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REDUCTION OF THE ELEMENTARY BODIES TO SYSTEMS OF
MATERIAL POINTS WITH THE SAME INERTIA PROPERTIES

Nicolaie ORASANU'

In aceastd lucrare se propun cateva modele matematice de reducere a
corpurilor elementare la sisteme de puncte materiale cu aceleasi proprietdti de inertie,
astfel acestea vor avea: acelasi centru de masa si acelasi tensor de inertie. Plecand de la
aceste modele, orice corp poate fi redus la un sistem de puncte materiale, iar
determinarea proprietdtilor de inertie devine mult mai simpld. De asemenea, corpurile
reale au fost impadrtite in patru clase, un aspect teoretic necesar pentru a explica modul
in care se pot reduce corpurile. Aceasta abordare de determinare a proprietatilor de
inertie ale corpurilor este una noud, neintdlnitd in nicio altd lucrare de specialitate.

In this paper the author proposes some mathematical models of reduction of the
elementary bodies to systems of material points with the same inertia properties, which
means: the same centre of mass and the same tensor of inertia. Starting from these
models, each body can be reduced to a system of material points and the possibility to
calculate all these properties becomes easier. Also the real bodies were divided in four
classes to make a better explication of the reduction method. The reduction operation is
an original one.

Keywords: centre of mass, reduction of a body, tensor of inertia, elementary
body, order of body

1. Introduction

The centre of mass represents the point where the entirely weight (mass)
of a body can be concentrated with the same mechanical effect like the natural
body, where the distribution of the weight is a continuous function.

The moments of inertia measure how the mass of a body is distributed
with respect to a point, an axis or a plane. The general expression for a system of
1"’ material points is, [1+5]:

n
2
J@ = Zml& (1)
i=l1
Where: ® is the symbol of the element with respect to which is defined this
moment of inertia, respectively: a point, an axis or a plane and A4, - is the distance
between the point A; of mass m; and the reference element: the point, the axis or
the plane.
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The relation (1) shows that the moments of inertia are strictly positive. If
we know the centre of mass and the moments of inertia about the main axes of
some coordinates system, the inertia properties of the body are known.

The products of inertia are defined with respect to two axes of an
orthogonal reference system; for example, if the reference system is Oxyz, the
products of inertia with respect to the axes Ox, Oy have the expression, [1+6]:

n
Ty = D MiX Vi )
i=1

For a continuous body, the sums from relations (1) and (2) become
integrals on the volume of the body, D, so:

Jo = [A-dm; Jy = [xy-dm 3)
D D

For a system of material points, the calculus of inertia properties means
only algebraical sums, but to determine inertia properties for the continuous
bodies supposes, generally, a very difficult integral calculus.

To determine the position of the centre of mass or the inertia properties, it
means to divide the composite body in the elementary bodies for which relations
of calculus are known.

Thus actually, an elementary body is considered a body for which the
relations of calculus of the position of the centre of mass and the moments of
inertia or products of inertia are known.

2. The order of a body

We consider necessary to use some concepts for classification of the
bodies. So, depending on the dimensions, one can classify the bodies in four
categories:

-order 0 bodies are the bodies which can be replaced by a point or a
system of the material points (a point has ,,zero” dimensions);

- order 1 bodies are the bodies which can be replaced by segment of line,
curve arc or a composed curve (a curve has a single dimension), which are
sometimes called “bars™;

- order 2 bodies are the bodies which can be replaced by plane surface, a
curved surface or a composed surface (a surface has two dimensions) — which are
sometimes called “plates”;

- order 3 bodies are the real bodies which can have as exterior faces the
plane surfaces or curve surfaces (the volumes have three dimensions). The bodies
which have only the plane exterior surfaces - the polyhedrons - are called simple
bodies.
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The elementary simple bodies are the bodies with known inertia
properties, which, through adding or extracting, can form any simple bodies from
the same class with them.

