U.P.B. Sci. Bull., Series C, Vol. 85, Iss. 1, 2023 ISSN 2286-3540

A HYBRID IDS ARCHITECTURE

Beatrice-Nicoleta CHIRIAC?, Florin-Daniel ANTON?, Anca-Daniela IONITA®

In the recent years, computing systems and applications are ubiquitous, the
security and privacy are components which cannot be ignored anymore. Even if
security is not a functional component of applications the concept of security and
privacy by design is a hot topic addressed by companies activating in the IT field.
Security has many layers and components, one of them is the monitoring and
reporting component, and part of this are the intrusion detection systems (IDS). The
paper is presenting an architecture of an open-source, modular, hybrid IDS system
which is combining the advantages of both host and network IDS.

Keywords: hybrid intrusion detection system, cybersecurity, cyberattack, network,
host, traffic capture

1. Introduction

Nowadays, when online application interaction, cloud computing,
containers and other technologies which require network connectivity, are adopted
almost everywhere, the cybersecurity component has a significant impact. The first
aspects when networking comes into discussion are related to the distributed
control, sharing tasks between machines and how they communicate to manage all
their common activities. In these circumstances, a software capable to ensure the
protection of computing resources and infrastructures is a growing need and
different protection solutions were the topic of studies during this time. These
include firewalls, antivirus applications, network behavior analyst detection
(NBAD), intrusion detection system (IDS) and intrusion prevention systems (IPS)
[16]. An intrusion detection system represents a passive method of supervision. Its
scope is to monitor the information resulted from a networking traffic capture, from
the state of the files, from the state of the processes and log files from a host [5]. In
short terms, an IDS must report any unauthorized access or actions conducted inside
a monitored infrastructure. A superior system is the intrusion prevention system.
The intrusion prevention system relies upon the IDS features, but more than that it
can respond to an attack, not only to identify and report it [2]. Additionally, systems

1 PhD student, Faculty of Automatic Control and Computer Science, University POLITEHNICA of
Bucharest, Romania, e-mail: beatrice.chiriac@stud.acs.upb.ro

2 Reader, Faculty of Automatic Control and Computer Science, University POLITEHNICA of
Bucharest, Romania, e-mail: florin.anton@upb.ro

3 Prof., Faculty of Automatic Control and Computer Science, University POLITEHNICA of
Bucharest, Romania, e-mail: anca.ionita@upb.ro

78 Beatrice-Nicoleta Chiriac, Florin-Daniel Anton, Anca-Daniela Ionita

which combine the specific of an IDS with the one of an IPS are suggestively called
IDPS.

The paper is proposing a hybrid IDS solution. The aspire of this objective
is to combine the benefits offered by different type of intrusion detection systems
(network and host IDS) in the scope of creating a generic architecture capable of
monitoring a simple host or an entire network.

2. Related work

Most of the common intrusion detection systems can be divided into two
main categories: network-based intrusion detection systems (NIDS) and host-based
intrusion detection system (HIDS) [15]. A network-based IDS has the capacity to
observe the behavior of an entire subnet or of a segment of it [7]. Specifically, a
NIDS captures the traffic exchanged between a source and a destination port by
making a copy of the transferred packets. The NIDS is integrated and properly
configured between two network interfaces (before or after the firewall), only if it
will be able to create a traffic capture. Furthermore, this essential requirement
highlights the greatest advantage of this category of IDS, the fact that it adds no
load to the checked systems (the systems behind the firewall) [7]. Without any
observable impact to the network, the ability of an attacker to realize that his target
is a supervised infrastructure is reduced. From the developing point of view, a NIDS
is implemented and chosen according to the specification of the protected subnet.
It could be a specialized device implying that a hardware IDS will be used, or it
could be a software application running on a host from the monitored network. On
the contrary, the HIDS can protect only the device where it is installed, therefore
this type of intrusion detection system is specialized in detection of the internal
malicious issues. The most common elements monitored by an HIDS are the log
files generated from the operating system, the files which store critical information
(credentials, rights, attributes, authorized users) and the system calls and processes
[13]. Even though it is possible to adopt a hardware solution for creating an HIDS,
software solutions are more often embraced, because hardware integration
problems could arise. All of these also imply the fact that the resources of the
protected equipment are used (CPU, storage volumes).

