

A NOTE ON THE NUMBER OF PARTITIONS OF n INTO k PARTS

Mircea Cimpoeas¹

We prove new formulas and congruences for $p(n, k) :=$ the number of partitions of n into k parts and $q(n, k) :=$ the number of partitions of n into k distinct parts. Also, we give lower and upper bounds for the density of the set $\{n \in \mathbb{N} : p(n, k) \equiv i \pmod{m}\}$, where $m \geq 2$ and $0 \leq i \leq m-1$.

Keywords: Restricted integer partitions, Restricted partition function.

MSC2010: 11P81, 11P83.

1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers whose sum equals n . We define $p(n)$ as the number of partitions of n and for convenience, we define $p(0) = 1$. Let $p(n, k)$ be the number of partitions of n with exactly k summands. Let $q(n, k)$ be the number of partitions of n with k distinct parts and let $q(n)$ total number of partitions of n with distinct parts. For instance, there are 5 partitions of 8 with three summands $1+1+6$, $1+2+5$, $1+3+4$, $2+2+4$, $2+3+3$, hence $p(8, 3) = 5$ and $q(8, 3) = 2$. Obviously, $p(n, k) = 0$ if and only if $n < k$. Also, $q(n, k) = 0$ if and only if $n < k + \binom{k}{2}$. Moreover, $p(n) = \sum_{k=1}^n p(n, k)$ and $q(n) = \sum_{k=1}^n q(n, k)$. The function $p(n, k)$ was studied extensively in the literature; see for instance [8]. However, there is no known closed form for $p(n, k)$.

Let $\mathbf{a} = (a_1, \dots, a_k)$ be a sequence of positive integers and let $p_{\mathbf{a}}(n)$ be the restricted partition function associated to \mathbf{a} ; see Section 2. In Theorem 3.2, we prove new formulas for $p(n, k)$ and $q(n, k)$, using their intrinsic connection with the restricted partition function associated to the sequence $\mathbf{k} := (1, 2, \dots, k)$. In Proposition 3.3, we give another formulas for $p(n, 3)$ and $q(n, 3)$. In [5] we proved that if a certain determinant is nonzero, then the restricted partition function $p_{\mathbf{a}}(n)$ can be computed by solving a system of linear equations with coefficients which are values of Bernoulli polynomials and Bernoulli Barnes numbers. Using a similar method, we prove that if a certain determinant $\Delta(k)$, which depends only on k , is nonzero, then $p(n, k)$ and $q(n, k)$ can be

¹Associated Professor, Faculty of Applied Sciences, University “Politehnica” of Bucharest, Romania and, Researcher, Institute of Mathematics of the Romanian Academy, Bucharest, Romania, e-mail: mircea.cimpoeas@upb.ro

expressed in terms of values of Bernoulli polynomials and Bernoulli Barnes numbers; see Theorem 3.4.

In Theorem 4.2, respectively in Corollary 4.3, we provide formulas for $P(n, k) =$ the polynomial part of $p(n, k)$, respectively for $Q(n, k) =$ the polynomial part of $q(n, k)$. In Proposition 5.2 we prove formulas for the "waves" of $p(n, k)$ and $q(n, k)$, defined analogously as the Sylvester "waves" (see [11],[12]) of the restricted partition function $p_{\mathbf{k}}(n)$.

In Proposition 6.1 we give new formulas for $p(n, k)$ and $q(n, k)$ in terms of coefficients of a reciprocal polynomial and, as a consequence, in Corollary 6.2, we prove some congruence relations for $p(n, k)$ and $q(n, k)$. In a recent preprint [9], K. Grajdzica found lower and upper bounds for the density of the set $\{n \in \mathbb{N} : p_{\mathbf{a}}(n) \equiv i(\text{mod } m)\}$ for a fixed integer $0 \leq i \leq m - 1$. Using this, we prove lower and upper bounds for the density of the set $\{n \in \mathbb{N} : p(n, k) \equiv i(\text{mod } m)\}$; see Theorem 6.3.

