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THE SECOND DUAL OF VECTOR-VALUED LIPSCHITZ ALGEBRAS

Emamgholi Biyabani', Ali Rejali?

Let (X,d) be a locally compact metric space, 0 < o < 1 and E be a Banach algebra such
that the linear span of character space A(E) be norm-dense in E*. Then lipg, (X,E)** is isometrically
isomorphic as Banach algebra with Lipy(X,E**). We show that lip}(X ,E) is Arens regular and
2—weakly amenable Banach algebra.
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1. Introduction

Let (X,d) be a metric space and B(X) (resp. C»(X)) indicates the Banach space consisting of
all bounded complex-valued functions on X, endowed with the norm

1 llsup = ig}lglf(X)l (f € B(X)).

Take o € R with o > 0, then LipoX is the subspace of B(X), consisting of all bounded complex-
valued functions f on X such that

lf(x) = f)]
d(x,y)*

It is known that Lipo X is endowed with the norm ||.||¢ given by

”f”OC = Pa(f) + Hf“sup;

and pointwise product is a unital commutative Banach algebra, called Lipschitz algebra.
Let (X,d) be a metric space with at least two elements and (E, ||.||) be a Banach space over
the scalar field F(= R or C) for a constant & > 0 and a function f: X — E, set

— qup @ = FO)]
poc.E(f)-—i#g Aoy

pa(f)::sup{ :x,yEX,x;éy}<oo_

which is called the Lipschitz constant of f . For any metric space (X,d), any Banach algebra E and
any o > 0, we define the Lipschitz algebra Lipy(X,E) by

Lipa(X,E) :={f:X — E: f isbounded and py (f) < oo},

with pointwise multiplication and norm

[l := Poe(f) + 1 lloo k-
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The Lipschitz algebra lipy (X, E) is a subalgebra of Lipy (X, E) defined by

1FG) = fO
d(x,y)*

If X is a locally compact metric space, then lip) (X, E) is a subalgebra of lipy(X,E) consisting of

those functions tend to zero at infinity. The elements of Lip(X,E) and lipy(X,E) are called big

and little Lipschitz operators, respectively. Set,

Il fllee := max{||flleo.c, Per.i: ()},

for all f € Lipq(X,E). The ||.||q.g and |||.|||a.z are equivalent norms on Lipg(X,E). Let Cp(X,E)
be the set of all bounded continuous functions from X into E. For each f € C,(X,E), define the
norm

lipo(X,E)={f:X —E : — 0asd(x,y) —0}.

[1f 1l := Sg}gl\f(X)ll,
and for f,g € Cp(X,E) and A € T, define
(f+8)(x) = f(x) +g(x), (Af)(x) =A[f(x), (x€X).

It is well known that (Cp(X,E), |||l £) becomes a Banach space over I and Lipy (X, E) is a linear
subspace of C,(X,E), see [5]. If E is a Banach space (resp; algebra), then (Lipy(X,E),||.||aE).
(lipa(X,E),||.|la.c) and (lip%(X,E),||.|le.r) are Banach spaces (resp; algebras) of Cy(X,E), see
[4].

It is clear that the Lipschitz algebra Lipy (X, E) contains the space Cons(X,E), consisting of
all constant vector-valued functions on X. The Lipschitz algebras were first considered in [2, 13].
There are valuable works related to some notions of amenability of Lipschitz algebras, [7, 9, 10]
discussed amenability of vector-valued Lipschitz algebras. [3, 12] investigated some properties of
vector-valued Lipschitz algebras.

