
U.P.B. Sci. Bull., Series A, Vol. 87, Iss. 4, 2025 ISSN 1223-7027

ON THE HILBERT DEPTH OF CERTAIN MONOMIAL IDEALS AND

APPLICATIONS
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We study the Stanley depth and the Hilbert depth for I and S/I, where I ⊂
S = K[x1, . . . , xn] is the intersection of monomial prime ideals with disjoint sets of

variables. As an application, we obtain bounds for the Stanley depth of Itn,m and Jt
n,m,

where In,m is the m-path ideal of the path graph of length n and Jn,m is the the m-path

ideal of the cycle graph of length n.
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Introduction

Let K be a field and S = K[x1, . . . , xn] the polynomial ring over K. Let M be a
Zn-graded S-module. A Stanley decomposition ofM is a direct sum D :M =

⊕r
i=1miK[Zi]

as a Zn-graded K-vector space, where mi ∈M is homogeneous with respect to Zn-grading,
Zi ⊂ {x1, . . . , xn} such that miK[Zi] = {umi : u ∈ K[Zi]} ⊂M is a free K[Zi]-submodule
of M . We define sdepth(D) = mini=1,...,r |Zi| and sdepth(M) = max{sdepth(D)| D is a
Stanley decomposition of M}. The number sdepth(M) is called the Stanley depth of M .

Herzog, Vladoiu and Zheng show in [9] that sdepth(M) can be computed in a finite
number of steps if M = I/J , where J ⊂ I ⊂ S are monomial ideals. In [1], J. Apel restated
a conjecture firstly given by Stanley in [13], namely that sdepth(M) ≥ depth(M) for any
Zn-graded S-module M . This conjecture proves to be false, in general, for M = S/I and
M = J/I, where 0 ̸= I ⊂ J ⊂ S are monomial ideals, see [8]. For a friendly introduction in
the thematic of Stanley depth, we refer the reader [10].

Let M be a finitely generated graded S-module. The Hilbert depth of M , denoted
by hdepth(M), is the maximal depth of a finitely generated graded S-module N with the
same Hilbert series as M . In [6] we introduced a new method to compute the Hilbert depth
of a quotient J/I of two squarefree monomial ideals I ⊂ J ⊂ S; see Section 1.

In Section 2 we consider the edge ideal of a complete bipartite graph, that is

I := (x1, . . . , xn) ∩ (xn+1, . . . , xn+m) ⊂ S := K[x1, . . . , xn+m],

and we study the Stanley depth and the Hilbert depth of I and S/I.
Assume m ≤ n. In Proposition 2.2 we show that

m ≥ sdepth(S/I) ≥ min{m,
⌈n
2

⌉
}.
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Also, in Theorem 2.6 we prove that

hdepth(S/I) ≤

⌊
n+m+

1

2
−
√
2mn+

1

4

⌋
.

In particular, we note that hdepth(S/I) < m if and only if n ≤ 2m− 2.
In Theorem 2.9 we prove that

hdepth(I) = sdepth(I) =
⌈m
2

⌉
+
⌈n
2

⌉
,

if n and m are not both even. Also, we prove that if n = 2s and m = 2t then

t+ s ≤ sdepth(I) ≤ hdepth(S/I) = t+ s+ 1.

In particular, we have hdepth(I) =
⌊
n+m+2

2

⌋
for any n ≥ m ≥ 1.

In Section 3 we consider a generalization of the ideal from the previous section, namely

I := In1,...,nr
:= (x1, . . . , xn1

) ∩ (xn1+1, . . . , xn1+n2
) ∩ · · · ∩ (xn1+···+nr−1+1, . . . , xN ) ⊂ S,

where N = n1 + · · ·+ nr and S = K[x1, . . . , xN ]. In Theorem 3.3 we prove that⌊
N + r

2

⌋
≥ hdepth(I) ≥ sdepth(I) ≥

⌈n1
2

⌉
+ · · ·+

⌈nr
2

⌉
.

Also, we conjecture that

hdepth(I) =

⌊
N + r

2

⌋
.

This formula holds for r = 2 and if r ≥ 3 and at most one of the numbers n1, . . . , nr is even.
In Proposition 3.8 we characterize hdepth(S/I) and hdepth(I) in combinatorial terms. In
Proposition 3.10 we show that

hdepth(S/I) ≤ min{d ≥ r :

(
N − d+ r − 1

r

)
< n1n2 · · ·nr} − 1.

Based on Proposition 3.13, we conjecture that hdepth(S/I) ≈ N −
⌈

r
√
r!n1n2 · · ·nr

⌉
.