2. Preliminaries

Let $\mathbf{a} := (a_1, a_2, \dots, a_k)$ be a sequence of positive integers, $k \geq 1$. The *restricted partition function* associated to \mathbf{a} is $p_{\mathbf{a}} : \mathbb{N} \rightarrow \mathbb{N}$, $p_{\mathbf{a}}(n) :=$ the number of integer solutions (x_1, \dots, x_k) of $\sum_{i=1}^k a_i x_i = n$ with $x_i \geq 0$. Note that the generating function of $p_{\mathbf{a}}(n)$ is

$$\sum_{n=0}^{\infty} p_{\mathbf{a}}(n) z^n = \frac{1}{(1 - z^{a_1}) \cdots (1 - z^{a_r})}. \quad (2.1)$$

Let D be a common multiple of a_1, a_2, \dots, a_k . Bell [3] has proved that $p_{\mathbf{a}}(n)$ is a quasi-polynomial of degree $k - 1$, with the period D , i.e.

$$p_{\mathbf{a}}(n) = d_{\mathbf{a}, k-1}(n) n^{k-1} + \cdots + d_{\mathbf{a}, 1}(n) n + d_{\mathbf{a}, 0}(n), \quad (2.2)$$

where $d_{\mathbf{a}, m}(n + D) = d_{\mathbf{a}, m}(n)$ for $0 \leq m \leq k - 1$ and $n \geq 0$, and $d_{\mathbf{a}, k-1}(n)$ is not identically zero. Sylvester [11],[12] decomposed the restricted partition in a sum of "waves":

$$p_{\mathbf{a}}(n) = \sum_{j \geq 1} W_j(n, \mathbf{a}), \quad (2.3)$$

where the sum is taken over all distinct divisors j of the components of \mathbf{a} and showed that for each such j , $W_j(n, \mathbf{a})$ is the coefficient of t^{-1} in

$$\sum_{0 \leq \nu < j, \gcd(\nu, j) = 1} \frac{\rho_j^{-\nu n} e^{nt}}{(1 - \rho_j^{\nu a_1} e^{-a_1 t}) \cdots (1 - \rho_j^{\nu a_k} e^{-a_k t})},$$

where $\rho_j = e^{\frac{2\pi i}{j}}$ and $\gcd(0, 0) = 1$ by convention. Note that $W_j(n, \mathbf{a})$'s are quasi-polynomials of period j . Also, $W_1(n, \mathbf{a})$ is called the *polynomial part* of $p_{\mathbf{a}}(n)$ and it is denoted by $P_{\mathbf{a}}(n)$.

It is well known that $p(n, k)$, the number of partitions of n with exactly k summands, equals to the number of partitions of n whose largest part is k .

It follows that

$$p(n, k) = \begin{cases} p_{(1,2,\dots,k)}(n-k), & n \geq k \\ 0, & n < k \end{cases}. \quad (2.4)$$

There is a 1-to-1 correspondence between the partitions of n with k distinct parts and the partitions of $n - \binom{k}{2}$ with k parts, given by

$$a_1 < a_2 < \dots < a_k \mapsto a_1 \leq a_2 - 1 \leq \dots \leq a_k - (k-1).$$

Hence

$$q(n, k) = \begin{cases} p(n - \binom{k}{2}, k), & n \geq k + \binom{k}{2} \\ 0, & n < k + \binom{k}{2} \end{cases}. \quad (2.5)$$

From (2.1), (2.4) and (2.5) it follows that

$$\sum_{n=0}^{\infty} p(n, k) z^n = \frac{z^k}{(1-z)(1-z^2)\cdots(1-z^k)}, \quad \sum_{n=0}^{\infty} q(n, k) z^n = \frac{z^{k+\binom{k}{2}}}{(1-z)(1-z^2)\cdots(1-z^k)},$$

are the generating functions for $p(n, k)$ and $q(n, k)$ respectively.

3. Main results

Let D_k be the least common multiple of $1, 2, \dots, k$.