Bade, Curtis and Dales [1] studied that if (X,d) is a compact metric space and
0 < a < 1, then the second dual space of lipyX is isometrically isomorphic to LipyX. The method
of their proof is an adaptation of one due to de Leeuw [6] who proved the result, when X is the
circle group T. It was shown in [8] that (lipeX)** is isomorphic to LipyX in the case that X is a
manifold. In [14], author studied Lipy (X, B) and (lipg(X,B))**, where X is a compact metric space
and B is a Banach space. In general, Lipy (X, B) is not Banach algebra, unless B is a Banach algebra.
Moreover, he claimed that lipy(X,B)** and Lipq(X,B) are isometrically isomorphism as Banach
algebras. In this paper, we improve these results in a general case.
Moreover, we study that if (X,d) is a locally compact metric space, 0 < o < 1 and E is a Banach
algebra such that the linear span of character space A(E) is a norm-dense in E*, then lipy (X, E)** is
isometrically isomorphism as Banach algebras with Lipq (X, E**). Also, we prove that lip) (X, E) is
Arens regular and 2—weakly amenable.

2. Preliminaries

Let (X,d) be a metric space and o > 0. Lipy(X,E), lipe(X,E) and lip%(X,E) are vector
spaces, Banach spaces and Banach algebras whenever E is so, respectively. Also, if (X,d) is a
metric space and E is a Banach algebra, then Lipy(X,E) is a commutative (unital) Banach alge-
bra if and only if E is a commutative (unital) Banach algebra. Let E be a x—Banach algebra and
F*(x) = (F(x))* for x € X and f € Lipa/(X,E), then pa(f*) = pa(f) and || = | fllo so that
Lipo(X,E) is a *—Banach algebra.

It is easy to see that f € Lipy(X,E) if and only if 6o f € LipgX for all o € E*. Also, let
(X,d) be a normed space, @ > 1 and E be Banach algebra. Then Lipy (X,E) = cons(X,E).

Let (X,d) be a compact metric space and 0 < & < 1 and E be a Banach algebra, then
A(C(X,E)) ={Ac6 :x€X, 0 € A(E)}, where

Aco(f) = 0o(f(x), (f € Lipa(X,E), x € X).
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Define ¢ : X X A(E) — A(C(X,E)) where (x,0) — Ay . Then ¢ is a bijection and
A(C(X,E)) =X x A(E), see [11]. We set

A(lipa(X,E)) = {@liipyx.p) : ¢ EXXA(E)}:= {Ai,a cx€X, 0 €A(E)},

AP (X, E)) = {@lp ) © 9 €XXAE)} = {A), : xEX, 6 € AE)},

and

ALipa(X.E)) = {Qlripu(x.p) + @ EXXAE)} :={AL5 1 xEX, 0 €A(E)}.
Let A be a commutative Banach algebra. Then the radical of A denoted by Rad(A), is defined
by
Rad(A) := Ngeaa) ker @.
Clearly, Rad(A) is a closed ideal of A. Also A is called semisimple if
Rad(A) = {0}.

Lemma 2.1. Let (X,d) be a metric space, E be a commutative Banach algebra and
0 < a < 1. Then the following statements are equivalent.
(i) Cp(X,E) is a semisimple Banach algebra.
(ii) Lipo (X ,E) is a semisimple Banach algebra.
(iii) lipa (X, E) is a semisimple Banach algebra.
(iv) E is a semisimple Banach algebra.
Proof. (iv) = (i) Let x € X and 6, : C,(X,E) — E is defined by 6,(f) = f(x). Then 6, is linear,
continuous and epimorphism. Thus

6,(Rad(Cy (X, E))) C Rad(E) = {0}.
So

Rad(Cp(X,E)) Cker(6,) ={f: f(x)=0}.

Hence Rad(Cy(X,E)) C Nyex ker(0y) = {0}. So Cp(X, E) is semisimple.
(i) = (iv) Let ¢ : E — C,(X,E), define by ¢(z) = ¢,, where ¢,(x) =z for x € X. Then ¢ is linear,
isometric and homomorphism. Hence

¢(Rad(E)) C Rad(Cy(X, E)) = {0}.
But ¢ is one-to-one, so Rad(E) = {0}.

(if) = (iv) Let @ : E — Lip (X, E) defined by ¢(z) = f;, where f;(x) =z for x € X. There-
fore || f;|la.e = ||zl| = || f2]|,E for each z € E. Hence

¢(Rad(E)) C Rad(Lipy (X ,E)) = {0}.