Let n > m ≥ 2 and t ≥ 1 be some integers. In Section 4 we apply the results from
Section 3 in order to obtain sharper bounds for the Stanley depth of Itn,m and J tn,m, where

In,m = (x1x2 · · ·xm, x2x3 · · ·xm+1, . . . , xn−m+1 · · ·xn) ⊂ S := K[x1, . . . , xn],

is the m-path ideal associated to path graph of length n and

Jn,m = In,m + (xn−m+2 · · ·xnx1, . . . , xnx1 · · ·xm−1) ⊂ S

is the m-path ideal associated to the cycle graph of length n.
In Theorem 4.3 we show that

sdepth(Itn,m) ≤ min{n−
⌈
t0
2

⌉
, n−

⌊
n− t0 + 1

m+ 1

⌋
+ 1},

where t0 = min{t, n−m}. In Theorem 4.5 we show that

sdepth(J tn,m) ≤
⌊
n+ d

2

⌋
,

for any t ≥ n− 1, where d = gcd(n,m).
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1. Preliminaries

First, we fix some notations and we recall the main result of [6].
We denote [n] := {1, 2, . . . , n} and S := K[x1, . . . , xn].
For a subset C ⊂ [n], we denote xC :=

∏
j∈C xj ∈ S.

For two subsets C ⊂ D ⊂ [n], we denote [C,D] := {A ⊂ [n] : C ⊂ A ⊂ D}, and we
call it the interval bounded by C and D.

Let I ⊂ J ⊂ S be two square free monomial ideals. We let:

PJ/I := {C ⊂ [n] : xC ∈ J \ I} ⊂ 2[n].

A partition of PJ/I is a decomposition:

P : PJ/I =
r⋃
i=1

[Ci, Di],

into disjoint intervals.
If P is a partition of PJ/I , we let sdepth(P) := minri=1 |Di|. The Stanley depth of

PJ/I is

sdepth(PJ/I) := max{sdepth(P) : P is a partition of PJ/I}.

Herzog, Vlădoiu and Zheng proved in [9] that:

sdepth(J/I) = sdepth(PJ/I).

Let P := PJ/I , where I ⊂ J ⊂ S are square-free monomial ideals. For any 0 ≤ k ≤ n, we
denote:

Pk := {A ∈ P : |A| = k} and αk(J/I) = αk(P) = |Pk |.

For all 0 ≤ d ≤ n and 0 ≤ k ≤ d, we consider the integers

βdk(J/I) :=
k∑
j=0

(−1)k−j
(
d− j

k − j

)
αj(J/I). (1.1)

From (1.1) we can easily deduce that

αk(J/I) =
k∑
j=0

(
d− j

k − j

)
βdk(J/I), for all 0 ≤ k ≤ d. (1.2)

Also, we have that

βdk(J/I) = αk(J/I)−
(
d

k

)
βd0 (J/I)−

(
d− 1

k − 1

)
βd1 (J/I)−· · ·−

(
d− k + 1

1

)
βdk−1(J/I). (1.3)

Theorem 1.1. ([6, Theorem 2.4]) With the above notations, the Hilbert depth of J/I is

hdepth(J/I) := max{d : βdk(J/I) ≥ 0 for all 0 ≤ k ≤ d}.

As a basic property of the Hilbert depth, we state the following:

Proposition 1.2. Let I ⊂ J ⊂ S be two square-free monomial ideals. Then

sdepth(J/I) ≤ hdepth(J/I).
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2. Edge ideal of a complete bipartite graph

Let n andm be two positive integers. We let S = K[x1, x2, . . . , xn+m] and we consider
the square free monomial ideal:

I := (x1, . . . , xn) ∩ (xn+1, . . . , xn+m) ⊂ S.

Our aim is to study the Stanley depth and the Hilbert depth of I and S/I.
As usual, given a positive integer k, we denote [k] := {1, 2, . . . , k}.

Remark 2.1. Let Kn,m = (V,E) be the complete bipartite graph, that is V = V ′ ∪ V ′′,
where V ′ = {1, . . . , n}, V ′′ = {n + 1, . . . , n +m} and E = {{i, j} : i ∈ [n], j − n ∈ [m]}.
Note that I = (xixn+j : i ∈ [n], j ∈ [m]) is the edge ideal of Kn,m.

Also, we mention that depth(S/I) = 1, which can be easily checked.

Proposition 2.2. Let n ≥ m ≥ 1 be two integers. Then:

(1) m ≥ sdepth(S/I) ≥ min{m, ⌈n2 ⌉}.
(2) m+ ⌈n2 ⌉ ≥ sdepth(I) ≥ ⌈n2 ⌉+ ⌈m2 ⌉.
(3) If n ≥ 2m− 1 then sdepth(S/I) = m.

Proof. (1) Since I = I ′S ∩ I ′′S, where I ′ = (x1, . . . , xn) ⊂ S′ = K[x1, . . . , xn] and
I ′′ = (xn+1, . . . , xn+m) ⊂ S′′ = K[xn+1, . . . , xn+m], from [3, Theorem 1.3(2)] it follows
that

sdepth(S/I ′S) ≥ sdepth(S/I) ≥ min{sdepth(S/I ′S), sdepthS′′(S
′′/I ′′) + sdepthS′(I

′)}.

As S/I ′S ∼= S′′, we have that sdepth(S/I ′S) = m.
Also, S′′/I ′′ ∼= K, so sdepthS′′(S′′/I ′′) = 0.
Finally, sdepthS′(I ′) = ⌈n2 ⌉, see [2, Theorem 2.2].
(2) Since (I : xn+1) = I ′S, from [12, Proposition 2], [2, Theorem 2.2] and [9, Lemma

3.6] we have

sdepth(I) ≤ sdepth(I : xn+1) = sdepth(I ′S) = m+ sdepthS′(I ′) = m+
⌈n
2

⌉
.