Proposition 3.1. *We have that*

$$p(n, k) = f_{k, k-1}(n)n^{k-1} + \dots + f_{k, 1}(n)n + f_{k, 0}(n) \text{ for all } n \geq k,$$

where $f_{k, m}(n) = d_{k, m}(n - k)$, and $\mathbf{k} = (1, 2, \dots, k)$.

Proof. It follows from (2.2) and (2.4). \square

Theorem 3.2. (1) For $n \geq k$ we have that:

$$p(n, k) = \frac{1}{(k-1)!} \sum_{\substack{0 \leq j_1 \leq \frac{D_k}{1}-1, \dots, 0 \leq j_k \leq \frac{D_k}{k}-1 \\ j_1+2j_2+\dots+kj_k \equiv (n-k) \pmod{D_k}}} \prod_{\ell=1}^{k-1} \left(\frac{n-k-j_1-2j_2-\dots-kj_k}{D_k} + \ell \right).$$

(2) For $n \geq k + \binom{k}{2}$ we have that:

$$q(n, k) = \frac{1}{(k-1)!} \sum_{\substack{0 \leq j_1 \leq \frac{D_k}{1}-1, \dots, 0 \leq j_k \leq \frac{D_k}{k}-1 \\ j_1+2j_2+\dots+kj_k \equiv (n-k-\binom{k}{2}) \pmod{D_k}}} \prod_{\ell=1}^{k-1} \left(\frac{n-k-\binom{k}{2}-j_1-2j_2-\dots-kj_k}{D_k} + \ell \right).$$

Proof. (1) The result follows from [4, Corollary 2.10] and (2.4).

(2) It follows from (1) and (2.5). \square

The *unsigned Stirling numbers* $\begin{bmatrix} n \\ k \end{bmatrix}$ are defined by the identity

$$(x)^n := x(x+1)\cdots(x+n-1) = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

The *Bernoulli numbers* B_ℓ 's are defined by the identity

$$\frac{t}{e^t - 1} = \sum_{\ell=0}^{\infty} \frac{t^\ell}{\ell!} B_\ell.$$

$B_0 = 1$, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_4 = -\frac{1}{30}$ and $B_n = 0$ is n is odd and $n \geq 1$.

Proposition 3.3. (1) For $n \geq 3$, we have that:

$$p(n, 3) = \sum_{m=1}^3 \frac{(-1)^{m-1}}{6(m-1)!} \sum_{i_1+i_2+i_3=2-m} \frac{B_{i_1} B_{i_2} B_{i_3}}{i_1! i_2! i_3!} 2^{i_2} 3^{i_3} (n-3)^{m-1} + \\ + \frac{1}{12} \sum_{j=2}^3 \sum_{\ell=1}^j \rho_j^\ell \sum_{k=0}^2 \frac{1}{6^k} \begin{bmatrix} 3 \\ k+1 \end{bmatrix} \sum_{\substack{0 \leq j_1 \leq 5, 0 \leq j_2 \leq 2, 0 \leq j_3 \leq 1 \\ j_1+2j_2+3j_3 \equiv \ell \pmod{j}}} (j_1 + 2j_2 + 3j_3)^k,$$

where $\rho_j = e^{\frac{2\pi i}{j}}$.

(2) For $n \geq 6$, we have that:

$$q(n, 3) = \sum_{m=1}^3 \frac{(-1)^{m-1}}{6(m-1)!} \sum_{i_1+i_2+i_3=2-m} \frac{B_{i_1} B_{i_2} B_{i_3}}{i_1! i_2! i_3!} 2^{i_2} 3^{i_3} (n-6)^{m-1} + \\ + \frac{1}{12} \sum_{j=2}^3 \sum_{\ell=1}^j \rho_j^\ell \sum_{k=0}^2 \frac{1}{6^k} \begin{bmatrix} 3 \\ k+1 \end{bmatrix} \sum_{\substack{0 \leq j_1 \leq 5, 0 \leq j_2 \leq 2, 0 \leq j_3 \leq 1 \\ j_1+2j_2+3j_3 \equiv \ell \pmod{j}}} (j_1 + 2j_2 + 3j_3)^k,$$

Proof. (1) Since 1, 2, 3 are coprime, the conclusion follows from [6, Proposition 4.3] and the fact that $p(n, 3) = p_{(1,2,3)}(n-3)$ for $n \geq 3$.

