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REDUCTION OF THE ELEMENTARY BODIES TO SYSTEMS OF 

MATERIAL POINTS WITH THE SAME INERTIA PROPERTIES  

 
Nicolaie ORASANU1 

 
In această lucrare se propun cateva modele matematice de reducere a 

corpurilor elementare la sisteme de puncte materiale cu aceleaşi proprietăţi de inerţie, 
astfel acestea vor avea: acelaşi centru de masă şi acelaşi tensor de inerţie. Plecând de la 
aceste modele, orice corp poate fi redus la un sistem de puncte materiale, iar 
determinarea proprietăţilor de inerţie devine mult mai simplă. De asemenea, corpurile 
reale au fost împărţite în patru clase, un aspect teoretic necesar pentru a explica modul 
în care se pot reduce corpurile. Această abordare de determinare a proprietăţilor de 
inerţie ale corpurilor este una nouă, neîntâlnită în nicio altă lucrare de specialitate.  

 
In this paper the author proposes some mathematical models of reduction of the 

elementary bodies to systems of material points with the same inertia properties, which 
means: the same centre of mass and the same tensor of inertia. Starting from these 
models, each body can be reduced to a system of material points and the possibility to 
calculate all these properties becomes easier. Also the real bodies were divided in four 
classes to make a better explication of the reduction method. The reduction operation is 
an original one.  

 
Keywords: centre of mass, reduction of a body, tensor of inertia, elementary 
                   body, order of body 

 
1. Introduction 
 
The centre of mass represents the point where the entirely weight (mass) 

of a body can be concentrated with the same mechanical effect like the natural 
body, where the distribution of the weight is a continuous function. 

The moments of inertia measure how the mass of a body is distributed 
with respect to a point, an axis or a plane. The general expression for a system of 
„n” material points is, [1÷5]: 
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Where: Θ is the symbol of the element with respect to which is defined this 
moment of inertia, respectively: a point, an axis or a plane and iλ - is the distance 
between the point Ai of mass mi and the reference element: the point, the axis or 
the plane. 
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The relation (1) shows that the moments of inertia are strictly positive. If 
we know the centre of mass and the moments of inertia about the main axes of 
some coordinates system, the inertia properties of the body are known.  

The products of inertia are defined with respect to two axes of an 
orthogonal reference system; for example, if the reference system is Oxyz, the 
products of inertia with respect to the axes Ox, Oy have the expression, [1÷6]: 
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For a continuous body, the sums from relations (1) and (2) become 
integrals on the volume of the body, D , so: 
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For a system of material points, the calculus of inertia properties means 
only algebraical sums, but to determine inertia properties for the continuous 
bodies supposes, generally, a very difficult integral calculus. 

To determine the position of the centre of mass or the inertia properties, it 
means to divide the composite body in the elementary bodies for which relations 
of calculus are known. 

Thus actually, an elementary body is considered a body for which the 
relations of calculus of the position of the centre of mass and the moments of 
inertia or products of inertia are known. 

 
2. The order of a body 
 
We consider necessary to use some concepts for classification of the 

bodies. So, depending on the dimensions, one can classify the bodies in four 
categories: 

-order 0 bodies are the bodies which can be replaced by a point or a 
system of the material points (a point has „zero” dimensions); 

- order 1 bodies are the bodies which can be replaced by segment of line, 
curve arc or a composed curve (a curve has a single dimension), which are 
sometimes called “bars”; 

- order 2 bodies are the bodies which can be replaced by plane surface, a 
curved surface or a composed surface (a surface has two dimensions) – which are 
sometimes called “plates”; 

- order 3 bodies are the real bodies which can have as exterior faces the 
plane surfaces or curve surfaces (the volumes have three dimensions). The bodies 
which have only the plane exterior surfaces - the polyhedrons - are called simple 
bodies. 
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The elementary simple bodies are the bodies with known inertia 
properties, which, through adding or extracting, can form any simple bodies from 
the same class with them. 