3. The reduction of bodies to order 0 bodies

In introduction, we explained why it is easier to calculate the inertia
properties for the system of material points. In the same mode, if we compare
with the reduction of the force systems, we want to find an easy way to determine
the inertia properties on a simple model. The reduction means to replace a body
by an inferior order body. The elementary body, from this point of view, is a body
which can be reduced to an order 0 body. All reduction operations must propose a
body which has the same centre of mass and the same moments of inertia and
products of inertia.

3.1. The reduction of a straight bar to an order 0 body

Theorem 1: Any straight bar, an order 1 body, can be reduced to an
order 0 body formed by a system of three material points, as follows: each
end of bar has 1/6 of the mass of the body and the centre of mass has the 2/3
of the mass of the body.

Proof: Let us consider a bar, AB, of mass m, and known coordinates of the
ends A(xa, ya) and B(xg, yg) (Figure 1a), in the plane xOy. In conformity with
[1], the moments of inertia and products of inertia different from zero are:
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The proposed model (Figure 1b), in conformity with relations (1) and (2),
has the following moments of inertia and products of inertia:
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2
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Owing to the symmetry, the centre of the mass is obviously identical with
the centre of mass of the model. The demonstration is obvious.

3.2. The reduction of the elementary order 2 bodies to an order 0 body

We found two elementary order 2 bodies: the triangle and the
parallelogram. 1t is well known that the latter body, the parallelograms, include a
large family of bodies: the rthombus, the rectangles and the squares. For any
elementary body we considered 7, the number of the vertices of the body, so that,
n=3 for the triangles and n=4 for the parallelograms.

Theorem 2: Any elementary order 2 bodies can be reduced to an order
0 body formed by a system of ,,n+1”material points, as follows: each vertex
of the body has 1/12 of the mass of the body and the centre of mass has the
rest of this mass: 3/4 - for the triangles and, respectively, 2/3 - for the
parallelograms.

Proof: The demonstration is made in xOy plane, see Figures 2 and 3.

A A
y y
a) b)
A3 A3
h
Ay A x Ay Al X
0] o
b, b,
Figure 2
The triangle

Let us consider a triangle A;A,Aj3, situated in xOy plane, with the vertex
coordinates: A; (x, =5,,0,0) , Ay (x, =-b,,0,0), A3 (0, ¥, =h, 0) and with the
mass m. If the centre of mass is in the point C, the known coordinates of the C
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b ;bz D Yo = %; Zo = Oj, If the sum is noted with: b,+b,=b, in

conformity with [1], the expressions of the moments of inertia and the products of
inertia are:

point are: C[xc =

2 3,13 _
J = mh g = m(b; +b2); .= mh(b, —b,) (©6)
6 ’ 6b Y 12
The proposed model, presented in figure 2b, has the following moments of
inertia and products of inertia:

4 4
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_3mb —by h _mh(b -b,)
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Because the moment of inertia with respect to the axis Oz is equal to the
sum J.= J,+J,, it is not specified separately. The equalities between expressions
(6) and (7) demonstrate the first part of definition 2.
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Figure 3

The parallelogram

Let us consider thee parallelogram, from Figure 3a, with the vertices A;,
(i=1-4), situated in xOy plane.

The vertex coordinates are: Ai(b, 0), Ax(b+c, a), As(c, a) and A4(0, 0).

In conformity with [1], the coordinates of the centre of mass are:

13 1
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Figure 4
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The moments of inertia and the products of inertia with respect to the

reference system are determined using the integral calculus (Figure 4), so:
2

I y*pdA —pr Viy="2 [;a m;
p mb? m(b2 +cz) mbc
= [ = dA +IxcpdA =y +pbj(—+yctga) dy = 3 + 5 9)
0

4 b c
Jyy = [ yxcpdd = pbjy(g + yetgar)dy = ma{z + gj
0 0

For the proposed model (see figure 3b), the moments of inertia and the
products of inertia are:

2mix%i M (3¢ 2b)+ 2””—b+c , 2miyi Moy, 2ma
o =izl _12 2 _btce =l _12 32_a
c Ve
m m 2 m m 2
Jo=2.", 2+2ﬂﬁ_ma2. (10)
12 3 4 37
2 2 2m (b+c)2 m(b2 +cz) mbc
J, =2 +—(b+c) + 22 = + ;
Y12 2 T3 4 3 2

2m 1 b ¢
Jxy = E(b+c)a+ﬁca +?f(b+c)a = ma(4 +3j
The equality between expression (8), (9) and (10) demonstrate the second

part of theorem 2.
3.3. The reduction of the elementary order 3 bodies to an order 0 body

In the polyhedron family, we will name the pyramids and the prisms as
simple polyhedra. It is already demonstrated that a polyhedron can be divided in
prism and pyramids, added or extracted. We found two elementary order 3 bodies:
any tetrahedron and any prism with a parallelogram base. In fact any pyramid can
be divided in a number of tetrahedra and any prism can be divided in a number of
prisms with a parallelogram base and tetrahedra.

3.4. The reduction of a tetrahedron

Theorem 3.1: Any tetrahedron, order 3 body, can be reduced to an
order 0 body formed by a system of 5 material points as follows: each vertex
of the tetrahedron has 1/20 of the mass of the body and the centre of mass
has the 4/5 of the mass, the rest.
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Proof: First, we calculate the inertia properties of the tetrahedron in classic
way.

3.4.1. The determination of the centre of mass and the moments of
inertia

Let us consider a tetrahedron,
A1AA3A4, with the face AjAzAjz situated in
xOy plane and the vertex A; on the Ox axis
and the vertex A4 on the Oz axis.The vertex
coordinates of the tetrahedron are: A;(x, 0,
0), AQ(XQ, Y2, 0), A3(X3, Y3, 0) and A4(0, 0,
z4) (Figure 5).

To obtain the values of the inertia
properties we make the integral calculus for
that tetrahedron. In Figure 5 is drawn the
tetrahedron on which we make a section
with two parallel plans, at height ,z”, we
obtain the elementary volume dV, proportional with the elementary mass dm.

To determine the position of the centre of the mass we use the relations:

Figure 5

[xdV [ydv [zdV
_D ., _D . _D . 11
xC J‘dV 7yC IdV ’ZC J-dV 9 ( )
D D D
1
v = E(XM.VN +XNYVo —XoVN ~ Xy Yp)dz (12)

Because the triangles AA4MN and AA4A A, are similar, and also the
triangles AA4NQ and AA4A,Aj are similar too, it results:

X X
X =—1(Z4 —Z)i Xy =—2(Z4 —Z) VN =ﬁ(24 -z);

Z4 Z4 Z4 (13)
X
X0 = 2—3(24 - Z)Q)’Q = &(24 —2)
4 Z4

In expressions (11) x, y, z are the coordinates of the centre of mass of the
elementary volume, the triangle AQNM, thus:

=XM +XN+XQ =x1+X2 +X3 (Z4
3 3Z4

X - z);

(14)

:yN+yQ :y2+y3(z4—Z)'Z=Z
3 3z, '
The volume of pyramid is:
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z z
V= ?4AAA1A2A3 - f(xlyz +X2V3 = X3y — X1Y3) (15)

If we replace the term from (15) in (12), between the elementary volume
and the volume we found the relation:

2 ZZ Zy

Hence, the coordinates of the centre of mass of the pyramid are:
z4 4
X+ Xy +X X +X+X3 2
j3V¥43(Z4—2)3dz V%—“
_0 Z4 _ Z4 4 _Nhtxntx,

X - - B
¢ 1% % 4

Z4 Z4
| 3Vy27+4y3(z4 - 2)3 dz | 3—2/(24 - Z)2 zdz
0 Z4 _tys. _ 0%
v 4 7€ 4 4
The relations (17) show the formula of the

coordinates of the centre of mass of a tetrahedron. .
In fact, each coordinate is a quarter of the sum of O y
the vertex coordinates with respect to the same axis. Q