(2) Follows from (1) and the fact that $q(n, 3) = p(n-3, 3)$ for $n \geq 6$. \square

The *Bernoulli polynomials* are defined by

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} B_{n-k} x^k.$$

For $\mathbf{a} = (a_1, \dots, a_k)$, the Bernoulli-Barnes numbers (see [1]) are

$$B_j(\mathbf{a}) = \sum_{i_1+\dots+i_j=j} \binom{j}{i_1, \dots, i_k} B_{i_1} \cdots B_{i_k} a_1^{i_1} \cdots a_k^{i_k}.$$

We consider the determinant:

$$\Delta(k) := \begin{vmatrix} \frac{B_1(\frac{1}{D_k})}{1} & \dots & \frac{B_1(1)}{1} & \dots & \frac{B_k(\frac{1}{D_k})}{k} & \dots & \frac{B_k(1)}{k} \\ \frac{B_2(\frac{1}{D_k})}{2} & \dots & \frac{B_2(1)}{1} & \dots & \frac{B_{k+1}(\frac{1}{D_k})}{k+1} & \dots & \frac{B_{k+1}(1)}{k+1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{B_{kD_k}(\frac{1}{D_k})}{kD_k} & \dots & \frac{B_{kD_k}(1)}{kD_k} & \dots & \frac{B_{kD_k+k-1}(\frac{1}{D_k})}{kD_k+k-1} & \dots & \frac{B_{kD_k+k-1}(1)}{kD_k+k-1} \end{vmatrix}.$$

Theorem 3.4. *If $\Delta(k) \neq 0$, then $p(n, k)$ can be computed in terms of $B_j(\frac{v}{D_k})$, $1 \leq v \leq k$, $1 \leq j \leq kD_k$ and $B_j(\mathbf{k})$, $0 \leq j \leq kD_k$, where $\mathbf{k} = (1, 2, \dots, k)$.*

Proof. According to [5, Formula (1.8)], we have that:

$$\sum_{m=0}^{k-1} \sum_{v=1}^{D_k} d_{\mathbf{k},m}(v) D^{n+m} \frac{B_{n+m+1}(\frac{v}{D})}{n+m+1} = \frac{(-1)^{n-1} k!}{(n+k)!} B_{n+k}(\mathbf{k}) - \delta_{0n}, \quad (\forall) n \geq 0, \quad (3.1)$$

where δ_{0n} is the *Kronecker's symbol*. Giving values $0 \leq n \leq kD_k - 1$ in (3.1), and seeing $d_{\mathbf{k},m}(v)$'s as variables, we obtain a system of kD_k linear equations, with the determinant equal to $\pm D_k^N \Delta(k)$ for some integer $N \geq 1$. By hypothesis, $\Delta(k) \neq 0$, hence we can determine $d_{\mathbf{k},m}(v)$ by solving the system. From (2.2), one has

$$p_{\mathbf{k}}(n) = d_{\mathbf{k},k-1}(n)n^{k-1} + \dots + d_{\mathbf{k},1}(n)n + d_{\mathbf{a},0}(n).$$

Hence, the conclusion follows from (2.4) and (2.5). \square

4. The polynomial part of $p(n, k)$ and $q(n, k)$

We recall the following basic facts on quasi-polynomials [10, Proposition 4.4.1]:

Proposition 4.1. *The following conditions on a function $f : \mathbb{N} \rightarrow \mathbb{C}$ and integer $D > 0$ are equivalent.*

- (i) $f(n)$ is a quasi-polynomial of period D .
- (ii) $\sum_{n=0}^{\infty} f(n)z^n = \frac{L(z)}{M(z)}$, where $L(z), M(z) \in \mathbb{C}[z]$, every zero λ of $M(z)$ satisfies $\lambda^D = 1$ (provided $\frac{L(z)}{M(z)}$ has been reduced to lowest terms), and $\deg L(z) < \deg M(z)$.
- (iii) For all $n \geq 0$, $f(n) = \sum_{\lambda^D=1} F_{\lambda}(n)\lambda^{-n}$, where each $F_{\lambda}(n)$ is a polynomial function. Moreover, $\deg F_{\lambda}(n) \leq m(\lambda) - 1$, where $m(\lambda)$ = multiplicity of λ as a root of $M(z)$.