 
3. The reduction of bodies to order 0 bodies 
 
In introduction, we explained why it is easier to calculate the inertia 

properties for the system of material points. In the same mode, if we compare 
with the reduction of the force systems, we want to find an easy way to determine 
the inertia properties on a simple model. The reduction means to replace a body 
by an inferior order body. The elementary body, from this point of view, is a body 
which can be reduced to an order 0 body. All reduction operations must propose a 
body which has the same centre of mass and the same moments of inertia and 
products of inertia. 

 
3.1. The reduction of a straight bar to an order 0 body 
 
Theorem 1: Any straight bar, an order 1 body, can be reduced to an 

order 0 body formed by a system of three material points, as follows: each 
end of bar has 1/6 of the mass of the body and the centre of mass has the 2/3 
of the mass of the body. 

Proof: Let us consider a bar, AB, of mass m, and known coordinates of the 
ends A(xA, yA) and B(xB, yB) (Figure 1a), in the plane xOy. In conformity with 
[1], the moments of inertia and products of inertia different from zero are: 
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The proposed model (Figure 1b), in conformity with relations (1) and (2), 
has the following moments of inertia and products of inertia: 
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Owing to the symmetry, the centre of the mass is obviously identical with 
the centre of mass of the model. The demonstration is obvious.  

 
3.2. The reduction of the elementary order 2 bodies to an order 0 body 
 
We found two elementary order 2 bodies: the triangle and the 

parallelogram. It is well known that the latter body, the parallelograms, include a 
large family of bodies: the rhombus, the rectangles and the squares. For any 
elementary body we considered n, the number of the vertices of the body, so that, 
n=3 for the triangles and n=4 for the parallelograms. 

 
 Theorem 2: Any elementary order 2 bodies can be reduced to an order 

0 body formed by a system of „n+1”material points, as follows: each vertex 
of the body has 1/12 of the mass of the body and the centre of mass has the 
rest of this mass: 3/4 - for the triangles and, respectively, 2/3 - for the 
parallelograms.  

Proof: The demonstration is made in xOy plane, see Figures 2 and 3. 

The triangle 
Let us consider a triangle A1A2A3, situated in xOy plane, with the vertex 

coordinates: A1 )0,0,( 11 bx = , A2 )0,0,( 22 bx −= , A3 )0,,0( 3 hy =  and with the 
mass m. If the centre of mass is in the point C, the known coordinates of the C 
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conformity with [1], the expressions of the moments of inertia and the products of 
inertia are: 
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The proposed model, presented in figure 2b, has the following moments of 
inertia and products of inertia: 
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Because the moment of inertia with respect to the axis Oz is equal to the 
sum Jz= Jx+Jy, it is not specified separately. The equalities between expressions 
(6) and (7) demonstrate the first part of definition 2. 

The parallelogram  
Let us consider thee parallelogram, from Figure 3a, with the vertices Ai, 

(i=1-4), situated in xOy plane. 
The vertex coordinates are: A1(b, 0), A2(b+c, a), A3(c, a) and A4(0, 0). 
In conformity with [1], the coordinates of the centre of mass are:  
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The moments of inertia and the products of inertia with respect to the 
reference system are determined using the integral calculus (Figure 4), so: 
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For the proposed model (see figure 3b), the moments of inertia and the 
products of inertia are: 
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The equality between expression (8), (9) and (10) demonstrate the second 
part of theorem 2. 

 
3.3. The reduction of the elementary order 3 bodies to an order 0 body 
 
In the polyhedron family, we will name the pyramids and the prisms as 

simple polyhedra. It is already demonstrated that a polyhedron can be divided in 
prism and pyramids, added or extracted. We found two elementary order 3 bodies: 
any tetrahedron and any prism with a parallelogram base. In fact any pyramid can 
be divided in a number of tetrahedra and any prism can be divided in a number of 
prisms with a parallelogram base and tetrahedra.  

 
3.4. The reduction of a tetrahedron 
 
Theorem 3.1: Any tetrahedron, order 3 body, can be reduced to an 

order 0 body formed by a system of 5 material points as follows: each vertex 
of the tetrahedron has 1/20 of the mass of the body and the centre of mass 
has the 4/5 of the mass, the rest.  
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Proof: First, we calculate the inertia properties of the tetrahedron in classic 
way. 