A common task for both types of intrusion detection systems is the amount
of data that is constantly required to be stored and verified even if the analysis
process is made online or offline. From this perspective, the intrusion detection
systems can take a decision by using a signature-based, an anomaly-based or a
specification/protocol-based technique [7]. Their names are representative for the
mode that they work on. The signature-based intrusion detection system uses
predefined patterns for detecting a malicious activity [6]. Practically, one of its
components is a database where every known attack is defined by a rule written in

A hybrid IDS architecture 79

a generic format. Taking this into consideration, it is easy to conclude that the main
disadvantage of a signature-based intrusion detection system regards the fact that it
cannot identify the malicious activities that are not defined in the signature
database. With a solution for this problem come the other two detection methods.
In case of an anomaly-based or a protocol-based IDS, even the unknown attacks
can be recognized. Their functioning relies on a set of policies defined by an
administrator, which describe what type of behavior is normal or not for the
monitored system or network [12]. More specific, it could be affirmed that the
intrusion detection system is equipped with a template describing what a regular
activity looks like. When the supervised infrastructure is running, its current state
will be compared with this template and based on the result of this comparison the
IDS can report the occurrence of an intrusion.

Furthermore, to reduce the probability of the false negative results, it was
adopted as detection method a combination of signature-based with anomaly-based.
This is the first stage of a more complex research; therefore, the signatures and the
behavior templates are static information. In addition, basic detection algorithms
relied upon matching functions were used. In further development it is considered
to integrate the artificial intelligence technics, according with the state of the art.
The reason why this kind of algorithms started to be used in the process of the
intrusion detection is associated with the increased number of cybersecurity attacks.
Moreover, conventional deep learning or machine learning algorithms are suitable
for implementing an IDS because the dataset (attacks signatures, rule sets,
protocols) can be used as a training information. In [14] benchmarking, it is applied
for an anomaly-based IDS where 98% of the dataset represents the normal behavior
while 2% is considered as being attacks. Other example of IDSs where neural
networks are used for developing a classification algorithm is suggested in [10],
where scientists from Bhabha University affirm that their proposal has a strong
exactness and considerable false-positive proportions. As a deduction, a recurrent
neural network or a machine learning algorithm could be applied for realizing
binary classifications (normal behavior vs. anomalous behavior which is classified
as an intrusion). Because of these, the most used techniques are CNN, KDDCUP99
and NSLKKD [3], but considerable research is about the GAN framework. This
revolutionary idea was proposed by lan Goodfellow in [9]. Their framework is
implemented for two networks which are in competition and in this way, they train
each other. The output of a network is an input for the other ones and the first tries
to choose an input that is unknown for the second network. It is exactly like in a
game played between two people where the move made by one will determine the
next move of his competitor and an IDS or an IPS could be efficiently trained with
the help of this technology. In the end, the result will be a system capable of
detecting and taking decisions in real time even though the intrusion is represented
by an unknown attack.

80 Beatrice-Nicoleta Chiriac, Florin-Daniel Anton, Anca-Daniela Ionita

3. The proposed architecture and functions

The main purpose of this paper is to create an Intrusion Detection System
(IDS) capable of offering a higher level of security by combining the role of a host-
based IDS with the role of a network-based IDS. In this context, the main goal of
the current study is to obtain a generic solution which can assure the security of
data from a host but also from a network. Hence, the understanding of both types
of architecture (HIDS and NIDS) is necessary, because it is ultimately desired to
have a hybrid solution. The architecture of these generic intrusion detection systems
and the main features necessary for their implementation were used as a reference
point. Also, aspects like the differences between a NIDS and a HIDS and their
specific functionalities were taken into consideration and put together. Therefore,
the current system comprises two principal modules (NIDS and HIDS), each of
them with its specific functions, modules which also incorporate other specific sub-
components. Furthermore, this idea of a modular architecture helps reducing the
risk of any design error.

