
U.P.B. Sci. Bull., Series A, Vol. 73, Iss. 1, 2011 ISSN 1223-7027

ADVANCES ON HESSIAN STRUCTURES

Gabriel Bercu1, Claudiu Corcodel2, Mihai Postolache3

Demonstrăm că geodezicele unei varietăţi Riemanniene plate sunt trans-

versale pe varietatea de nivel constant. Considerăm apoi varietatea M = R2,

ı̂nzestrată cu metrica Riemanniană ḡ(x, y) = diag (g(x) , 1), unde g este o funcţie

reală pozitivă, de clasă C∞. Dată o funcţie f de clasă C∞, determinăm metrica

produsă de Hessiana h = ∇2
gf , indicăm condiţii suficiente ca metricile h şi ḡ să

genereze aceeaşi conexiune şi iniţiem un studiu al structurilor Hessiene iterative

2D [5]. Apoi, folosind tehnicile din [7], introducem noi exemple de funcţii autocon-

cordante. Dacă §1 conţine fundamente teoretice introductive, §2 conţine rezultate

originale, iar §3 unifică aceste rezultate cu cele din lucrările noastre [5], [6].

We show that the geodesics of a flat Riemannian space are transversal

to the constant level manifold. Next, consider the manifold M = R2, endowed

with the Riemannian metric ḡ(x, y) = diag (g(x) , 1), where g is a positive real

function of C∞-class. Given a function f of C∞-class, we determine the metric

produced by the Hessian h = ∇2
gf and provide sufficient conditions for h and

ḡ to give rise to the same connection. Then we initiate a study on iterative 2D

Hessian structures [5]. Using essentially the techniques from [7], we introduce new

examples of self-concordant functions. While §1 introduces the general setting, §2
contains new results, and §3 unifies these results with our works [5], [6].
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1. Introduction and general setting

The Hessian Riemannian structures are very useful tools for practical prob-
lems. To give some examples, we underline their applications in economic theory, in
system modeling and optimization as well as in statistical theory. That is why they
are intensively studied by famous scientists in the world. In [8], a version of Hessian
metrics is used by S. Y. Cheng and S. T. Yau to define a canonical Riemannian
metric on any convex domain, using the solution of a Monge-Ampère equation. In
[19], T. Sasaki studied hyperbolic affine hyperspheres via Hessian metrics, while in
[24] B. Totaro studied the curvature of a Hessian metric. In [17], Y. Nesterov and
M. J. Todd studied the Riemannian geometry defined on a convex subset of Rn

by the Hessian of a self-concordant barrier function. In [31], E. Vinberg used this
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class of metrics to define a canonical Riemannian metric on an arbitrary convex
cone. Closely related to this topic is the research of Shima on Hessian manifolds
(see [20]÷[22]) and the recent surveys on Hessian metrics by Duistermaat [12] and
Shima-Yagi [23]. For other relevant issues on this field, we refer the reader to the
following works: [15], [16], [30].

Inspired and motivated by the ongoing work on this topic reported above, this
paper aims to establish some new results on Hessian structures. It is organized as
follows. Next, in this section, the notations and assumptions are given. In §2 we
study the geodesics of a flat space, while in §3, we join our main results with those
in [5]. Finally, we conclude the paper and suggest possible further development.

A pseudo-Riemannian metric of signature (p, q) on a smooth manifold M of
dimension n = p + q is a smooth symmetric differentiable 2-form g on M such that,
at each point x of M , gx is non-degenerate on TxM with the signature (p, q). We
call (M, g) a pseudo-Riemannian manifold, [21], [22].

Given a pseudo-Riemannian manifold (M, g), the fundamental theorem of
pseudo-Riemannian geometry states that there exists a unique linear connection
∇g on M , called the Levi-Civita connection (of g), such that the following two
assertions hold good:

a) ∇g is metric (i.e. ∇gg = 0); b) ∇g is torsion-free (i.e. T = 0).