We define the *polynomial part* of $f(n)$ to be the polynomial function $F(n) = F_1(n)$, with the notation of Proposition 4.1. The polynomial part $F(n)$ of a quasi-polynomial $f(n)$ gives a rough approximation of $f(n)$, which is useful for studying the asymptotic behaviour of $f(n)$, when $n \gg 0$. If $\mathbf{a} = (a_1, \dots, a_k)$ is a sequence of positive integers and $p_{\mathbf{a}}(n)$ is the restricted partition function associated to \mathbf{a} , we denote $P_{\mathbf{a}}(n)$, the polynomial part of $p_{\mathbf{a}}(n)$. Several formulas of $P_{\mathbf{a}}(n)$ were proved in [2], [7] and [4].

We consider the following functions:

$$P(n, k) = P_{(1,2,\dots,k)}(n - k), \quad n \geq k,$$

$$Q(n, k) = P_{(1,2,\dots,k)}\left(n - k - \binom{k}{2}\right), \quad n \geq k + \binom{k}{2},$$

and we called them, the *polynomial part* of $p(n, k)$ and $q(n, k)$, respectively.

Theorem 4.2. For $n \geq k$, we have that:

$$(1) P(n, k) = \frac{1}{D_k(k-1)!} \sum_{0 \leq j_1 \leq \frac{D_k}{1}-1, \dots, 0 \leq j_k \leq \frac{D_k}{k}-1} \prod_{\ell=1}^{k-1} \left(\frac{n - k - j_1 - 2j_2 - \dots - kj_k}{D_k} + \ell \right).$$

$$(2) P(n, k) = \frac{1}{k!} \sum_{u=0}^{k-1} \frac{(-1)^u}{(k-1-u)!} \sum_{i_1+\dots+i_k=u} \frac{B_{i_1} \cdots B_{i_k} 1^{i_1} \cdots k^{i_k} (n-k)^{k-1-u}}{i_1! \cdots i_k!}.$$

Proof. (1) It follows from [4, Corollary 3.6] and (2.4). See also [7, Theorem 1.1].

(2) It follows from [4, Corollary 3.11] and (2.4). See also [2, p.2]. \square

Corollary 4.3. For $n \geq k + \binom{k}{2}$, we have that:

$$(1) Q(n, k) = \frac{1}{D_k(k-1)!} \sum_{0 \leq j_1 \leq \frac{D_k}{1}-1, \dots, 0 \leq j_k \leq \frac{D_k}{k}-1} \prod_{\ell=1}^{k-1} \left(\frac{n - k - \binom{k}{2} - j_1 - 2j_2 - \dots - kj_k}{D_k} + \ell \right).$$

$$(2) Q(n, k) = \frac{1}{k!} \sum_{u=0}^{k-1} \frac{(-1)^u}{(k-1-u)!} \sum_{i_1+\dots+i_k=u} \frac{B_{i_1} \cdots B_{i_k} 1^{i_1} \cdots k^{i_k} \left(n - k - \binom{k}{2} \right)^{k-1-u}}{i_1! \cdots i_k!}.$$

Proof. It follows from Theorem 4.2 and (2.5). \square

5. The Sylvester waves of $p(n, k)$ and $q(n, k)$

Let $\mathbf{k} := (1, 2, \dots, k)$. According to (2.3), the restricted partition function $p_{\mathbf{k}}(n)$ can be written as a sum of "waves", $p_{\mathbf{k}}(n) = \sum_{j=1}^k W_j(n, \mathbf{k})$. We define the functions

$$W_j(n, k) = W_j(n - k, \mathbf{k}), \quad n \geq k, \quad (5.1)$$

$$\widetilde{W}_j(n, k) := W_j(n - k - \binom{k}{2}, \mathbf{k}), \quad n \geq k + \binom{k}{2}, \quad (5.2)$$

and we call them the "waves" of $p(n, k)$ and $q(n, k)$, respectively.