The other inequality follows from [11, Lemma 1.1] and [2, Theorem 2.2].
(3) If n ≥ 2m− 1 then ⌈n2 ⌉ ≥ m, hence the result follows from (1). □

Lemma 2.3. Let n ≥ m ≥ 1 be two integers and N := n+m. We have that

(1) αk(I) =

{
0, 0 ≤ k ≤ 1∑k−1
j=1

(
n
j

)(
m
k−j
)
, 2 ≤ k ≤ N

.

(2) αk(I) =
(
N
k

)
−
(
n
k

)
−
(
m
k

)
+ δk0, for all 0 ≤ k ≤ N .

(3) αk(S/I) =
(
n
k

)
+
(
m
k

)
− δk0, for all 0 ≤ k ≤ N , where δkj =

{
1, k = j

0, k ̸= j
is the

Kronecker symbol.

Proof. (1) Since I is generated in degree 2, we have α0(I) = α1(I) = 1. Any squarefree
monomial u ∈ I with deg(u) = k ≥ 2 can be written as u = v · w, where v ∈ S′ =
K[x1, . . . , xn] and w ∈ S′′ = K[xn+1, . . . , xN ] are squarefree monomials. Assume deg(v) = j
with 1 ≤ j ≤ k−1. Then deg(w) = k−j. Since there are

(
n
j

)
squarefree monomials of degree

j in S′ and
(
m
k−j
)
squarefree monomials of degree k − j in S′′, we easily get the required

conclusion.
(2) For k ≤ 1 the identity can be easily checked. Assume k ≥ 2. From (1) and the well

known combinatorial formula
k∑
j=0

(
n
j

)(
m
k−j
)
=
(
n+m
k

)
=
(
N
k

)
, we get the required conclusion.

(3) It follows immediately from (2).
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□

Lemma 2.4. For any integers 0 ≤ k ≤ d and n ≥ 0 we have that

k∑
j=0

(−1)k−j
(
d− j

k − j

)(
n

j

)
= (−1)k

(
d− n

k

)
=

(
n− d+ k − 1

k

)
.

Proof. Using the identity (−1)k
(
x
k

)
=
(−x+k−1

k

)
and the Chu–Vandermonde summation, we

get the required formula. □

Lemma 2.5. Let n ≥ m ≥ 1 and 0 ≤ k ≤ d ≤ N := n+m some integers. We have that

(1) βdk(S/I) =

(
n− d+ k − 1

k

)
+

(
m− d+ k − 1

k

)
+ (−1)k+1

(
d

k

)
,

(2) βdk(I) =

(
N − d+ k − 1

k

)
−
(
n− d+ k − 1

k

)
−
(
m− d+ k − 1

k

)
+ (−1)k

(
d

k

)
.

Proof. (1) From (1.1), Lemma 2.3(3) and Lemma 2.4 we have that

βdk(S/I) =
k∑
j=1

(−1)k−j
(
d− j

k − j

)(
n

j

)
+

k∑
j=1

(−1)k−j
(
d− j

k − j

)(
m

j

)
− (−1)k

(
d

k

)
=

=

(
n− d+ k − 1

k

)
+

(
m− d+ k − 1

k

)
+ (−1)k+1

(
d

k

)
,

as required.
(2) The proof is similar, using (1.1), Lemma 2.3(2) and Lemma 2.4. □

Note that, if n ≥ 2m − 1 then, according to Proposition 2.2(3) and Proposition 1.2
we have hdepth(S/I) ≥ sdepth(S/I) = m. Also, sdepth(S/I) ≤ m, for any n ≥ m.

Theorem 2.6. Let n ≥ m ≥ 1 be two integers. Then

sdepth(S/I) ≤ hdepth(S/I) ≤

⌊
n+m+

1

2
−
√
2mn+

1

4

⌋
.

In particular, if n ≤ 2m− 2 then hdepth(S/I) < m.

Proof. The first inequality follows from Proposition 1.2. We consider the quadratic function

φ(t) =
1

2
t(t− 1)− (n+m)t+

1

2
n(n+ 1) +

1

2
m(m+ 1).

Note that, according to Lemma 2.5(1), we have that

βd2 (S/I) =
1

2
((n− d)(n− d+ 1) + (m− d)(m− d+ 1)− d(d− 1)) =

=
1

2
d(d− 1)− (n+m)d+

1

2
n(n+ 1) +

1

2
m(m+ 1) = φ(d).

The roots of φ(t) = 0 are t1,2 = n+m+ 1
2 ±

√
2mn+ 1

4 and therefore

φ(t) < 0 if and only if t ∈

(
n+m+

1

2
−
√

2mn+
1

4
, n+m+

1

2
+

√
2mn+

1

4

)
.

From the fact that βd2 (S/I) = φ(d) and the above, it follows that

βd2 (S/I) < 0 for

⌊
n+m+

1

2
−
√
2mn+

1

4

⌋
+ 1 ≤ d ≤ n+m.
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From Theorem 1.1, we get hdepth(S/I) ≤
⌊
n+m+ 1

2 −
√
2mn+ 1

4

⌋
.