Then Rad(E) = {0}.
(iv) = (ii) Let 0 € A(E) and @ : Lipo(X,E) — LipoX define by @5 (f) = oo f. Then @g is
linear, continuous and epimorphism. Thus
¢s(Rad(Lipy(X,E)) C Rad(LipaX) C Nyex 6y = {0},
where, 0,(g) = g(x) for g € LipeX. Hence
Rad(Lipa(X,E)) C Noeae) ker@s = {f: cof(x) =0, 0 €A(E), x€ X}
={f: f(x) € Ngea(r kero, x € X}
={f: f(x) €Rad(E), x€ X} ={0}.
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(i) = (iv) Let @ : E — Lip(X,E) defined by ¢(z) := f,, where f;(x) = z for x € X. Then
Il fzlla.e = ||z]] = || f ||, for each z € E. Thus ¢ is well-defined.
Also,
9(Rad(E)) € Rad(Lipa (X, E)) = {0},

and ¢ is one-to-one, so Rad(E) = {0}.
(iii) <= (iv) is similar to (ii) <= (iv).
]

Recall that (X,d) is called uniformly discrete if there exists € > 0 such that d(x,y) > € for all
x,y € X withx # y.

Lemma 2.2. Ler (X,d) be a uniformly discrete metric space, E be a Banach algebra and o, > 0.
Then Lipy(X,E) = B(X,E) with equivalent norms.

Proof. Suppose that (X,d) is uniformly discrete. Thus there exists € > 0 such that for all x,y € X
with x # y, we have

d(x,y) > €.
Suppose that f € B(X,E), we have
@0l 1 ) 2
pals) = sup S < e @)~ FO) S e <

It follows that f € Lipy (X, E). Moreover

2
1 llee < 1 flle < (L )1 lless

and consequently B(X,E) = Lipq (X, E) with equivalent norms.

3. Second dual of vector-valued Lipschitz algebras

Let (X,d) be a compact metric space and 0 < o < 1. Bade, Curtis and Dales [1] showed that
(lipaX)** = LipoX isometrically isomorphic as Banach algebras.
In this section, we generalized it for locally compact metric space (X, d) and vector-valued Lipschitz
algebras with a different proof. In fact, we show that

lipY(X,E)** = Lipa(X,E*).

Let (X,d) be a locally compact metric space, E be a Banach algebra and 0 < o < 1, x € X and
0 € E*. Then A? ; € lip},(X,E)*, where A ;(f) = o(f(x)) forall f € lip}(X,E)*.
Also, if 6 € A(E) then A? ; € A(lipY, (X, E)). We need the following Lemma which its proof follows
immediately form [12, Theorem 5.3].

Lemma 3.1. Let (X,d) be a locally compact metric space, E be a Banach algebra and 0 < o < 1.
Then the linear space of {Agc; o € E*, x € X} is norm-dense in lip), (X ,E)*

We now state the main result of the paper.

Theorem 3.1. Let (X,d) be a locally compact metric space, 0 < o < 1 and E be a Banach algebra
such that the linear span of character space A(E) is norm-dense in E*. Then

lipg, (X, E)"™* 2 (Lipa(X,E*), ||| lae+),

isometrically isomorphic as Banach algebras.
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Proof. We the map ¢ : lip% (X, E)** — Lipg(X,E**) is defined by
[9(F)(x)](0) := F(Als), (F € lipy(X,E)™, 0 €E*, x€X),
where,
Ao(f) =00 f(x), (f € lipg(X,E)).
Clearly, A? ; € 1ip (X, E)*.

If Fy = F», then Fi (A9 ;) = F>(AY ;). Thus

[ (F)(x)](0) = [¢(F)(x)](0) (6 € E").

Hence ¢(F1)(x) = @(F>)(x) (x € X) and @(F)) = ¢(F>). Therefore ¢ is well defined. It is obvious
that ¢ is linear.