Remark 5.1. Note that $P(n, k) = W_1(n, k)$ and $Q(n, k) = \widetilde{W}_1(n, k)$ are the polynomial parts of $p(n, k)$ and $q(n, k)$.

Proposition 5.2. (1) For any positive integers $1 \leq j \leq k \leq n$, we have that:

$$W_j(n, k) = \frac{1}{D_k(k-1)!} \sum_{m=1}^k \sum_{\ell=1}^j \rho_j^\ell \sum_{t=m-1}^{k-1} \binom{k}{t+1} (-1)^{t-m+1} \binom{t}{m-1} \cdot \sum_{\substack{0 \leq j_1 \leq D_k-1, \dots, 0 \leq j_k \leq \frac{D_k}{k}-1 \\ j_1+\dots+kj_k \equiv \ell \pmod{j}}} D_k^{-t} (j_1 + \dots + kj_k)^{t-m+1} (n-k)^{m-1}.$$

(2) For any positive integers $1 \leq j \leq k$ and $n \geq k + \binom{k}{2}$, we have that:

$$\begin{aligned} \widetilde{W}_j(n, k) = & \frac{1}{D_k(k-1)!} \sum_{m=1}^k \sum_{\ell=1}^j \rho_j^\ell \sum_{t=m-1}^{k-1} \binom{k}{t+1} (-1)^{t-m+1} \binom{t}{m-1} \cdot \\ & \cdot \sum_{\substack{0 \leq j_1 \leq D_k-1, \dots, 0 \leq j_k \leq \frac{D_k}{k}-1 \\ j_1 + \dots + k j_k \equiv \ell \pmod{j}}} D_k^{-t} (j_1 + \dots + k j_k)^{t-m+1} (n - k - \binom{k}{2})^{m-1}. \end{aligned}$$

Proof. (1) It follows from [6, Proposition 4.2] and (5.1).

(1) It follows from [6, Proposition 4.2] and (5.2). \square

6. New formulas and congruences for $p(n, k)$ and $q(n, k)$

We consider the function:

$$f(n, k) := \#\{(j_1, \dots, j_k) : j_1 + 2j_2 + \dots + k j_k = n, 0 \leq j_i \leq \frac{D_k}{i} - 1, 1 \leq i \leq k\},$$

where D_k is the least common multiple of $1, 2, \dots, k$. Let $d_k := kD_k - \binom{k+1}{2}$. Note that $f(n, k) = f(d-n, k)$, for $0 \leq n \leq d$, and $f(n, k) = 0$ for $n \geq d+1$. It follows that $F(n, k) = \sum_{\ell=0}^{d_k} f(n, k) x^\ell$ is a reciprocal polynomial. With the above notations we have:

Proposition 6.1. (1) For $n \geq k$ we have that:

$$p(n, k) = \sum_{j=\left\lceil \frac{n+\binom{k}{2}}{D_k} \right\rceil - k}^{\left\lfloor \frac{n-k}{D_k} \right\rfloor} \binom{k+j-1}{j} f(n - k - jD_k).$$

(2) For $n \geq k + \binom{k}{2}$ we have that:

$$q(n, k) = \sum_{j=\left\lceil \frac{n}{D_k} \right\rceil - k}^{\left\lfloor \frac{n-k-\binom{k}{2}}{D_k} \right\rfloor} \binom{k+j-1}{j} f(n - k - \binom{k}{2} - jD_k).$$

Proof. (1) It follows from [6, Proposition 2.2], [6, Corollary 2.3] and (2.4).