For the determination of the moments of
inertia and products of inertia we use the reduction M
operation for the triangle MNQ. So, the moments of N
inertia and products of inertia of the elementary
body of the volume dV and mass dm, are, in fact,
the moment of inertia of the triangle NMQ. So, for a
homogenous piramid of mass m (p=const.), we get:
dm = pdV = 3p3V(z4—z)2dz=3—r3n(z4—z)2dz (18)

z 2z

In conformity with reduction operation, the vertices M, N and Q of the
triangle have: dm/12 and the centre of mass, C’, has 3 dm/4, see Figure 6.
The elementary moment of inertia with respect to Ox axis is:

(17)

Yc =

X
v Figure 6

dm 3dm| (yy +y )2
422 2.2
dy =2mCGa=2) yatys oy, 3mEa—2)7E (20)

X
2451 6 Zi

By integrating this, we obtain:

2 2 2
22(24_2)2dzzmy2 T3t ystIi (21)

2 2 Z4 Z4
m + vy + 4 3m
0 Z4 0

X
ZZ 2
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Similarly, we can calculate the moment of inertia with respect to the Oy
axis:

2
+yy+
dJy=zml-<x?+z$>=‘1”;“<xif+y%v+yé+3z2>+3j’"[(w o o) +z2] @)

After integrating it is obtained:
2 2 2 2
_ X +x2+x3 +x1x2+x2x3+x3xl+z4
J ,=m (23)
10
And with respect to the Oz axis:

A =S m(F 432 =T+ 4+ R 4R

24
+3dm (xp + Xy +xQ)2 +(y1v +yQ)2 @4
4 9 9

In expression (24) all the terms are already calculated in relations (21) and

(23), so the moment of inertia with respect to the Oz axis is:

2 2 2 2 2
X1 + Xy + X3 + X1 X + Xo X3 + X3X1 + %) + 3 + Va)V3

10

J.=m (25)

3.4.2. The determination of the products of inertia

The product of inertia of the elementary triangle is:
3dm (xpr + Xy +X0)(Yn + Yp)

4 9 (26)

dm
dJ = 2.mix;y; = E(xNyN +XxpYo)+

3m(zy —2)*
= %[2(362)’2 +x303) + (X1 + Xy3 + X3+ x30) e (27)
4
After the integration in relation (27), we obtain:
m
Sy = 20 (20,05 +x393) + Gy + X103 + X013 + x372)] (28)

For the other products of inertia we make a similar calculus, so:
dm 3dm (yn +Yo)
df ;= Empyiz = (o2 + yo2) + TTQZ (29)
Replacing:
d
A =5 O+ 30)e =5 (0 + 33z =)' (30)
4

After integration calculus:
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m(y, + y3)z4
J =—2z 3774 31
yz 20 (31
Similar:
m(x1 + XZ + X3)Z4
= 32
- 20 (32)

In conformity with theorem 3.1, the
moments of inertia of the proposed model,
are:

mopLm o2 4m (v, +13)° +72;

m, 2 2 2
J,=— bz b2 3T A T (S iy 2 33
x 20)’2 5003 Tt 16 1O(yz Y3+ +zz) (33)
2. 2
Jyzﬂxl2+ﬂx§+ﬁxl2+ﬂzg+4m (¥ +xp +x3)" + 2 _
20 20 20 20 5 16 (34)

m
=E(x12 +x% +x32 + XX + X]X3 + X X3 +z%)

2 2
m 7 2 m, 2 o Am (xp+x7 +x3)  +(yy +¥3)
J, = *1+2*(x2 y2)+%(x3+J’3)+f 1772 773 2773

20 5 16 (35)

2.2 2., .2
:B(xl +x3 +X3 +x1xp +x1x3 +x3X3 +¥5 + 3 +1203)

The products of inertia of the proposed model are:

m
Sy = —(xlyz +X1V3+2X)) + X213+ X3 +2X3)3)
(36)
m
Sy = 20 L (yazg +32); Sy = 2—0(x1 +x +X3)24
Relations (33)-(36) prove the validity of the proposed model.