Now since
A6l = sup [AVg(g)l= sup [oog(x)|
llgllo.e<1 llglloe<1
< sup |oflflg)]l
llglla,e<1

<lloll sup gller <ol
lgllo<1

it follows that
lo(F)(0))(0)l = [F(ALo) < IF|[IAYs]l (0 € E*, x € X),
and 50 ||@(F)(x)||w£ < ||F|| for F € lip% (X, E)**. Hence ||@|| < 1, and ¢ is continuous. Also,

leF)(x) —eF)lle- _ (- [9F)()(0) — 9(F)()(0)]

d(x,y)® loll<1 d(x,y)*
|F(A)(c),c) *F(Ag,c)

a Hz'l\\lgl d(x,y)* ’
and
[F(A95)—F(AY)] 3 IFIIA? 6) — AY 5
d(x,y)* h d(x,y)®
= EL iy joogt)—oogt)l
d(x,2)% g qz<1
Hence

lo(F)(x)—@(F)()|lg
P JEX* F)) =su
we((F) x;y) d(x,y)*
<sup sup  sup [Fllloog(x)—ocog(y)]
xy |lo]<1 |gllae <1 d(x,y)®

[F]llocglx) —oog(y)

=sup sup sup

2y gllae<l o)< d(x,y)®

—sup sup 17|18 (x) — &)l
Ay felap<t A6 Y)*

— sup sup IFlllle®) ~ g(y)ll
llgller.e <1 x£y d(x,y)*

= sup |[|F|[pa.c(g) <|FI.

llglle,e<1
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Hence po.z-- (9(F)) < ||F||. Define

19 (F)loc e := max{[|@(F) oo £+, par.e (9(F)) }

Then ||@(F)||a,e < ||F|| < oo, and so ¢(F) € Lipa(X,E**). We show that
|F|| < ||@(F)||co, g+ since the linear space of {A? : ||0'|| <1, 0 € E*, x € X} is norm-dense in
1ip% (X, E)]* by Lemma 3.1. Thus suppose that f AY 5, s0

IF(N)] = |F(AL6)| < 9(F)|eo -
Also, if f: =¥} ¢;A) 5 such that ¥} |c;| < 1 and ||6j|| < 1 Then

n

FNI< Y leilIAY 6, < @(F) oo s

i=

—

If f := norm —limy fy, where fy € [lip%(X,E)];, then
F ()] =Tm[F ()] < |QF) e

Therefore
[Fll=" sup
Sellipg(XE)}
Hence ||@(F)||q.g~ = ||F||, and so (0] is a isometry
Let f € Lipe(X,E**) and A :={A) ;5 ,A), 5 ..., AY ; } for whichx; € X and 6 € E* with || ;]| <
Set

FOI < NQ(F)leop= < [|@(F) -

M =1 Ci.

LAY > and Fy : V, — C is defined by

Xn,0n

AO

LetV), :=<A SRR

Xl o’

n

Zk 9 o)=Y fl) (o).

k=1

Then ||F || <||f]la.z s0 Fj, € V;. Also, F, is linear and w*—continuous, so by Hahn Banach Theo-
rem there exists w* —continuous extension

F, : 1ip%(X,E)* — C such that ||F; || < ||f|le.r and F, is w*—continuous. So there exists fj €
1ip% (X, E) such that Fj, = f5. Put F € w* —cl{f} }, then F € lip%(X,E)** such that ¢(F) = £, so
¢ is onto.

Now, we show that ¢ is a homomorphism. Let F,G € lip),(X,E)**, x € X and
o € A(E). Then
FOG(A} ) = F(GOAY 5) = F(G(AY6)AY 5) = F(AY 6)G(AY ).
Similarly,
F<>G(A§C),O') - F(A)?,G)G(Ag.c)'
Hence
[p(FOG)(x))(0) = FOG(A o)

= F(AS,G)G(AB,G)

= [p(F)(x)l(0)-[0(G)(x)](0),
forallx € X, o € A(E). Since the linear span of character space A(E) is norm-dense in E*, it follows
that

9(F)(x).9(G)(x)(0) = (FUG)()(0), . (x € X, o € E).