In order to prove the last part, we consider the function

ψ(x) = x+m+
1

2
−
√
2mx+

1

4
, x ∈ [m,∞).

Since dψ
dx (x) > 0, m ≤ n ≤ 2m− 2 and ψ(2m− 1) = m, it follows that⌊

2m+
1

2
−
√
2m2 +

1

4

⌋
≤ ⌊ψ(n)⌋ =

⌊
n+m+

1

2
−
√
2mn+

1

4

⌋
< ψ(2m− 1) = m,

as required. □

Theorem 2.7. Let n ≥ m ≥ 2 be two integers. Then

hdepth(S/I) = max{d ≤ n+m :

(
d− n

2ℓ

)
+

(
d−m

2ℓ

)
≥
(
d

2ℓ

)
for all 1 ≤ ℓ ≤

⌊
d

2

⌋
}.

Moreover, hdepth(S/I) < m if n ≤ 2m − 2. Also, m ≤ hdepth(S/I) ≤ n − m + 1 if
n ≥ 2m− 1.

Proof. Let q := max{d ≤ n+m :
(
d−n
2ℓ

)
+
(
d−m
2ℓ

)
≥
(
d
2ℓ

)
for all 1 ≤ ℓ ≤

⌊
d
2

⌋
}.

From Lemma 2.5(1) and the identity
(
x
k

)
=
(−x+k−1

k

)
it follows that

βd2ℓ(S/I) =

(
d− n

2ℓ

)
+

(
d−m

2ℓ

)
−
(
d

2ℓ

)
. (2.1)

Hence hdepth(S/I) ≤ q.
On the other hand, from the proof of Theorem 2.6 and (2.1), it follows that

q ≤

⌊
n+m+

1

2
−
√
2mn+

1

4

⌋
. (2.2)

We consider two cases:

(i) n ≤ 2m − 2. From Theorem 2.6, it follows that q < m. From Lemma 2.5(2) and
0 ≤ k ≤ q with k odd, we have

βqk(S/I) =

(
n− q + k − 1

k

)
+

(
m− q + k − 1

k

)
+

(
q

k

)
≥
(
n−m+ k

k

)
+ 1 +

(
q

k

)
> 0.

Since, by the definition of q, we have βqk(S/I) ≥ 0 for all 0 ≤ k ≤ q with k even, we
conclude that hdepth(S/I) ≥ q. Hence hdepth(S/I) = q < m, as required.

(ii) n ≥ 2m− 1. First, note that

m = sdepth(S/I) ≤ hdepth(S/I) ≤ q.

From (2.2) and the above it follows that

m ≤ q ≤

⌊
n+m+

1

2
−
√
2m(2m− 1) +

1

4

⌋
=

⌊
n+m+

1

2
− (2m− 1

2
)

⌋
= n−m+ 1.

From Lemma 2.5(2) and 0 ≤ k ≤ q with k odd, we have

βqk(S/I) =

(
n− q + k − 1

k

)
+

(
q −m

k

)
+

(
q

k

)
≥
(
m

k

)
+ 0 +

(
m

k

)
≥ 0.

Using the same argument as in the case (i), it follows that hdepth(S/I) = q, as
required.

Thus, the proof is complete. □



On the Hilbert depth of certain monomial ideals and applications 59

Lemma 2.8. Let n ≥ m ≥ 1 be two integers. Then

hdepth(I) ≤
⌊
n+m+ 2

2

⌋
.

Proof. If n+m = 2, that is n = m = 1, then there is nothing to prove. Assume n+m ≥ 3.
From Lemma 2.5(2) and straightforward computations, it follows that

βd3 (I) =
nm(n+m− 2d+ 2)

2
< 0,

if and only if d > n+m+2
2 . Hence, we get the required result. □

Theorem 2.9. Let n ≥ m ≥ 1 be two integers.

(1) If n and m are not both even then we have that:

sdepth(I) = hdepth(I) =
⌈n
2

⌉
+
⌈m
2

⌉
.

(2) If n = 2t and m = 2s then we have that:

t+ s ≤ sdepth(I) ≤ hdepth(I) ≤ t+ s+ 1.

In both cases, we have hdepth(I) =
⌊
n+m+2

2

⌋
.

Proof. (1) According to Proposition 2.2(2), we have that

sdepth(I) ≥
⌈n
2

⌉
+
⌈m
2

⌉
. (2.3)

On the other hand, according to Proposition 1.2 and Lemma 2.8, we have that

sdepth(I) ≤ hdepth(I) ≤
⌊
n+m

2

⌋
+ 1. (2.4)

Note that, if n and m are not both even, then⌈n
2

⌉
+
⌈m
2

⌉
=

⌊
n+m

2

⌋
+ 1. (2.5)

Hence, (1) follows from (2.3), (2.4) and (2.5).
(2) From (2.3) and (2.4) we have that

t+ s ≤ sdepth(I) ≤ hdepth(I) ≤ t+ s+ 1.

On the other hand, for 0 ≤ k ≤ t+ s+ 1, from Lemma 2.5(2) we have

βt+s+1
k (I) =

(
t+ s− 2 + k

k

)
−
(
t− s− 2 + k

k

)
−
(
s− t− 2 + k

k

)
+ (−1)k

(
t+ s+ 1

k

)
.