3.5. The reduction of a prism with parallelogram faces

Theorem 3.2:  Any prism with t
parallelogram bases, an order 3 body, can be
reduced to an order 0 body formed by a
system of 9 material points as follows: each
vertex of the prism has 1/24 of the mass of the M ldz
prism and the centre of mass has 2/3 of the ,, g
mass (the rest). by

Proof: A=0 Y Ay

A prism with parallelogram bases
A1AA3A4AsAGA7Ag, as represented in Figure

z

<

P |

>
Z %

As
Figure 8
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11, has, with respect to the Cartesian coordinate system Oxyz, the points O=A;
and the base AjA,A3A, situated in xOy plane, with the edge A;A4 situated on Oy
axis.

The coordinates of the prism vertices are: A;(0, 0, 0), Ax(x2, y2, 0), As(Xs,
Y3, 0), A4(0, y4, 0,), As(xs, s, 1), Ae(Xe, Yo, 1), A7(X7, y7, h), As(Xs, s, h).

The unit vector of generator direction is: é = cosai + cos fj + cos yk

The vectors of the edges have the form: @ = Ay Ag = A3A; = AyAg = Ae

To simplify the notations, it is easier to write the coordinates as a function
of scalars. We note the scalar: 2 = Acos A, and the vertex coordinates as:
Xo=a;y, =c;x3=a;y3=b+c;x4 =094 =b;

X5 =Acosa; ys = Acos B;xg =a+ Acosa; yg =c+ Acos f; 37
X;=a+Acosa; y; =b+c+Acosf; xg =a+ Acosa; yg =b+ Acos f;

3.5.1. The integral calculus of the moments and the products of inertia

The prism was sectioned with two parallel plans at the height ,,z” and dz
distance between them. The elementary body has the mass and the volume:

dm= pdV;dV = x,y,dz = abdz (38)
If we make the notation: OM=u, we can write the coordinates expression:
Z=UCOSYy =Z)y =Zy =Zg=2Zp (39)

Xp =UCOSA; Yy =ucosfB; xy =a+ucosa; yy = c+ucosf; (40)
Xg =a+ucosa;yg =b+c+ucosff;xp =ucosa;yg =b+ucosp;
The moment of inertia of the elementary body with respect to Ox axis is:

b*+¢c* m(yM+yN+yP+yQ)2+1622

dJ, =dm——+d (41)
12 16
Integrating:
2, 2,32, .2
Jx:m(b +c 3+h +y5)+m(b-;c)y5 @2)
The moment of inertia of the elementary body with respect to Oy axis is:
2 +x, + X, +x,) +162°
a7, =dm a2+ 2) 4162 43)
! 12 16
Integrating:
2 h 2 2 2
J =T 8 0a 480 % Ly 6 = A A XS) | maxs gy
T 12 16 cosA 3 2

0
The moment of inertia of the elementary body with respect to Oz axis is:
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a’+b*+c? +dm(xM +xN+xP+xQ)2+(yM +yN+yP+yQ)2

dJ,=dm (45)
12 16
Integrating:
m(a® +b> +c* + x52 + y52) m(axs +bys +cys)
J, = + (46)

: 3 2
The product of inertia of the elementary body with respect to Ox and Oy
axes is:

(xp +xy +xp +x0) Yy + YN +Yp +Y0)

dJ ., =d 47
o = dm - 47)
Integrating: $
_mxsys  m[(b+c)xs+ays] z
Jyy = 3 + 1 (63)
J,. = m(bln; c)h N mlyzsh;
(48)
J - mah  mxsh
=16 12

The proposed model is presented in
Figure 9. The coordinates of the centre of mass
can be determinate with the formula:

8 8 8
1 1 1 ;
XC=§§,xi;yc=§§ yi;Zc=§§ z; (49 Fieura 9
i=1 i=1 i=1

The moments of inertia of this model can be calculated with the following
relations. The moment of inertia with respect to Ox axis is:

2

m , m m , m, 5 2 m . 5 2
Jo=— i+ — i+ — i+ — I+ h)+— (2 + )+
M Vs Y3 Vs 24 (s ) 24 (Vs )

. 24 24 . 24 ' 1 (50)
+£(y72 + hz)‘*‘ﬂ()’gz +h?) +T(J’é +Zh2)
Replacing the values from relations (37) and (49) in (50), we obtain:
Jx:m(b2+cz3+h2+y52)+m(b;c)y5 (51)
The moment with respect to the Oy axis:
Jy=%x§+%x32+%x§+%(x§+h2)+%(x§+h2)+ o

m ) m ., o, e 2m, , 1,
() F—(x + B+ = (X2 +—h
24(7 ) 24(8 ) 3(c 2 )

Replacing the values from relations (37) and (49) in (52), we obtain:
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2 2 2
m(a” +h +x5)+max5

J, = 53
The moment with respect to the OZ axis:
m
Jo= o (B D+ (F )+ Do+ R ) g )+
24 24 24 24
(34)
2, .2 2,2 2, .2
+—(x5+y7)+—(xg + +— X+
24(7 »7) 24(8 yg) 3 (xc +yc)
m(a2 +b% +¢? +x52 +y52) m(axs + bys +cys)
J, = 3 + 5 (55)
The product of inertia with respect to Ox and Oy axes:
J, == + a3 o X Vs e X Ve Xy Yy + e x +2—mx (56)
xy = 24 X2V 24 33 24 5Vs5 24 66 24 7Y7 24 88 3 cYc
mx. b+c)xs+a
Sy = ;J/S mf( )45 s ] (57)
The product of inertia with respect to Oy and Oz axes:
2m  h
J,.=—ysh+ h+ h+ h+—yc— 58
yz 24y5 24)’6 24y7 24y8 3 y02 (58)
m(b+c)h  mysh
Jy, = + 59
. 16 12 9)
The product of inertia with respect to Oz and Ox axes:
m 2m  h
T = xh+ xeh+ 2o+ 2 xoh+ 2y 2 60
T 0470 247 a7 47 3 7 (60)
Finally:
mah  mxsh
=— 61
=16 12 (61)

The centre of mass of the proposed model, C’, can be easy verified using
similar relations with (7).

If the relations (51), (53), (55), (57), (59) and (61) are compared with the
relations from chapter 3.5.1, they are similar and the proposed model has the same
inertia properties thus the theorem is proved.

4. Conclusions

In fact, all the applied sciences use models to study the natural
phenomenon and the reduction of the bodies help us to work easier and to
calculate the proprieties with a minimum mathematical effort. This reduction
operation is an original approach which can open a way in this direction.
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First, we find the elementary bodies which can be reduced. For the
polyhedron family order 3 bodies and, also, for the degenerated polyhedron
solids, order 2 or order 1 bodies, we find the following elementary bodies: any
tetrahedron, any prism with parallelogram bases, any triangle, any parallelogram
and any straight bar. Because any polyhedron can be formed with these
elementary bodies, which are presented above, in fact any polyhedron can be
reduced to a system of material points.

Also, we know how to extend this reduction operation for other solid
family and we suppose that it will be extended for the particular solid families.

Let us remark that the reduction operation presents many advantages if it
is compared with the theoretical study. Also, it is easy to apply this operation in
computer programs. We know that, at this time, there are many computer
programs which can calculate all the inertia properties for any solid body that can
be designed in CAD technologies, and our approach can improve the future
programs. Let us consider this study a step in this direction.

We can not evaluate now all the applications of this method but we are
sure that many applications would be possible, and not only in theoretical
mechanics. As a consequence of the ideas presented in this paper, there is the
possibility to reduce other bodies to inferior order bodies. We will present all
these in other papers.
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