(2) It follows from (1) and (2.5). \square

Corollary 6.2. (1) For $n \geq k$ we have that:

$$(k-1)!p(n, k) \equiv 0 \pmod{(j+\ell+1)(j+\ell+2)\cdots(j+k-1)},$$

$$\text{where } \ell = \left\lfloor \frac{n-k}{D_k} \right\rfloor - \left\lceil \frac{n+\binom{k}{2}}{D_k} \right\rceil + k.$$

(2) For $n \geq k + \binom{k}{2}$ and $\ell' = \left\lfloor \frac{n-k-\binom{k}{2}}{D_k} \right\rfloor - \left\lceil \frac{n}{D_k} \right\rceil + k$ we have that:

$$(k-1)!q(n, k) \equiv 0 \pmod{(j+\ell'+1)(j+\ell'+2)\cdots(j+k-1)},$$

Theorem 6.3. (1) *The inequality $\lim_{N \rightarrow \infty} \frac{\#\{n \leq N : p(n, k) \equiv 1 \pmod{2}\}}{N} \leq \frac{2}{3}$, holds for infinitely many positive integers k . Moreover, if the above inequality is not satisfied for some positive integers k , then it holds for $k + 1$.*

(2) *Let $m > 1$ be a positive integer. For each positive integer k we have*

$$\lim_{N \rightarrow \infty} \frac{\#\{n \leq N : p(n, k) \not\equiv 0 \pmod{m}\}}{N} \geq \frac{1}{\binom{k+1}{2}}.$$

The above results hold if we replace $p(n, k)$ with $q(n, k)$.

Proof. (1) Since $p(n, k) = p_{\mathbf{k}}(n - k)$ for $n \geq k$, where $\mathbf{k} = (1, 2, \dots, k)$, the result follows from [9, Theorem 4.2]. (2) Follows from [9, Theorem 5.2]. The asymptotic behavior is the same if we replace $p_{\mathbf{k}}(n)$ with $p(n, k)$ or $q(n, k)$. \square

7. Conclusions

We proved new formulas and congruences for $p(n, k)$ (and $q(n, k)$), the number of partitions of n into k parts (into k distinct parts), and their polynomial parts. Also, we gave lower and upper bounds for the density of the set $\{n \in \mathbb{N} : p(n, k) \equiv i \pmod{m}\}$. Our method can be adapted for other partition functions.

REFERENCES

- [1] E. W. Barnes, *On the theory of the multiple gamma function*, Trans. Camb. Philos. Soc. **19** (1904), 374–425.
- [2] M. Beck, I. M. Gessel, T. Komatsu, *The polynomial part of a restricted partition function related to the Frobenius problem*, Electronic Journal of Combinatorics **8**, no. 1 (2001), N 7 (5 pages).
- [3] E. T. Bell, *Interpolated denumerants and Lambert series*, Am. J. Math. **65** (1943), 382–386.
- [4] M. Cimpoeaş, F. Nicolae, *On the restricted partition function*, Ramanujan J. **47**, no. 3, (2018), 565–588.
- [5] M. Cimpoeaş, *On the restricted partition function via determinants with Bernoulli polynomials*, Mediterranean J. of Math. **17**, no. 2 (2020), Paper No. 51, 19 pp.
- [6] M. Cimpoeaş, *Remarks on the restricted partition function*, Math. Reports **23(73)** no. 4(2021), 425–436.
- [7] K. Dilcher, C. Vignat, *An explicit form of the polynomial part of a restricted partition function*, Res. Number Theory **3(1)** (2017), Paper No. 1, 12 pp.
- [8] J. Intrator, *Partitions I*, Czechoslovak Math. J. **18(93)** (1968), 16–24.
- [9] K. Gajdzica, *A note on the restricted partition function $p_{\mathcal{A}}(n, k)$* , Discrete Math. **345** no. 9 (2022), Paper No. 112943, 16 pp.
- [10] R. P. Stanley, *Enumerative Combinatorics*, Vol. 1, Wadsworth and Brooks/Cole, Monterey, California, 1986.
- [11] J. J. Sylvester, *On the partition of numbers*, Quart. J. Pure Appl. Math. **1** (1857), 141–152.
- [12] J. J. Sylvester, *On subinvariants, i.e. semi-invariants to binary quantities of an unlimited order with an excursus on rational fractions and partitions*, Am. J. Math. **5** (1882), 79–136.