtEK:EO(]mJER+,

J€Jo Jj€Jo
for any finite subsets Jy,...,J, < {1,2,...} and any {ajk s Ji € Jk}, k=1,..,n, we

have

My 4 j1 1, iy + 7, =1
11 heolyt
Z § apaj - & . ;

Jj
ilajle‘]l in’jne‘]n ! ! (l1+]1_1)”'(1n+.]n _1)

IA

n_piktk -1 lk +Ji-1

Z Z @ aj & JnH £

- ip + —1
lls]le‘ll n’]ne‘] k Jk

The next result uses the following theorem on the abstract moment problem [18].
For the classical formulation, see [14].

Theorem 2.2. (Theorem 4 [18]). Let X be an ordered vector space, Y an order
complete  vector lattice, \x ; e cX, v }je ;< Y given families and

F,F e L(X ,Y ) two linear operators. The following statements are equivalent:

(a) there is a linear operator F € L(X Y ) such that
F(x)<F(x)< Fy(x)vxe Xy, Flx; )=y, Ve
(b) for any finite subset J, — J and any {/1]- }jeJo C R, we have:

DA =wr -y yLya € Xy | = D Ay <F(pa)-Fily)
JjeJy jedo

Theorem 2.3. Let K =[ay,by]x-x[a,.b,}v=dtj-dty. Consider the
following statements

(a) there exists a unique h e L, (K),0< h(t,....t,) <1 ae., such that
- jth -1 et (ot Nty o d e 2 k=1,
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(b) for any finite subset S C {1,2,..}>< - X {1,2,..} and any {/Ij; je S}C R, we have
S agm;< 3 4;lbi —aft)-bd ar)
jes jes
Then (b)= (a).
Proof. We denote
?; (t15ensty) = ] -tljl - e Jn -t,{” -1 Jk 2L k=1,.,m(t],..t, )€ K. Then using
the hypothesis (b), the following implications hold:
1 :
D A=y -y e (LV(K)L J=12=

jes

S im s S el )bl - )

jes (j.k)eS

I D Aty --dty, < J-l//zdfl dty = Fy ()= Fi(y), /= 0.
KJjeS K

Hence the implication from (b), Theorem 2.2 is accomplished. Application of the

latter theorem leads to the existence of a linear functional /' on X = L{, (K), such

that 0 < F(y) < jy/.dzl-udtn, Yy eX,.

K
The functional F has a representation by means of a function /4, that has all the
properties mentioned at point (a) by measure theory arguments. O

The preceding theorem 2.3 suggests the following algorithm in solving the system
of equations (2.3) from below.

(1)Step 1. Assume that the moments verify condition (b) of Theorem 2.3. Find an
approximation of the solution / in terms of the moments m, j; >1. To this end,

since he L”(K)c I? (K), it has a Fourier expansion with respect to the Hilbert
base (1// j )jk o1 associated following Gram-Schmidt procedure to the complete

system of linearly independent polynomials (go j) x The Fourier coefficients

Jk =
(hy ;) are givenby: (hy ;Y= D eyhp)y= D aymy,
lk<jk, lk<Jk-
k=1,....n k=1,...n

where ¢; are given by the Gram-Schmidt procedure, so that we know /% in terms
of the moments. Recall that there exists a subsequence of the sequence of Fourier
partial sums, which converges pointwise to 4. Hence, we can write: & ~ h, where
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hisa partial sum of the Fourier series of /4. Note that all these partial sums are
polynomials, so that they are continuous.

Step 2. (i) Let h be a partial sum of the Fourier series with respect to the
orthogonal polynomials (g// j )jk o1 By using Schwarz inequality, one deduces

m, ~j¢hdz dt, ~j¢ (Zcm 2o, (t ,tn)jdtl---dznz
Zcpq (ZJ¢ Z[Xm,;q’ylmpq)(tl)m%[xn,m,,,,q’yn,m,p,q)(tn)dtl"'dtnjz

meN g

Ji JIn Jn
Zcpq( ylmpq lmqpqq) (yﬂmpq anmqpqq)j’

meN

UmeN[xl ,m pq’yl m pq)x“.x['xn,m,p,q’yn,m,p,q) >

N m +1
:{(tl, Jn);Z—ZSh(fn---afn)< ;p },dt(DM)

zd{{(n, )5 <A t”)<m;:1}]'

The above computation contains terms involving the approximation of the

polynomial h by simple functions [23]
Z(l‘l,...,ln ) = ZcpanDp,q (tl,...,tn ),
P.q<M
where p is large and m, is suitable chosen for approximating h. For the one-
dimensional case and for a finite number of equations see [20], Remark 29. The

conclusion is that we can determine (approximating) the ‘“unknowns”

Yik,m, p,q»*k,m, p,q> & =1...,n by means of the cell decomposition of the subsets