If (U, x1, . . . , xn) is a coordinate chart on M , then the Christoffel symbols Γk
ij

of the Levi-Civita connection are related to the functions gij by the formulas

Γk
ij =

1
2
gk`

(
∂g`i

∂xj
+

∂gj`

∂xi
− ∂gij

∂x`

)
,

while the curvature R has the components

R`
ijk =

∂Γ`
ki

∂xj
− ∂Γ`

ji

∂xk
+ Γr

kiΓ
`
jr − Γr

jiΓ
`
kr. (1)

Note that in local coordinates a geodesic γ(t) = (xi(t))i=1,...,n satisfies a system
of n second order differential equations

ẍi + Γi
jkẋ

j ẋk = 0, i = 1, . . . , n.

If f : M → R is a smooth function, then the second covariant derivative

∇2
gf =

(
∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk

)
dxi ⊗ dxj

is called the Hessian of f , [23], [27].
Let us suppose that the Hessian h = ∇2

gf is non-degenerate. Then h is a
pseudo-Riemannian metric which produces the Levi-Civita connection ∇h and the
Christoffel symbols Γ̄k

ij .
Throughout this paper, we shall use the following notations:

f,i =
∂f

∂xi
; f,ij =

∂2f

∂xi∂xj
− Γm

ij f,m; f,ijk =
∂f,ij

∂xk
− Γ`

kif,`j − Γ`
kjf,`i. (2)

We have, [3]
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Theorem 1.1. Let f,pk be the contravariant components of the pseudo-Riemannian
metric hpk = f,pk and Rm

ijk be the components of the curvature tensor field pro-
duced by the pseudo-Riemannian metric gij. Then the components of Levi-Civita
connection ∇h are given by the following formula

Γ̄p
ij = Γp

ij +
1
2
f,kp [f,ijk + (Rm

ikj + Rm
jki)f,m].

As a direct consequence of Theorem 1.1, we can find the geodesics of this
manifold as

ẍp +
[
Γp

ij + f,pk

(
1
2
f,ijk + R`

ikjf,`

)]
ẋiẋj = 0, p = 1, . . . , n.

This result is generalization of Theorem 2.1 from [17] in the pseudo-Riemannian case,
and it is used in [4] for finding the explicit form of geodesics of a Hessian manifold.
Moreover, in [4] a solution study is provided by means of asimptotic approach and
computer experiments.

2. Geodesics of a flat space

Consider (M, g) be a flat space. Then we have

Γp
ij = 0, Rl

ijk = 0, f,ij =
∂2f

∂xi∂xj
, f,ijk =

∂3f

∂xi∂xj∂xk
.

According to Theorem 1.1, the components of the Levi-Civita connection ∇h are
given by the formula

Γ̄p
ij =

1
2
f,pk ∂3f

∂xi∂xj∂xk
, (3)

and the system of geodesics becomes

ẍp +
1
2
f,pk f,ijkẋ

iẋj = 0, p = 1, . . . , n. (4)

Looking at the equations (4), we remark that we have

∂

∂xk

(
2

∂f

∂xi
ẍi +

∂2f

∂xi∂xj
ẋiẋj

)
= 0,

so there exists a real constant a such that

2
∂f

∂xi
ẍi +

∂2f

∂xi∂xj
ẋiẋj = 2a. (5)

But (5) can be written as
∂f

∂xi
ẍi +

∑

i≤j

∂2f

∂xi∂xj
ẋiẋj = a, or

d

dt

( ∂f

∂xi
ẋi

)
= a. (6)

From (6), there exists b such that
∂f

∂xi
ẋi = at + b, or

d

dt
(f(x(t)) = at + b. It follows

f(x(t)) =
at2

2
+ bt + c.
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Theorem 2.1. Let (M, g) be a flat Riemannian space and f : M → R a C2 regular
function. The geodesics of the Riemannian manifold (M, f,ij) are transversal to the
constant level manifold f(x) = c.

Using (3) we deduce that when the source manifold (M, g) is a flat one, then the
curvature tensor field R̄ of the pseudo-Riemannian manifold (M, h), with h = ∇2

gf

has the components

R̄aijk = −1
4
f,pr (f,kipf,jra − f,jipf,kra).