Starting with this set of theories, the most important subsystems of the IDS
presented in this paper is the data collector, the analyzer and the alarm component.
The log files (e.g. files which contains a copy of the network traffic) and the critical
files (files used to store critical information from the computer where the
application runs) form the input for the data collector. After collecting, these dates
are transferred to the analysis unit. As a results, the network traffic consisting of IP
datagrams is investigated by verifying the header of packets, field by field and their
content in real time. An offline type of analysis was chosen for the data used as an
input for the HIDS component. Every 24h, the system investigates the content and
the properties of the monitored files. If noticed that, there are some signs of a
possible cyber security attack, then the alarm subsystem would have the role of
alerting the administrator about this problem and of recording the problem. In
additions, the system generates a real-time notification sent via email. Fig.1.
presents the process previously described in a succinct form

Attacks
signatures

e} | |

Critical 11
Files c

| | |

traffic
Ll Final
reports

Analyzer — User interface

Notification
subsystem

Fig. 1. Schema of the IDS’s process

A hybrid IDS architecture 81

Meanwhile Fig.2. exposes the main modules of the application and the logic
according to which they are interconnected.

‘--, Network |

Data 41;] ™

Collector [Collecting info |

— IP Sniffer | { about local
—) system file |
Intermediate
Buffer p .
— Packet
Decoder |
Analvzer N

Packet analysis unit L_-_-j 7:.\
(Files | Rules &
- P ~ integrityp ropriety Signatures
Content L Metadata analysis DB

analysis analysis —_— — -

\ Qutput /,—- LogFile

Notification

/

Fig.2. The proposed hybrid architecture of the IDS

The architecture proposed in Fig.2 is developed with the scope of making a
system capable to encapsulate the features offered by two independent software
applications. In this manner, another advantage can be obtained, namely the
reduction of volume of the computing resources. This is an important improvement
because in the state of the art, the majority IDS systems used for networking
monitoring purpose need additional hardware. Moreover, as it was already
mentioned, this architecture is modular, so the level of portability is increased and
finally, this proposal offers not only the opportunity to be integrated in different
infrastructures, but also to be adapted to their specific needs. By looking the
solution from Fig.1. in detail, it is noticed that the first layer is represented by the
network comprising the component computers running this IDS system. The main
role of the application is to capture the traffic transferred between these hosts;
aspect possible only if these computers have available network interfaces. This
happens because the component which represents the packet sniffer is positioned

82 Beatrice-Nicoleta Chiriac, Florin-Daniel Anton, Anca-Daniela Ionita

between two network interfaces. After the packets are copied and the information
is collected, they are saved for a short period of time in an intermediate buffer. From
this buffer, the information goes to the decoder for the analysis process where it is
decided if there is a normal behavior or a threat. This process implies the
fragmentation of every captured IP datagram and the comparison of the current state
of a critical file with its initial state. The way the analysis is performed is using also
a hybrid solution, being a combination of multiple intrusion detection methods. It
was created as a combination between the technique used for signature-based IDS
and the one used for anomaly-based IDS. More specifically, the system has a
database formed by files which store the normal operating parameters for the
monitored system (used for the HIDS component) and a set of rules created
according to a generic pattern (used for NIDS component). The role of these rules
is to define de abnormal behavior of the monitored system. Therefore, the actual
parameters of the host, the traffic captured from the network and the database
represent the input for the analyzer module. Inside of the analyzer these dates are
processed. After that, a comparison process follows and thus the output is obtained.
In the end this output will be an input for the last level of the application, the user
interface and the notification module.

From the software architecture’s point of view, every component is created
based on a specific algorithm. As it was already mentioned, the scope of the host-
based component is only to verify the integrity of some specific files. The processes
which run on the monitored systems are not verified by this hybrid IDS. For
portability, the IDS will have a configuration file for this module. The information
saved in this file actually represents the input for the host-based algorithm. Aspects
like the path of the critical files, the type of the desired hash functions that want to
be used for the detection process (e.g., MD5, SHA, etc.) or the system
administrator’s email, are kept in the configuration file. The correct state of the
monitored files together with the information regarding the rights of a user or the
dates of the last modification of a file and an associated hash code are stored in the
databased detailed in the previous paragraph. Actually, in this way the verification
of the integrity is made, and it represents an offline process which uses matching
functions. This action is reevaluated at a fix time interval, in the case presented in
the current study — daily, but this time interval could be also configured. The idea
behind this feature is having the stable states of the monitored files saved in the
database and the current state of them also, because those two will be compared. If
there is not a perfect match, an alarm will be generated. At the end of every run of
this functionality an email with a complete report regarding a specific host will be
sent. The important aspect about the database is the fact that it could be created by
the administrator or if it does not exist, the states which the monitored files have at
the first run will be considered to be correct and the database will be automatically
generated using this default information. Moreover, it offers the opportunity to be