 
3.4.1. The determination of the centre of mass and the moments of 

inertia  
 
Let us consider a tetrahedron, 

A1A2A3A4, with the face A1A2A3 situated in 
xOy plane and the vertex A1 on the Ox axis 
and the vertex A4 on the Oz axis.The vertex 
coordinates of the tetrahedron are: A1(x1, 0, 
0), A2(x2, y2, 0), A3(x3, y3, 0) and A4(0, 0, 
z4) (Figure 5).  

   To obtain the values of the inertia 
properties we make the integral calculus for 
that tetrahedron. In Figure 5 is drawn the 
tetrahedron on which we make a section 
with two parallel plans, at height „z”, we 
obtain the elementary volume dV,  proportional with the elementary mass dm.  

To determine the position of the centre of the mass we use the relations: 
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Because the triangles ΔA4MN and ΔA4A1A2 are similar, and also the 
triangles ΔA4NQ and ΔA4A2A3 are similar too, it results: 
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In expressions (11) x, y, z are the coordinates of the centre of mass of the 
elementary volume, the triangle ΔQNM, thus: 
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The volume of pyramid is: 

                              z 
                            
                                A4 
 
 
                               
 
          M                                Q   
 dz                                            
                           O         N                 y 
  z                                                   A3 
      A1 
x  
                                         A2 

Figure 5 
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If we replace the term from (15) in (12), between the elementary volume 
and the volume we found the relation: 

 dzzz
z
Vdzzz

z
yxyxyxyxdV 2

43
4

2
42

4

31233221 )(3)(
2
1

−=−
−−+

=  (16) 

Hence, the coordinates of the centre of mass of the pyramid are: 
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The relations (17) show the formula of the 
coordinates of the centre of mass of a tetrahedron. 
In fact, each coordinate is a quarter of the sum of 
the vertex coordinates with respect to the same axis.  

For the determination of the moments of 
inertia and products of inertia we use the reduction 
operation for the triangle MNQ. So, the moments of 
inertia and products of inertia of the elementary 
body of the volume dV and mass dm, are, in fact, 
the moment of inertia of the triangle NMQ. So, for a 
homogenous piramid of mass m (ρ=const.), we get: 
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In conformity with reduction operation, the vertices M, N and Q of the 
triangle have: dm/12 and the centre of mass, C’, has 3 dm/4, see Figure 6. 

The elementary moment of inertia with respect to Ox axis is: 
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By integrating this, we obtain: 
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Similarly, we can calculate the moment of inertia with respect to the Oy 
axis: 
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After integrating it is obtained: 
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And with respect to the Oz axis: 
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In expression (24) all the terms are already calculated in relations (21) and 
(23), so the moment of inertia with respect to the Oz axis is: 
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3.4.2. The determination of the products of inertia 
 
The product of inertia of the elementary triangle is: 
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After the integration in relation (27), we obtain: 
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For the other products of inertia we make a similar calculus, so: 
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After integration calculus:  
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In conformity with theorem 3.1, the 
moments of inertia of the proposed model, 
are: 
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The products of inertia of the proposed model are:  
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Relations (33)-(36) prove the validity of the proposed model. 
 
3.5. The reduction of a prism with parallelogram faces 
 
Theorem 3.2: Any prism with 

parallelogram bases, an order 3 body, can be 
reduced to an order 0 body formed by a 
system of 9 material points as follows: each 
vertex of the prism has 1/24 of the mass of the 
prism and the centre of mass has 2/3 of the 
mass (the rest).  

 Proof: 
A prism with parallelogram bases 

A1A2A3A4A5A6A7A8, as represented in Figure 
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11, has, with respect to the Cartesian coordinate system Oxyz, the points O≡A1 
and the base A1A2A3A4 situated in xOy plane, with the edge A1A4 situated on Oy 
axis. 