3. Advances on Hessian structures

The goal of this section is to join the present research with our recent results
published in [5]. That is why, we have to remember some background introduced in
detail in [5] and then introduce the results. Theorem 3.1 and Theorem 3.2, whose
background is introduced bellow, offer a different alternative to the result in [5].

Let us consider the manifold M = R2, endowed with the Riemannian metric
ḡ of diagonal type, ḡ(x, y) = diag (g(x) , 1). Here g is a positive real function of
C∞-class. It results that ḡ produces a Riemannian connection whose components
are given by

Γ1
11 =

d

dx
ln
√

g, Γ1
12 = Γ1

21 = Γ2
11 = Γ2

21 = Γ2
22 = Γ2

12 = Γ1
22 = 0. (7)

Using (1), we find the components of the curvature tensor as follows:

Rh
ijk = 0, for all i, j, k, h in {1, 2}.

We underline the role of metric ḡ in the study of our problems stated bellow.
On M , let be given the real function f(x, y) = p(x) + r(y), where p and r are

real functions, defined on R, of C∞-class. By (2), we get

f,11 = p′′ − Γ1
11p

′, f,12 = f,21 = 0, f,22 = r′′, (8)

and respectively

f,111 =
d

dx

(
p′′ − Γ1

11p
′)− 2Γ1

11

(
p′′ − Γ1

11p
′) ,

f,112 = f,121 = f,211 = f,122 = f,212 = f,221 = 0,

f,222 = r′′′.

We impose h = ∇2
ḡf be positive definite. Since

h(x, y) = diag
(
p′′(x)− Γ1

11(x)p′(x) , r′′(y)
)

(9)

this means
p′′(x)− Γ1

11(x)p′(x) > 0, r′′(y) > 0. (10)

If relations (10) are satisfied, then h is a new Riemannian metric, which produces
the Levi-Civita connection ∇h and the Christoffel symbols Γ̄p

ij given by Theorem
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1.1. In our case, we get

Γ̄1
11 =

1
2

d

dx

(
p′′ − Γ1

11p
′)

p′′ − Γ1
11p

′ ,

Γ̄2
11 = Γ̄1

12 = Γ̄1
21 = Γ̄2

12 = Γ̄2
21 = Γ̄1

22 = 0,

Γ̄2
22 =

1
2

r′′′

r′′
.

? problem 1. Find the functions f whose Hessian h = ∇2
ḡf produces the

same connection as the initial metric ḡ.

To solve this problem, we have to write the explicit form of the following two
conditions:

p′′(x)− Γ1
11(x)p′(x) = g(x), r′′(y) = 1, (11)

given that Γ1
11(x) =

1
2

g′(x)
g(x)

.

If we denote p′ = s, the first equation in (11) leads to 2gs′−g′s = 2g2. Having

in mind this equality, we get
(

s2

g

)′
= 2s, therefore we have

p′2

2p
= g. (12)

• If we think relation (12) as an equation with the unknown g, then we obtain

Theorem 3.1. On the Riemannian manifold

(R2, ḡ), ḡ(x, y) = diag
(p′2(x)

2p(x)
, 1

)

the Hessian of the function f(x, y) = p(x) +
1
2
y2 + ay + b, where a and b are real

constants, produces the same connection as the initial metric ḡ.

• If we think relation (12) as an equation with the unknown p, then we obtain

Theorem 3.2. Let be given the Riemannian manifold

(R2, ḡ), ḡ(x, y) = diag (g(x) , 1) .

If we suppose that the function p satisfies equation (12), then the Hessian of the

function f(x, y) = p(x) +
1
2
y2 + ay + b, where a and b are real constants, produces

the same connection as the initial metric ḡ.

? problem 2. Initiate a study of iterative structures Hessian, mathematical
concept strongly required by practical problems in Optimization.