A hybrid IDS architecture 83

regularly updated by the administrator and for a better security level the database is
encrypted because it is compulsory to make sure that it is updated only by
authorized users. In conclusion, in a specific time frame, at the end at each run, the
HIDS component determines if some specific files were added or if the exited ones
were modified (their content or their attributes) or deleted.

On the other hand, a more complex analyzing mechanism was built for the
network-based component. The first step in the development of this component was
the implementation of the traffic collector, represented by an IP sniffer capable to
capture IP datagrams by listening the available network interfaces. Each packet will
be copied and saved in an intermediate buffer. The metadata which can be found in
the header of the packet are very useful for detecting the network attacks. The
implementation gives the user the opportunity to capture the entire traffic or to use
filters for making a partial capture. This functionality was created based on libPcap
library [8]. In the analysis mechanism are two important elements. Firstly, it is the
information, which is extracted from the packet’s fields and secondly, we have the
rules saved in the same database used by the HIDS component. As it was already
mentioned before, the rules have a generic template based on attributes which role
is to describe the behavior in case of a specific software attack. For instance, in case
of a DoS attack, the number of packets received in a specific time is relevant. In
case of other attacks like messages sent by an unknown sender, the source IP is
important. In this scenario the IP extracted from the header will be compared with
the IP specified by the rule. The advantage of this kind of software architecture for
the NIDS components is that the administrator might improve the efficiency of the
system. If a new attack is discovered, it can be described using this generic profile
of a rule. The same kind of principle is used by other open-source IDS as for
example Snort [1],[4]. In short terms, the idea behind this component can be
described by a scenario in which a packet is captured, and it is broken into fragments
(content and header). Therefore, the algorithm behind the entire process goes
through the list of the defined rules. At the same time the relevant packet’s fields
are extracted. Every field of the packet will be associated with the corresponding
one from a rule based on matching algorithm and the process is repeated for every
rule. (These algorithms described before could be observed from Fig.3. to Fig.6.).

List the Define the hash Define parameters
directories/files for Define the DB's function for P .
- L for generating the
the monitoring path monitoring the . .
. . notification report
process integrity

Fig.3. The necessary steps for HIDS component’s configuring process

84 Beatrice-Nicoleta Chiriac, Florin-Daniel Anton, Anca-Daniela Ionita

[file found in D

Traverse
children
files

DB
Travers [not difectory] Look for encryption
dD:;abaﬁii configuration = file path in S:t?ﬁecraattiin and delete
L list [directony] | pB intermediate

file

Fig.4. The algorithm for file integrity

Error

[unavailable] = | message

Open
interface

Identify
devices/
interfaces

[availablg]

[cannot open interface]

—
Specify
interface to

Find IP and
network
mask

listen

Compile Set Start
filters filters caplurg
= traffic

Fig.5. The algorithm for the sniffer component

Start traffic | ~ P

capture [Syscall capture]
[rule bu
F ?;?;tur#.lge T p notification
[rJ= [more rules in buffer] AT
[not mpaches]

[capture end

Identify
rules in DB

rempty]

Login

Store Extract S
pare
rulasdiu emoe datagram
for captured [rule matches]
buffer dat Irule
atagram

Fig.6. The algorithms for the NIDS component
4. Experimental results

Because it is wanted to have a valid point of view which proves the efficiency
of this hybrid intrusion detection system, it was decided to make a battery of
functional tests in the last phase of the developing process when a stable version of
the application was obtained. For testing the application in a safe way, a special test
environment, based on virtual machines, was implemented and used. Hence, these
virtual machines play the role of the attackers or the role of the victims according
to their scope. The virtual machines operate on Linux distributions like Kali Linux
and Ubuntu. As it can be deduced, the hybrid IDS runs on the victim and the scope
of this testing process is to assess the correctness of its capacity of identifying
different types of attacks, even if they are network oriented or host oriented. What
is necessary to be mentioned is the fact that the application will automatically start

A hybrid IDS architecture 85

to run when the monitored system boots. In this way, the level of security is
increased, because the monitored system is under protection from the first moment
that it starts to function until it stops its activity or until an authorized user decide
that the IDS need to be stopped.