D, 4 associated to the known polynomial h. Namely, the “unknowns” are the
coordinates of the vertices of the cells from the cell — decomposition of the open
subsets D), 4. The basic relations can be summarized as

mj = [@hde -wdty ~ [ @ hdty ---dt,, ~
K K

J1 /1 Jn _yJn
Zcp’q z (yl,m,p,q 1 n,p, q) (ynamsp’q xnsmapsqj ? (2.3)

Dg=<M meN
jk > 1, k= 1,...,n



Approximation, Markov moment problem and related inverse problems 221

where m ; are given, c are known from Step 1, and the unknowns can be

J p.q
determined in terms of the cell decomposition of the intersection of sublevel and

upper level sets of the known polynomial h. The numbers ¢ p,q are the values of

mq+1

2P

h at some points in {(tl,...,tn ) m—Z < i:(tl,...,tn)<
2

} . For a similar problem

solved by using other methods see [12].

(i1) Let consider the functions
n

@ (t1seeesty) = expl= jity == ity ) (t1seersty) € K =] [k -tk )
k=1

0<ap <bg,k=1..n,j=jj,r jy)eN".

Then it is easy to see that the condition:

. 17 %0 kar ) exp(= jiby)
Zﬂjm} < Z )“JH -

=1 Tk

jGJO jGJO
for any finite subset {/1 i }je g C R, implies the existence of function
0

Ihe L (K)O<h<l,m, =Ih¢)jdtl cedt, , ¥jeN".

K
following a similar proof to that of Theorem 2.3. Using the notations of the Step 2
(i), we have:

m; =~ J.E(pjdtl edt, =

K
L exp(— jkxk,m,p,q )_ exp(— jkyk,m,p,q )J _
p,qZS:Ajp’q ng\lg Jk
. . eXp(jk<yk,m,p,q ~Xkm,p.q ))_1 -
Mzslﬁjp,q %gem( kY pg) i ~
n
Zcp,q Z HCXP(_ jkyk,m,p,q)'(yk,m,p,q ~Yk,m,p.q )J

Dsq<M meN k=1
The “unknowns” are the coordinates of the vertices of the cells from the cell —
decomposition of the open subsets D, , mentioned at point (i), Step 2. Notice that

we can assume that sup{yk’ m,p.q ~ Xk,m, p,q }< o for arbitrary ¢ >0 (the solution
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is not unique: a big cell can be written as a joint of small cells). This remark
justify the approximations from above, so that the solution can be approximated

by means of the cell - decomposition of some known open sets depending on 4.

3. A moment problem not involving polynomials

We consider an application of Theorem 2.2 to an arbitrary X = L}, (M )
space, where M is a measure space. Let Y be an order complete Banach lattice
with solid norm: |y1| < |y2| = ||y1 || < ||y2|| Let F5 € B(X,Y) be a linear positive

bounded operator from X into Y, and let {qo i }je ; C X, {y j} c Y be given

jeJ
arbitrary families.
Theorem 3.1. Consider the following statements:

(a) there exists I e B(X Y ) such that

Flo;)=v;. jed, 0<FW)<hp) weX, |F|<|m
(b) for any finite subset J, c J and any {lj; jeJdy }C R, we have

D Ay s Z%‘Fz(@)

jeJo jeJo

9

Then (b)= ().
Proof. We verify the implication from (b), Theorem 2.2:

DA =va vy e Xy, j=12=
Jedo

DAV SF| Y A0 |<Fyy)=Fay)-F ) £ =0.
jEJO jEJO

The implication (b) = (a) of Theorem 2.2 leads to the existence of a linear
operator F from X into Y such that

0<FW)<FWw)VyeX, Flp)=v,, jeJ.
If ¢ € X is arbitrary, we have
Flp) < Fl* )+ Flo~)< B2 o)
Since the norm on Y is solid, we derive that

() <172 (o] < 172 o
Consequently, one obtains ||F || < ||F2 || This concludes the proof. m

1,VgpeX.

Here is the “scalar” version of the above theorem.
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Corollary 3.1. Let Y = R, v a o — finite measure on M. Consider the following
Statements:

(a) there exists h e L;, (M), 0< h(t) <lae. in M, such that

j¢] thZy],jEJ,
M
(b) for any finite subset J, — J and any {ﬂj; j eJO}C R, we have

Sayi< D J¢jdv
J€Jo jeJo M
Then (b)= ().
Remark 3.1. In the above statements of this Section, M can be a closed

unbounded non semi-algebraic subset of R", n > 2.

4. Conclusions

In section 1 one recalls some results on polynomial approximation on
unbounded subsets. On the other hand, one formulates the aims and the content of
this work, as well as some related results in the literature. The main new results of
section 2 concern solving (approximately) systems of nonlinear systems of
infinitely many equations with infinitely many unknowns, as inverse problems
solved starting from the moments (see also [12]). A related generalization of a
result of M. G. Krein is also stated (Theorem 2.2). Finally, in section 3 an
application of Theorem 2.2 to a sufficient condition for the existence of the
solution of a moment problem on the space of absolutely integrable functions is
discussed. The scalar version is stated as well.
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