(2.6)
By direct computations, from (2.6) it follows that

βt+s+1
0 (I) = 0, βt+s+1

1 (I) = 0, βt+s+1
2 (I) = 4st and βt+s+1

3 (I) = 0.

Also, by straightforward computations, we get

βt+s+1
4 (I) = βt+s+1

5 (I) =
ts(2s2 + 2t2 − 1)

3
> 0.

Now, assume 6 ≤ k ≤ t + s + 1. Without any loss of generality, we assume that t = s + a,
where a is a nonnegative integer. In order to prove that β := βt+s+1

k (I) ≥ 0, we consider
the following cases:

(i) k is even.
(i.1) a = 0. From (2.6) and the fact that s ≥ 1 it follows that

β =

(
2s− 2 + k

k

)
−
(
k − 2

k

)
−
(
k − 2

k

)
+

(
2s+ 1

k

)
≥
(
k

k

)
+

(
2s+ 1

k

)
> 0.
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(i.2) a = 1. From (2.6) and the fact that s ≥ 1 it follows that

β =

(
2s− 1 + k

k

)
−
(
k − 1

k

)
−
(
k − 3

k

)
+

(
2s+ 2

k

)(
k + 1

k

)
+

(
2s+ 2

k

)
> 0.

(i.3) a ≥ 2 and k ≥ a+ 2. From (2.6) we get

β =

(
2s+ a+ k − 2

k

)
−
(
a+ k − 2

k

)
+

(
2s+ a+ 1

k

)
>

(
2s+ a+ 1

k

)
≥ 0.

(i.4) a ≥ 5 and k ≤ a+ 1. From (2.6), using
(−x
k

)
= (−1)k

(
x+k−1
k

)
, we get

β =

(
2s+ a+ k − 2

k

)
−
(
a+ k − 2

k

)
−
(
a+ 1

k

)
+

(
2s+ a+ 1

k

)
=

=

(
2s+ a+ k − 2

k

)
−
(
a+ k − 2

k

)
+

(
2s+ a+ 1

k

)
−
(
a+ 1

k

)
> 0.

(ii) k is odd.
(ii.1) a = 0. From (2.6) and the fact that k ≥ 6 it follows that

β =

(
2s− 2 + k

k

)
−
(
k − 2

k

)
−
(
k − 2

k

)
−
(
2s+ 1

k

)
≥
(
2s+ 4

k

)
−
(
2s+ 1

k

)
> 0.

(ii.2) a = 0. From (2.6) and the fact that k ≥ 6 it follows that

β =

(
2s− 1 + k

k

)
−
(
k − 1

k

)
−
(
k − 3

k

)
−
(
2s+ 2

k

)
≥
(
2s+ 5

k

)
−
(
2s+ 2

k

)
> 0.

(ii.3) a ≥ 2 and k ≥ a+ 2. From (2.6) and the fact that k ≥ 6 and s ≥ 1 we get

β =

(
2s+ a+ k − 2

k

)
−

(
a+ k − 2

k

)
−

(
2s+ a+ 1

k

)
>

(
2s+ a+ k − 3

k − 1

)
−

−

(
a+ k − 2

k

)
≥

(
a+ k − 1

k − 1

)
−

(
a+ k − 2

k

)
=

ak + k2 − k − a2 + a

a(a− 1)

(
a+ k − 2

k

)
> 0.

(ii.4) a ≥ 5 and k ≤ a+ 1. From (2.6), using
(−x
k

)
= (−1)k

(
x+k−1
k

)
, we get

β =

(
2s+ a+ k − 2

k

)
−
(
a+ k − 2

k

)
+

(
a+ 1

k

)
−
(
2s+ a+ 1

k

)
=

=

(
2s+ a+ k − 2

k

)
−
(
2s+ a+ 1

k

)
−
((

a+ k − 2

k

)
−
(
a+ 1

k

))
=

=
2s+a+k−3∑
ℓ=2s+a+1

(
ℓ

k − 1

)
−
a+k−3∑
ℓ=a+1

(
ℓ

k − 1

)
> 0.

Hence, hdepth(I) = s+ t+ 1 and the proof is complete. □

3. A generalization

Let n1, n2, . . . , nr be some positive integers, N = n1+· · ·+nr and S := K[x1, . . . , xN ].
We consider the ideal

I := In1,n2,...,nr
:= (x1, . . . , xn1

) ∩ (xn1+1, . . . , xn1+n2
) ∩ · · · ∩ (xn1+···+nr−1+1, . . . , xN ) ⊂ S,

which generalize the ideal I from the previous section.
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Lemma 3.1. With the above notations, we have that

αk(I) =


0, k ≤ r − 1∑
ℓ1,ℓ2,...,ℓr≥1
ℓ1+···+ℓr=k

(
n1

ℓ1

)(
n2

ℓ2

)
· · ·
(
nr

ℓr

)
, k ≥ r .