In the first part of this testing process, the capacities of the HIDS component
were tested. The most important aspects were the verification of the database
generation and the identification of an unexpected or unwanted behavior. The input,
as it can be deducted from the previous paragraphs is the configuration file. For the
test scenarios of this component, we used a directory called testDir with 3 child
files: testFileHIDS1, testFileHIDS2, testFileHIDS3 and a directory called testDirA
with a child file testFileHI. The required files will be listed in the configuration file
and at the first run the data base will be generated containing the default state of
these files (file permissions and attributes, owner, group, and hash). The test
scenarios include: the change of a file’s rights, the change of their content, the case
when a monitored file is deleted and the opposite case, when a new file is added.
All of them worked properly in the requested parameters and an example of the
obtained results were illustrated in Fig.7.

In the testing process of the NIDS component, using an environment based
on virtual machines is necessary. The first step was to identify the interfaces IPs
and to create the rules set. Another important point is to verify if the rules are read
and parse in the correct way. This aspect can be checked in the command line after
the application starts but also can be sent to a log file when the application is started
automatically. The next phase in this context is to identify the capacities of the
system and its limits. In other words, a set of relevant rules describing the unwanted
behavior of the network needs to be defined and to see their efficiency in the process
of the attack detection. Because the implementation of an attack requires special
condition and it is necessary to be done in a secure environment, the best known of
them were tested.

Verifylng the integrity of /home/beatrice/Desktop/Oisertatie/snifferwithLibcap/testoir/testFileHInst ...
[info] Perntssions for /home/beatrice/Desktop/0isertatie/sniffernithLibcap/testoir/testFileHIDS1 are OK.
[info] Owner for /home/beatrice/Desktop/Disertatie/snifferdithLibcap/testdir/testFileHIDS1 1s OK.
[tnfo] Group for /home/beatrice/Desktop/Disertatie/snifferhithibcap/testdir/testFileHIDs1 1s OK.

[warning] For file /home/beatrice/Desktop/Disertatie/snifferiithLibcap/test0ir/testFileHIDS1 the time from the last modification was changed!

Fig.7. The output for the detection of a host base anomaly

The first one was the Denial-of-Service attack, and it was implemented by
creating an ICMP flood attack. Sending multiple ICMP packets in a very short
period of time, the host which received this kind of packets will try to answer and,
in the end, its resources will be depleted. The rule which shall identify this kind of
attack is the following: alert icmp any any -> 192.168.16.130 any (msg:*'DoS

86 Beatrice-Nicoleta Chiriac, Florin-Daniel Anton, Anca-Daniela Ionita

attack - ICMP flood™; seconds:1; counter:500;) and the explanation behind it is
the fact that a notification will need to be sent to the administrator if more than 500
ICMP packets are received by the host with IP 192.168.16.130 (the victim from our
virtual network) in less than a second for a specific period of time, in a recurrent
way. The flood attack was implemented using another host from the network with
the help of the hping3 tool. When the attack started, it was noticed that immediately
after the number of packets have been reached, an email with a general format
which contains the report has been sent at the specified address. At the same time,
if the terminal is open, the output can be seen in real time by the administrator. The
same type of attack can be implemented using the Three-Way Handshaking
procedure which is used by the TCP/IP protocol. In this situation, the DoS attack
can be implemented if multiple synchronization packets are sent, so the receiver
will answer with SYN-ACK packets. In a similar way as the previous example, the
rule is developed based on the required template. alert tcp any any ->
192.168.16.130 any (msg:"'Possible DoS Attack->not syn™; seconds:1;
counter:1000; flags:S;). The fact that the system is capable to identify a DoS attack
could be seen in the results of Fig.8.

b)
Fig.8. a) The identification of an ICMP flood attack; b) The identification of a SYN-ACK attack

