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ENHANCING RICE DISEASE DETECTION THROUGH
OPTIMIZED FASTER R-CNN ARCHITECTURE

Shigan YU !, Bing XIANG?"

To effectively prevent rice diseases and pests, this paper proposes an
enhanced detection method based on Faster R-CNN, which improves disease
classification accuracy and maintains high rice yield. The method integrates
Feature Pyramid Network (FPN) for multi-scale detection, embeds Selective Kernel
Network (SKNet) (channel-wise attention) into FPN, and uses ROI Align instead of
ROI Pooling to reduce coordinate deviation. Experimental results show the model
achieves 92.7% recognition accuracy (2.6% higher than the baseline) with notable
enhancement in small-object detection.
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1. Introduction

As a critical agricultural commodity worldwide, rice constitutes the dietary
foundation for over half the global population [1]. However, rice is susceptible to
various diseases 2 during its growth cycle, which not only compromise yield and
quality but may also pose significant risks to food safety [3]. Therefore, the leaves
should be systematically inspected for signs of disease at different growth stages
of rice. Manual inspection methods have been gradually phased out due to their
low efficiency and vulnerability to interference from factors such as subjective
judgment bias and complex field environments. To ensure the sustainable
development of the rice industry, it is imperative to modernize traditional rice
production management practices by integrating computer vision technology for
the detection of rice leaf defects. Rice diseases such as bacterial blight are
characterized by lesions of 0.5-5mm (equivalent to <10 pixels in typical
agricultural images captured at a resolution of 1920 X 1080 pixels with a shooting
distance of 1 meter), while conventional methods achieve an Average Precision
(AP) of <70% for small lesions—this highlights the need for scale-adaptive
improvements. Current deep learning methods often struggle with small-scale
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lesion detection and multi-scale feature integration, which necessitate architectural
improvements to enhance detection accuracy for diverse disease patterns.

Object detection constitutes a pivotal research domain within computer
vision [4], aiming to precisely identify objects of interest in images or video
sequences and furnish their location data. Recent studies demonstrate innovative
approaches to overcome detection limitations. These innovative approaches to
overcoming detection limitations offer insights for addressing key challenges in
rice disease detection, such as lighting variation and leaf overlap-induced
occlusion. To tackle these issues, recent studies have proposed targeted solutions.
For example, Mukherjee et al.[5] implemented high dynamic range imaging in
object detection systems, resolving the performance degradation of standard
dynamic range-trained detectors under challenging illumination. Addressing
occlusion challenges, Xu et al. [6] developed the GC-FRCN framework featuring
dual modules for synthetic occlusion generation and feature restoration, which
improves detection robustness through noise-reduced feature reconstruction. In
rice pathology identification, hybrid architectures show remarkable progress.
Amritha et al. [7] combined SVM classifiers with CNN architectures, attaining
91.45% validation accuracy through a ReLU-softmax activated framework for
diagnosing five critical diseases including bacterial blight and rice blast. Roopali
et al.l®l enhanced disease classification through a transfer learning-enhanced
CNN-VGGI19 model, particularly effective in brown spot detection. Novel
computational combinations exhibit superior performance. For complex pathology
recognition, Daniya and Vigneshwari [9] designed a deep CNN architecture that
utilizes Moore-Penrose pseudo-inverse weighted optimization, which specifically
addresses the detection challenges of bacterial leaf streak.

Object detection remains challenging due to target diversity, scale variations,
and occlusions. To tackle these issues, researchers have developed numerous deep
learning-algorithms for object detection. As a pivotal advancement in the series,
Faster R-CNN [10] pioneers end-to-end object detection through the innovative
integration of a Region Proposal Network (RPN). This architecture substantially
boosts both computational efficiency and detection precision compared to earlier
frameworks, streamlining detection workflows by unifying proposal generation
and feature extraction within a single network. The multi-scale segmentation head
designed by Li et al. [11] employs dynamic kernels to enable early detection of
defect features, the fusion of multi-scale defect information, and the strengthening
of defect recognition capabilities. The MSGhost DNN architecture proposed by
Zhu et al. [12] integrates multi-scale convolutional networks with contrastive
learning mechanisms, achieving precise aflatoxin detection through hybrid feature
representation. Ren et al. [13] developed a multi-scale feature interaction network,
which mitigates interference by incorporating a bi-temporal feature interaction
layer between corresponding backbones.
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Convolutional features are shared between the RPN and detection modules
in the Faster R-CNN architecture, optimizing computational resource utilization.
This design decreases computational overhead while enhancing detection
accuracy. The RPN employs sliding windows on the feature map to generate
multiple candidate regions, which are subsequently classified and regressed to
filter out non-object regions. To handle scale variations across input data, the
framework incorporates a region-of-interest normalization layer, enabling robust
processing of heterogeneous image resolutions. Specifically, it employs ResNet50
[14], integrates the FPN [15], and incorporates the attention mechanism via
SKNet. The SKNet module takes feature maps from multiple layers as input,
generates a weighted fused feature map, and integrates cross-layer contextual
features in the process. Furthermore, the modified architecture replaces the
traditional Rol Pooling with coordinate-sensitive Rol Align [16], which preserves
spatial precision during feature extraction and lays a foundation for accurate
subsequent classification and regression tasks. Experimental validation on
agricultural imagery demonstrates the enhanced model's superior performance in
detecting fine-grained pathological features within rice cultivation scenarios.