Proof. Since I is generated by square free monomials of degree k, it is clear that αk(I) = 0
for k ≤ r − 1. Assume k ≥ r and let u ∈ I a square free monomial of degree k. It follows
that u = u1 · · ·ur, where

1 ̸= uj ∈ Ij := (xn1+···+nj−1+1, . . . , xn1+···+nj
) for all 1 ≤ j ≤ r.

Let ℓj = deg(uj) ≥ 1. Since there are
(
nj

ℓj

)
squarefree monomials of degree ℓj in Ij , we get

the required conclusion. □

Lemma 3.2. With the above notations, we have that

(1) αk(I) = 0 for k ≤ r − 1.
(2) αr(I) = n1n2 · · ·nr.
(3) αr+1(I) = n1n2 · · ·nr · n1+···+nr−r

2 .

(4) αk(I) =
(
N
k

)
for k ≥ N −

r
min
i=1

ni + 1.

Proof. (1), (2) and (3) follow immediately from Lemma 3.1. In order to prove (4), it is

enough to observe that any squarefree monomial u ∈ S of degree k ≥ N −
r

min
i=1

ni + 1,

belongs to I. □

Theorem 3.3. With the above notations, we have that:⌊
N + r

2

⌋
≥ hdepth(I) ≥ sdepth(I) ≥

⌈n1
2

⌉
+ · · ·+

⌈nr
2

⌉
.

Proof. In order to prove the first inequality, let d > n1+···+nr+r
2 be an integer. From Theorem

1.1 and Lemma 3.2(1,2,3) it follows that

βdk(I) = 0 for 0 ≤ k ≤ r − 1, βdr (I) = αr(I) = n1n2 · · ·nr and

βdr+1(I) = αr+1(I)− (d− r)αr(I) = n1n2 · · ·nr
(
n1 + · · ·+ nr + r

2
− d

)
< 0.

Hence hdepth(I) ≤ n1+···+nr+r
2 .

The inequality hdepth(I) ≥ sdepth(I) follows from Proposition 1.2, and the last
inequality follows from [3, Corollary 1.9(1)] and [2, Theorem 2.2]. □

Based on our computer experiments, we propose the following conjecture:

Conjecture 3.4. With the above notations, we have

hdepth(I) =

⌊
N + r

2

⌋
.

Note that, according to Theorem 2.9, Conjecture 3.4 holds for r = 2. Also, according
to Theorem 3.3, Conjecture 3.4 is true when at most one of the numbers n1, . . . , nr is even.

Proposition 3.5. With the above notations, we have that

N −
r

min
i=1

ni ≥ hdepth(S/I) ≥ sdepth(S/I) ≥
⌈n1
2

⌉
+ · · ·+

⌈nr
2

⌉
−

r
min
i=1

⌈ni
2

⌉
.
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Proof. From Lemma 3.2(4) it follows that

αk(S/I) = 0 for all k ≥ N − r
max
i=1

ni + 1.

Hence, from [6, Lemma 1.3], we get the first inequality.
The second inequality follows from [3, Corollary 1.9] and [2, Theorem 2.2]. □

Note that, Proposition 3.5 reproves the fact that hdepth(S/I) ≥ depth(S/I) = r− 1.

Lemma 3.6. For any 0 ≤ k ≤ N , we have that:

(1) αk(I) =
∑
J⊊[n](−1)|J|

(N−
∑

i∈J ni

k

)
.

(2) αk(I) =
∑

∅̸=J⊊[n](−1)|J|+1
(N−

∑
i∈J ni

k

)
.

Proof. (1) For all 1 ≤ i ≤ r we let:

Ai = {(ℓ1, . . . , ℓd) : ℓ1 + · · ·+ ℓr = k, ℓi = 0 and ℓj ≥ 0 for j ≠ i}.

Also, we consider the set:

A = {(ℓ1, . . . , ℓd) : ℓ1 + · · ·+ ℓr = k and ℓi ≥ 0 for all 1 ≤ i ≤ r}.

For any nonempty subset J ⊂ [n], we let AJ =
⋃
i∈J Ai. Also, we denote A∅ = A. From

Lemma 3.1 it follows that

αk(I) =
∑

(ℓ1,...,ℓr)∈A∅\(
⋃r

i=1 Ai)

(
n1
ℓ1

)
· · ·
(
nr
ℓr

)
. (3.1)

Note that this equality holds also for k < r as both terms are zero in this case. It is well
known that ∑

(ℓ1,...,ℓr)∈A

(
n1
ℓ1

)
· · ·
(
nr
ℓr

)
=

(
n1 + · · ·+ nr

k

)
=

(
N

k

)
.

Similarly, if J ⊂ [n] then

∑
(ℓ1,...,ℓr)∈

⋂
i∈J Ai

(
n1
ℓ1

)
· · ·
(
nr
ℓr

)
=

(
N −

∑
i∈J ni
k

)
. (3.2)

From (3.1) and (3.2), using the inclusion exclusion principle, we get the required conclusion.

(2) Follows from (1) and the fact that α(S/I) =
(
N
k

)
− α(I). □

Note that Lemma 3.6 generalizes Lemma 2.3(2,3). From Lemma 3.6 and Lemma 2.4
we get the following generalization of Lemma 2.5:

Lemma 3.7. For any 0 ≤ k ≤ d ≤ N , we have that:

(1) βdk(I) =
∑
J⊊[n]

(−1)|J|
(N−

∑
i∈J ni−d+k−1

k

)
.