Other attacks which were met very often are the port scanning and the
situation when an entity tries to create multiple connection to a single port. The port
scanning attack is in most of the cases used for discovering and exploring different
vulnerabilities of a specific host and for it, it was important to mention in the rule’s
body the number or the interval of values where the port is situated, so the form of
the obtained rule was: alert tcp any any -> 192.168.16.130 1:100 (msg:*'Port
Scanning''; seconds:3; flags:S;). Following the same perspective, the attack where
a multiple connection is tried to be established had a similar rule definition alert
tcp any any -> 192.168.16.130 60 (msg: " Multiple connection on a single port -
Possible DoS™; seconds:1; counter:1000; flags:S;), but the main difference

A hybrid IDS architecture 87

between these two attacks was the fact that the last one could be also integrated in
the category of DoS attacks. As the scenarios presented in the previous paragraphs,
these two were simulated with the help of hping3 tool and them results were
pictured in Fig.9.

.168.16.130 60 (msq:"Multiple con|

th: 5 bytes

fset: © bytes
192.168.16.128

: 1025807300
Number: 1340443570

ection on a single port - Possible Dos

a) b)
Fig.9. a) The identification of a port scanning attack; b) The identification of a multiple
connections to a single port attack

5. Performance of the proposed solution

Regarding the HIDS component, its performance is directly influenced by
the host system’s resources and application parameters stored in the configuration
file. An offline type of analysis is used for host monitoring, therefore the level of
accuracy was noticed to be affected by the configuration established by the system’s
administrator. In consequence, aspects like the number of the monitored directories,
the way that the normal behavior of the host is described or the time frame when
the analysis is preformed play important roles in the efficiency. With a
configuration corresponding with the supervised system’s needs, the application did
not report any situation of false positive or false negative results during the testing
process.

On the other hand, the NIDS component is based on libPcap library, aspect
which makes this hybrid IDS similar with others open-sours NIDS solutions like
Snort or Suricata. It integrates three major operational modes, more specific it could
be used as a sniffer, as a logger or as a hybrid intrusion detection system. During
the network monitoring, all these three functions are working together to perform a
real-time supervision. This kind of supervision implies a real-time traffic capture
and analysis (the entire process was described in the previous sections). The testing
environment was represented by a network of virtual machines, while the IDS
application was running only on a part of them. Between virtual machines was an
Internet connection with an average speed of 144Mbps. Also, the average
dimension of a packet exchanged between two hosts is around 60 bytes. In

88 Beatrice-Nicoleta Chiriac, Florin-Daniel Anton, Anca-Daniela Ionita

conclusion, there is an amount of approximately 300000 packets sent from a source
to a destination in just one second on a full duplex connection. Depending on what
processes are running on the virtual machines, this number could be smaller. At this
rate, the IDS was capable to make a full capture, to identify flood attacks and to
response immediately to them. Hence, it could be concluded that the hybrid IDS’s
performance is not influenced by the number of packets because it was able to
function in proper parameters on a high internet speed. The only aspects that can
influence its efficiency and can provoke false negative situations are the rule’s
signatures. As it was mentioned in the previous chapter, a rule is defined based on
a specific template. If the parameters of the rules are not set according to the
specification of the monitored architecture, then problematic situations could occur.
For example, one of the important parameters is represented by the tolerated
number of packets of a certain communication protocol type sent in a specific time
frame. This number varies according to the monitored system’s functionality and
resources, therefore the system’s administrator needs to properly define the range
of acceptance.

6. Conclusions

This paper presents an experimental hybrid intrusion detection system
capable of being integrated in different infrastructures and to offer the possibility
to be extended in order to offer a higher level of cyber security protection. The final
product is a pure software solution based on open-source technologies and which
can be easily installed into any kind of system that is desired to be monitored. The
application has a modular architecture with two principal components. According
with their roles and maintaining the balance between the computation resources
used by the application and its efficiency in intrusion detection procedure, every
component made the decision in the way that is more suitable for its own scope.
Specifically, the HIDS component realizes an offline analysis, while the NIDS
makes an online verification. Both components are integrated in the same product
which started to run during the booting procedure of the system where it is installed.
They use a hybrid between anomaly-based and signature-based methods for
neutralize the impact of the disadvantages owned by each technique. Another
important reason which conducted to a modular architecture is about the portability
of the application. In this moment, this intrusion detection system is available for
the Unix platform only, but behind it (exactly like SNORT or Wireshark [11]) is
the libPcap library. The advantage of libPcap is the fact that it can be updated for
other platforms also. Moreover, the capacities of this hybrid IDS were tested in a
controlled environment. At the end of the testing phase the conclusions traced were
that the system is working properly and according with the initial objectives.