To start our iterative process, we need to write the metric h in (9) in an
equivalent form. In this respect, we use the explicit form of Γ1

11 in (7) and the form
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of f,11 in (8). After calculation, we obtain

h(x, y) = ∇2
ḡf(x, y) = diag

(
p′(x)

2

(
ln

p′2

g(x)

)′
, r′′(y)

)
(13)

We introduce the notations

u1(x) =
p′(x)

2

(
ln

p′2

g(x)

)′
, v1(y) = r′′(y), (14)

and using (14) we set

h1(x, y) := h(x, y) = ∇2
ḡf(x, y) = diag (u1(x) , v1(y)) ,

and remark that

Γ̄1
11 =

1
2

u′1
u1

,

Γ̄2
11 = Γ̄1

12 = Γ̄1
21 = Γ̄2

12 = Γ̄2
21 = Γ̄1

22 = 0,

Γ̄2
22 =

1
2

v′1
v1

.

To continue our iterative process, we suppose that k := h2 = ∇2
h1

f has the

components kij , where kij =
∂2f

∂xi∂xj
− Γ̄p

ijf,p. After calculations, we find

k11(x) =
p′(x)

2

(
ln

p′2(x)
u1(x)

)′
, k12 = k21 = 0, k22(y) =

r′(y)
2

(
ln

r′2(y)
v1(y)

)′
,

If consider u2 := k11, and v2 = k22, we have

h2(x, y) := k(x, y) = ∇2
h1

f(x, y) = diag (u2(x) , v2(y)) .

But h2 := k produces the connection Γ̃, having the components

Γ̃1
11 =

1
2

u′2
u2

,

Γ̃2
11 = Γ̃1

12 = Γ̃1
21 = Γ̃2

12 = Γ̃2
21 = Γ̃1

22 = 0,

Γ̃2
22 =

1
2

v′2
v2

.

As a result of our iterative process we state

Theorem 3.3. For each positive integer, n, we have

hn+1(x, y) = ∇2
hn

f = diag (un+1(x) , vn+1(y)) , n ≥ 1,

where

un+1(x) =
p′(x)

2

(
ln

p′2(x)
un(x)

)′
, vn+1(y) =

r′(y)
2

(
ln

r′2(y)
vn(y)

)′
,

and u1, v1 are given by (14).
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? problem 3. Given f : R2 → R an arbitrary function, introduce new exam-
ples of k-self-concordant functions [7], defined on the Riemannian manifold (R2, ḡ).

Using the background in [7], we find:
1) If g(x) = e2x, then f(x, y) = ex is k-self-concordant;

2) If g(x) =
1
x2

, x > 0, then f(x, y) = lnx is k-self-concordant.
The above two examples suggest to consider the function f depending on the

variable x only.
We introduce without proof the result in the following, a proof of this result

will be given in a forthcoming work.

Proposition 3.1. Let us consider f(x, y) := f(x) and denote p =
1
f ′

(
f ′2

g

)′
. The

function f is k-self-concordant if and only if p > 0 and p′2 ≤ 2k2gp3.

In our work [6], the reader can find applications of this criterion in finding
new classes of self-concordant functions.

4. Conclusion and further development

In this work, we showed that the geodesics of a flat Riemannian space are
transversal to the constant level manifold. Next, we introduced some advances on
Hessian structures. We solved the problem of finding 2D Riemannian manifolds
[3], [5], [28] with the property that the original metric and the associated Hessian
metric give rise to the same connection, but the problem is still open for other
classes of manifolds. For this case study, we indicate two wide classes of Hessian
metrics having this property. We also initiated a research on iterative 2D Hessian
structures, strongly required in Optimization, [25], and found a new relevant class of
self-concordant functions. The results of our work give an up to date link between
differential geometry and applied (experimental) sciences, see [1] by S. Amari for
geometrical methods in Statistics, [2] by P. L. Antonelli for mathematical modeling
in Ecology, [11] by J. Donato for geometrical methods in Information Theory, [25]
by Constantin Udrişte for Optimization Methods on Manifolds. Regarding different
but related viewpoints, the authors address the reader to these treatises and to the
research works [9], [10], [13], [14], [18], [26], [29] as well.
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