(2) βdk(S/I) =
∑

∅̸=J⊊[n]

(−1)|J|+1
(N−

∑
i∈J ni−d+k−1

k

)
.
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Proposition 3.8. With the above notations, we have that:

(1) hdepth(I) = max{d :
⌈n1
2

⌉
+ · · ·+

⌈nr
2

⌉
≤ d ≤

⌊
N + r

2

⌋
and∑

J⊊[n]

(−1)|J|
(
N −

∑
i∈J ni − d+ k − 1

k

)
≥ 0 for all r ≤ k ≤ d}.

(2) hdepth(S/I) = max{d :
⌈n1
2

⌉
+ · · ·+

⌈nr
2

⌉
−

r
min
i=1

⌈ni
2

⌉
≤ d ≤ N −

r
min
i=1

ni and∑
∅̸=J⊊[n]

(−1)|J|+1

(
N −

∑
i∈J ni − d+ k − 1

k

)
≥ 0 for all r ≤ k ≤ d}.

Proof. (1) It follows from Theorem 3.3 and Lemma 3.7(1).
(1) It follows from Proposition 3.5 and Lemma 3.7(2). □

Lemma 3.9. Let d ≥ r. We have that

βdr (S/I) =

(
N − d+ r − 1

r

)
− n1n2 · · ·nr.

Proof. From Lemma 3.2 it follows that

αk(S/I) =

(
N

k

)
for k ≤ r − 1, αr(S/I) =

(
N

r

)
− n1n2 · · ·nr.

Hence, the required result follows from (1.1) and Lemma 2.4. □

Proposition 3.10. With the above notations, we have that:

hdepth(S/I) ≤ min{d ≥ r :

(
N − d+ r − 1

r

)
< n1n2 · · ·nr} − 1.

Proof. First of all, note that, according to (1.3), we have

βN0 (S/I) = 1 and βNk (S/I) = 0 for all 1 ≤ k ≤ r − 1.

Moreover, according to Lemma 3.9, (1.1) and (1.3), we have

βNr (S/I) =

(
N −N + r − 1

r

)
− n1n2 · · ·nr = −n1n2 · · ·nr < 0.

Therefore, we have that q := min{d ≥ r :
(
N−d+r−1

r

)
< n1n2 · · ·nr} is well defined and

q ≤ N . Now, it is enough to notice that, from above, βqr (S/I) < 0 and thus hdepth(S/I) ≤
q − 1, as required. □

Lemma 3.11. We have that(
N − d+ r − 1

r

)
≥ n1n2 · · ·nr for all d ≤ N −

⌈
r
√
r!n1n2 · · ·nr

⌉
.

Proof. We assume that d = ⌊aN⌋, where a ∈ (0, 1). Then(
N − d+ r − 1

r

)
=

(N − d+ r − 1)(N − d+ r − 2) · · · (N − d)

r!
≥

≥ (N − aN + r − 1)(N − aN + r − 2) · · · (N − aN)

r!
≥ Nr(1− a)r

r!
. (3.3)

On the other hand

Nr(1− a)r

r!
≥ n1n2 · · ·nr ⇔ (1− a)r ≥ r!n1n2 · · ·nr

r!Nk
⇔ a ≤ 1−

r
√
r!n1n2 · · ·nr

N
(3.4)

The conclusion follows from (3.3) and (3.4). □
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Remark 3.12. Note that, from the inequality of means, we have

r
√
r!n1n2 · · ·nr ≤

N r
√
r!

r
,

with equality for n1 = n2 = · · · = nr = n = N
r . Therefore, from Lemma 3.11, we have that(

N − d+ r − 1

r

)
≥ nr for all d ≤ N

(
1− r

√
r!

rr

)
.

Proposition 3.13. With the above notations, we have that

βdr (S/I) ≥ 0 for all d ≤ N −
⌈

r
√
r!n1n2 · · ·nr

⌉
.

Proof. It follows from Lemma 3.9 and Lemma 3.11. □

Proposition 3.13 allows us to conjecture that hdepth(S/I) ≈ N −
⌈

r
√
r!n1n2 · · ·nr

⌉
.

4. Applications

The m-path ideal of a path graph

Let n ≥ m ≥ 1 be two integers and

In,m = (x1x2 · · ·xm, x2x3 · · ·xm+1, . . . , xn−m+1 · · ·xn) ⊂ S = K[x1, . . . , xn],

be the m-path ideal associated to the path graph of length n. Let t ≥ 1. We define:

φ(n,m, t) :=

{
n− t+ 2−

⌊
n−t+2
m+1

⌋
−
⌈
n−t+2
m+1

⌉
, t ≤ n+ 1−m

m− 1, t > n+ 1−m
.

According to [4, Theorem 2.6] we have that sdepth(S/Itn,m) ≥ depth(S/Itn,m) = φ(n,m, t).
Assume that t ≤ n−m and let St+m := K[x1, . . . , xm+t]. We consider the ideal

Um,t = (xi1 · · ·xim : ij ≡ j(mod m), 1 ≤ j ≤ m) ⊂ St+m.