The coordinates of the prism vertices are: A1(0, 0, 0), A2(x2, y2, 0), A3(x3, 
y3, 0), A4(0, y4, 0,), A5(x5, y5, h), A6(x6, y6, h), A7(x7, y7, h), A8(x8, y8, h). 

The unit vector of generator direction is: kjie γβα coscoscos ++=  
The vectors of the edges have the form: eAAAAAAOA λ==== 8473625   
To simplify the notations, it is easier to write the coordinates as a function 

of scalars. We note the scalar: λλ cos=h , and the vertex coordinates as: 
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3.5.1. The integral calculus of the moments and the products of inertia 
 
The prism was sectioned with two parallel plans at the height „z” and dz 

distance between them. The elementary body has the mass and the volume: 
                  abdzdzyxdVdVdm === 42;ρ  (38) 
If we make the notation: OM=u, we can write the coordinates expression: 
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The moment of inertia of the elementary body with respect to Ox axis is: 
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Integrating: 
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The moment of inertia of the elementary body with respect to Oy axis is: 
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Integrating: 
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The moment of inertia of the elementary body with respect to Oz axis is: 
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Integrating: 
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The product of inertia of the elementary body with respect to Ox and Oy 
axes is: 
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Integrating: 
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The proposed model is presented in 
Figure 9. The coordinates of the centre of mass 
can be determinate with the formula: 
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The moments of inertia of this model can be calculated with the following 
relations. The moment of inertia with respect to Ox axis is: 
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Replacing the values from relations (37) and (49) in (50), we obtain:   
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The moment with respect to the Oy axis: 

 
)

4
1(

3
2)(

24
)(

24

)(
24

)(
24242424

2222
8

22
7

22
6

22
5

2
4

2
3

2
2

hxmhxmhxm

hxmhxmxmxmxmJ

C

y

++++++

+++++++=
 (52) 

Replacing the values from relations (37) and (49) in (52), we obtain:  

              z                           
                   
                    A5                   A8 
                                
                             
                                
                         C        A6           A7   
 
A1≡O                    A4                         y    
   
x            
              A2                   A3      

Figura 9 
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The moment with respect to the Oz axis: 
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The product of inertia with respect to Ox and Oy axes: 
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The product of inertia with respect to Oy and Oz axes: 
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The product of inertia with respect to Oz and Ox axes: 
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Finally:   
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The centre of mass of the proposed model, C’, can be easy verified using 
similar relations with (7). 

If the relations (51), (53), (55), (57), (59) and (61) are compared with the 
relations from chapter 3.5.1, they are similar and the proposed model has the same 
inertia properties thus the theorem is proved. 

 
4. Conclusions 
 
In fact, all the applied sciences use models to study the natural 

phenomenon and the reduction of the bodies help us to work easier and to 
calculate the proprieties with a minimum mathematical effort. This reduction 
operation is an original approach which can open a way in this direction.  
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First, we find the elementary bodies which can be reduced. For the 
polyhedron family order 3 bodies and, also, for the degenerated polyhedron 
solids, order 2 or order 1 bodies, we find the following elementary bodies: any 
tetrahedron, any prism with parallelogram bases, any triangle, any parallelogram 
and any straight bar. Because any polyhedron can be formed with these 
elementary bodies, which are presented above, in fact any polyhedron can be 
reduced to a system of material points. 

Also, we know how to extend this reduction operation for other solid 
family and we suppose that it will be extended for the particular solid families.  

Let us remark that the reduction operation presents many advantages if it 
is compared with the theoretical study. Also, it is easy to apply this operation in 
computer programs. We know that, at this time, there are many computer 
programs which can calculate all the inertia properties for any solid body that can 
be designed in CAD technologies, and our approach can improve the future 
programs. Let us consider this study a step in this direction. 

We can not evaluate now all the applications of this method but we are 
sure that many applications would be possible, and not only in theoretical 
mechanics. As a consequence of the ideas presented in this paper, there is the 
possibility to reduce other bodies to inferior order bodies. We will present all 
these in other papers. 
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