A hybrid IDS architecture 89

Furthermore, these results will be used in the further research which scope is to
apply the GAN technique for the detection procedure of a hybrid IDS, to identify if
the system can be fooled and if the deep learning algorithms represent a better
option in cyber security.

REFERENCES

[1]. F., Alam. Intrusion Detection & SNORT. In: APRICOT 2015, [Online]. Available: https://nsrc.
org/workshops. 2015.

[2]. A. S., Ashoor, et S., Gore. Difference between intrusion detection system (IDS) and intrusion
prevention system (IPS). In : International Conference on Network Security and
Applications. Springer, Berlin, Heidelberg, July, 2011. p. 497-501.

[3]. K., Atefi, H., Hashim, et T., Khodadadi. A hybrid anomaly classification with deep learning
(DL) and binary algorithms (BA) as optimizer in the intrusion detection system (IDS). In:
2020 16th IEEE international colloquium on signal processing & its applications (CSPA).
IEEE, 2020. p. 29-34.

[4]. B., Caswell et J., Beale. Snort 2.1 intrusion detection. Elsevier, 2004.

[5]. Y., Chen, T., Chen, and W.H., Liu. Network intrusion protection system. US Patent App.,
September, vol. 12/049,890., 2009.

f6]. J., Diaz-Verdejo, J., Mufioz-Calle, A., Estepa Alonso, et al. On the Detection Capabilities of
Signature-Based Intrusion Detection Systems in the Context of Web Attacks. Applied
Sciences, no 2, vol. 12, 2022, p. 852.

[7]. N., Dutta, N., Jadav, S., Tanwar, et al. Intrusion Detection Systems Fundamentals. In : Cyber
Security: Issues and Current Trends. Springer, Singapore, 2022. p. 101-127.

[8]. L. M., Garcia. Programming with libpcap-sniffing the network from our own application.
Hakin9-Computer Security Magazine, vol.2, 2008.

[9]. I. J., Goodfellow, J., Pouget-Abadie, M., Mirza, et al. Generative adversarial nets. Advances in
neural information processing systems, vol. 27, 2014.

[10]. K. P., Jadhav, et M., Gangwar. Intrusion Detection System and Vulnerability Identification
Using Various Machine Learning Algorithms. In: Proceedings of International Conference
on Recent Trends in Computing. Springer, Singapore, 2022. p. 527-536.

[11]. V., Jain. Introduction to Wireshark. In: Wireshark Fundamentals. Apress, Berkeley, CA, 2022.
p. 1-34.

[12]. V., Jyothsna, et K. M., Prasad. Anomaly-based intrusion detection system. In: Computer and
Network Security. IntechOpen, 2019. p. 35.

[13]. M., Liu, Z., Xue, X., He, et al. SCADS: A Scalable Approach Using Spark in Cloud for Host-
based Intrusion Detection System with System Calls. arXiv preprint arXiv:2109.11821,
2021.

[14]. Z. K., Maseer, R., Yusof, N., Bahaman et al. Benchmarking of machine learning for anomaly
based intrusion detection systems in the CICIDS2017 dataset. IEEE access, vol. 9, 2021, p.
22351-22370.

90 Beatrice-Nicoleta Chiriac, Florin-Daniel Anton, Anca-Daniela Ionita

[15]. D., Park, S., Kim, H., Kwon, et al. Host-Based Intrusion Detection Model Using Siamese
Network. IEEE Access, vol. 9, 2021, p. 76614-76623.
[16]. A., Skorobogatjko, P., Dorogovs, et A., Romanovs. The Use of Intrusion Detection Systems

Based on the Network Behaviour Analysis in SCADA Networks. Information Technology
and Management Science, no 1, vol. 15, 2012, p. 171-175.