By Euclidean division, we write t+m = am+ b, where 1 ≤ b ≤ m. According to the proof
of [4, Lemma 2.4], we have that

Um,t = Vm,1,a+1∩· · ·∩Vm,b,a+1∩Vm,b+1,a∩· · ·∩Vm,m,a, where Vm,j,k = (xj , xj+m, . . . , xj+(k−1)m).
(4.1)

Proposition 4.1. We have that: sdepth(Um,t) ≤ hdepth(Um,t) ≤ m+
⌊
t
2

⌋
.

Proof. According to Theorem 3.3, we have that hdepth(Um,t) ≤
⌊
m+t+m

2

⌋
= m+

⌊
t
2

⌋
. Now,

apply Proposition 1.2. □

Lemma 4.2. Let I ⊂ S be a proper monomial ideal and u ∈ S \ I a monomial. Then

(1) sdepth(S/(I : u)) ≥ sdepth(S/I). ([3, Proposition 2.7(2)])
(2) sdepth(I : u) ≥ sdepth(I). ([12, Proposition 2])

Theorem 4.3. Let n ≥ m ≥ 1 and t ≥ 1. Let t0 := min{t, n−m}. We have that

sdepth(Itn,m) ≤ min{n−
⌈
t0
2

⌉
, n−

⌊
n− t0 + 1

m+ 1

⌋
+ 1}.

Proof. If t ≥ n−m+1, then t0 = n−m and, according to [4, Lemma 2.1], we have that It0n,m =

Itn,m : (xn−m+1 · · ·xn)t−t0 . Therefore, from Lemma 4.2(2) it follows that sdepth(Itn,m) ≤
sdepth(It0n,m). Hence, we can assume that t ≤ n−m and t0 = t.
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By Euclidean division, we write n− t+1 = q(m+1)+r, where 0 ≤ r ≤ m. According
to [4, Lemma 2.5], there exists a monomial w ∈ S such that:

(Itn,m : w) =

{
Um,t + Pm,t,q, r < m

Um,t + Pm,t,q + (xn−m+1 · · ·xn), r = m
, (4.2)

where Pm,t,q ⊂ K[xt+m+1, . . . , xt+q(m+1)−1] is a prime monomial ideal of height 2(q − 1).
If r < m then, from (4.2) and [3, Theorem 1.3] it follows that sdepth(Itn,m : w) ≤
min{sdepth(Um,tS), sdepth(Pm,t,qS)}. From Proposition 4.1, [9, Lemma 3.6] and [2, Theo-
rem 2.2] we deduce that sdepth(Itn,m : w) ≤ min{n−

⌈
t
2

⌉
, n− q+1}. In the case r = m, we

obtain the same inequality. Therefore, the required conclusion follows from Lemma 4.2(2)

and the fact that q =
⌊
n−t+1
m+1

⌋
. □

The m-path ideal of a cycle graph

Let n > m ≥ 2 be two integer and

Jn,m = In,m + (xn−m+2 · · ·xnx1, . . . , xnx1 · · ·xm−1) ⊂ S = K[x1, . . . , xn],

the m-path ideal associated to the cycle graph of length n.
Let d := gcd(n,m). We consider the ideal

U ′
n,d = (x1, xd+1, · · · , xd(r−1)+1) ∩ (x2, xd+2, · · · , xd(r−1)+2) ∩ · · · ∩ (xd, x2d, . . . , xrd), (4.3)

where r := n
d . Note that U ′

n,1 = m = (x1, . . . , xn).

Proposition 4.4. We have that: sdepth(U ′
n,d) ≤ hdepth(U ′

n,d) ≤
⌊
n+d
2

⌋
.

Proof. According to Theorem 3.3, we have that hdepth(U ′
n,d) ≤

⌊
n+d
2

⌋
. Now, apply Propo-

sition 1.2. □

Let t0 := t0(n,m) be the maximal integer such that t0 ≤ n − 1 and there exists a
positive integer α such that mt0 = αn+ d. Let t ≥ t0 be an integer.

Theorem 4.5. Let n > m ≥ 2 and t ≥ t0. We have that sdepth(J tn,m) ≤
⌊
n+d
2

⌋
.

Proof. By [5, Lemma 2.2], there exists a monomial wt ∈ S such that (J tn,m : wt) = U ′
n,d.

The conclusion follows from Lemma 4.2(2) and Proposition 4.4. □

5. Conclusion

Let n,m be two positive integers and I = (x1, . . . , xn) ∩ (xn+1, . . . , xn+m) be the
ideal of S = K[x1, . . . , xn+m]. We proved that hdepth(I) =

⌊
n+m+2

2

⌋
. Also, we proved that

hdepth(S/I) ≤
⌊
n+m+ 1

2 −
√
2mn+ 1

4

⌋
.

More generally, let n1, n2, . . . , nr be some positive integers, N = n1 + · · ·+ nr, S :=
K[x1, . . . , xN ] and I = (x1, . . . , xn1) ∩ · · · ∩ (xn1+···+nr−1+1, . . . , xN ) ⊂ S. We proved that

hdepth(I) ≤
⌊
N+r
2

⌋
and we conjectured that we have equality.
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