Then ¢(F).@(G) = (FOG).
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Corollary 3.1. Let (X,d) be a locally compact metric space, 0 < a < 1 and E be a reflective
Banach algebra such that the linear span of character space A(E) is norm-dense in E*. Then
1ip),(X,E)** = Lipa(X.E).

Let (X,d) be a compact metric space. Then lip%(X,E) = lipg(X,E). By Theorem 3.1, the
following corollary is immediate.

Corollary 3.2. Let (X,d) be a compact metric space, 0 < o < 1 and E be a reflective Banach
algebra such that the linear span of character space A(E) is norm-dense in E*. Then lipo (X, E)** =
Lipo(X,E).

The following example show that the condition of locally compact is essential in Theorem
3.1

Example 3.1. Let E be a Banach algebra, then lip}(Q,E) = {0} and
Cons(X,E) C Lipg(Q,E). So {0} = (1lip%(Q,E))** # Lips(Q,E**).

Example 3.2. Let (X,d) be a uniformly discrete metric space, 0 < & < 1 and E be a Banach algebra.
Then by Lemma 2.2, we have

Lipo(X,E™) = I(X,E™), lip%(X,E)™ = co(X,E)*™*.

Therefore
co(X,E)™ =lo(X,E™).

Let A be a Banach algebra and [J (resp; <) be the first (resp; second) Arens product in the
second duall A**. Then (A**,0J) and (A**,{) are Banach algebras. Also A is regular if and only if
O = {. Then algebra A is Arens regular if the algebra (A™,{) is commutative.

Theorem 3.2. Let (X,d) be a locally compact metric space, E be a Banach algebra such that the
linear span of character space A(E) is norm-dense in E* and 0 < a < 1. Then lip,(X,E) is Arens
regular.

Proof. Define ¢ : lip%(X,E)** — Lipq(X,E**) where
[9(F)(0)](0) :== F(Al), (F € lipg(X,E)™, 6 €E*, x€X).

Then by Theorem 3.1, ¢ is isometrically isomorphic as Banach algebras. Let,
F,G € lipy/ (X,E) = Lipy(X,E**). Therefore

FDG(A)?,G) = F(AS,G)G(AS,G) = FOG(AS,G)‘
Also,

n n n

FOG(Y, MAl 5) =Y LFOG(A) ;) = FOG((Y AA 5,)-
i=1 i=1 i=1
Since the linear space of {A) ; : [|o|| <1, 6 € E*, x € X} is norm-dense in [lipy (X, E)*]y , it follows
that FOG(f) = FOG(f) for all f € [lip%(X,E)];. Hence
FOG = FOG, (F,G € lip%(X,E)™)
Therefore lip), (X, E) is Arens regular. O
If (X,d) is a compact metric space, by Corollary 3.2, the following is immediate.

Corollary 3.3. Let (X,d) be a compact metric space, E be a Banach algebra such that the linear
span of character space A(E) is norm-dense in E* and 0 < o0 < 1. Then lipy (X ,E) is Arens regular.

If A is a commutative Banach algebra which is Arens regular such that A** is semisimple.
Then A is 2— weakly amenable Banach algebra, see [7, Corollary 1.11].
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Theorem 3.3. Ler (X,d) be a localy metric space, E be a commutative regular and semisimple
Banach algebra such that the linear span of character space A(E) is norm-dense in E* and 0 < o0 <
1. Then lip%,(X ,E) is 2—weakly amenable.

Proof. By Theorem 3.1, we have lip%(X,E)** = Lipg(X,E**) and by Lemma 2.1,
Lipy(X,E**) is semisimple so lip%, (X, E)** is semisimple and by Theorem 3.2, lip% (X, E) is Arens
regular. Then by [7, Corollary 1.11], lip% (X, E) is a 2—weakly amenable. O

Corollary 3.4. Let (X,d) be a compact metric space, E be a commutative regular and semisimple
Banach algebra such that the linear span of character space A(E) is norm-dense in E* and 0 < o0 <
1. Then lipq (X, E) is 2—weakly amenable.
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