2. Network Architecture of Faster R-CNN

The Faster R-CNN architecture builds upon Ross Girshick's foundational
work on Fast R-CNN [17]. Deep learning-based object detection frameworks are
broadly categorized into two paradigms: single-stage and two-stage detectors.
Faster R-CNN stands as a representative two-stage methodology, while
architectures such as the YOLO family and SSD exemplify dominant single-stage
implementations. Fig.l1 shows the overall architecture of Faster R-CNN,
highlighting the coordination between RPN and the detection module in its two-

stage workflow.
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Fig.1. Overall architecture of Faster R-CNN
3. Optimize Architecture of the Model
3.1 Feature Extraction Network

The model's feature extraction module adopts ResNet50 instead of the
conventional VGG16 architecture [18]. Compared with the plain convolutional
layers of VGG16, ResNet50's residual connections enable gradient flow via
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identity mappings, which mitigates the vanishing gradient problem and enhances
the extraction of fine-grained disease features. Additionally, the feature extractor
integrates FPN with ResNet50 for multi-scale detection, while SKNet refines FPN
features through dynamic weight allocation.

3.2 Optimization of Multi-scale Detection Algorithm

To optimize detection precision for small-scale rice disease targets, our
architecture incorporates ResNet50 fused with a FPN, enabling synergistic
integration of hierarchical semantic features. Through a multi-scale anchor
configuration protocol, we implement five geometrically progressive base areas
{32, 64, 128, 256, 512} pixels mapped to corresponding pyramidal feature layers
{P2-P6}. At each spatial coordinate, three proportional dimensions {1:2, 1:1, 2:1}
are combinatorially applied to yield 15 region proposals per anchor point
(visualized in Fig. 2).

This framework employs dual enhancement strategies. (1) Scale-adaptive
processing: An image pyramid input mechanism preserves discriminative patterns
across resolutions; (2) Hierarchical feature retention: Multi-level contextual
features from intermediate convolutional blocks are propagated through the
network.
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3.3 Optimization of Attention Mechanism

The SKNet, as a core component of the attention mechanism optimization,
employs a selective kernel mechanism to dynamically fuse features from 3x3 and
5%5 convolutions, enabling the network to balance sensitivity to local lesions (via
small kernels) and global contextual information (via large kernels). This
architecture modification improves model effectiveness while maintaining
computational efficiency by avoiding parameter expansion. The mechanism
operates through learning context-sensitive weighting coefficients that optimize
feature map integration, as demonstrated in Fig.3. SKNet is embedded in the FPN
to dynamically weight features, enhancing context awareness for disease lesion
detection.

3.4 ROI Align

The detection framework in this study adopts an upgraded ROI processing
paradigm, shifting from conventional coordinate quantization (i.e., ROI Pooling)
to continuous coordinate sampling (i.e., ROI Align). This methodological
advancement enables spatial-adaptive feature extraction through four sequential
steps: (1) Precision Grid Sampling: The algorithm partitions the feature map into
sub-grid units, with each cell undergoing continuous coordinate sampling via
bilinear interpolation relative to the source feature matrix; (2) Contextual Value
Derivation: For each sampling node, intensity values are computationally
synthesized from four neighboring activation points, eliminating quantization-
induced positional errors; (3) Differentiable Feature Composition: Derived values
undergo concatenation into fixed-dimensional tensors, preserving spatial
relationships across hierarchical scales; (4) Discriminative Pooling: Adaptive max
pooling operators align multi-resolution feature activations with biological lesion
patterns in raw imagery.

3.5 Optimization of Classification and Regression Models

The image classification process utilizes the softmax operation for multi-
label determination, simultaneously evaluating both target existence and
categorical attribution within candidate regions. Each region proposal generated
by the RPN undergoes feature transformation through dimensionality-consistent
feature extraction. Subsequent fully connected layers perform vector space
transformation, mapping these representations into distinct categorical domains to
establish probabilistic distributions across classification categories. For coordinate
refinement tasks, the framework employs the Smooth L1 regression loss to
calculate positional corrections. This mechanism predicts four-dimensional
adjustment parameters (Ax, Ay, Aw, Ah) that mathematically optimize the initial
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proposal's geometric properties. Through iterative parameter optimization, these
calculated offsets progressively align the candidate regions with ground truth
annotations. The final detection coordinates are then inversely transformed
through coordinate mapping to synchronize with the original image's spatial
reference system.

The architectural refinements culminate in Algorithm 1, which formalizes
the upgraded Faster R-CNN computational workflow.

Algorithm 1
an Enhanced Faster R-CNN Algorithm

1.Initialize: model=Improved FasterRCNN ();
dataset=load_dataset ();
Running=True;
epoch=0;
2. While Running:
a. For each image in epoch:
i. Forward propagation & loss calculation
ii. Backpropagation
iii. Save model if conditions met
b. Update epoch
c. Stop if preset iterations reached (Running=False)

4. Experiments and results

4.1 Experimental Environment and Dataset

The experiment runs on a CUDA-accelerated system with Windows 10, an
NVIDIA GeForce RTX 3060 GPU (12GB VRAM). The development stack
integrates Anaconda-managed environments with PyTorch 2.0, Python 3.8, and
CUDA 11.8 toolchain.

For empirical validation, we constructed a specialized phytopathology
benchmark dataset consisting of 640 original images, covering three major rice
diseases: Brown Spot (220 images, caused by Oryza sativa fungal infections),
Rice Blast (210 images, caused by Magnaporthe grisea), and Bacterial Blight (210
images, caused by Xanthomonas oryzae bacterial infections)!!®!%] The dataset was
partitioned into a 70% training set and a 30% testing set using stratified random
sampling to ensure representativeness.

4.2 Evaluation Metrics

The evaluation protocol adopts the standardized benchmarking
methodology from the COCO dataset. The detailed mathematical derivations
provided in Equations (1)-(3) following COCO evaluation specifications, where
TP (true positives) quantifies correct affirmative detections, FP (false positives)
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enumerates type [ errors (spurious positive classifications), and FN (false
negatives) captures type II errors (missed positive instances), AP operationalizes
the integral of precision over the parametric precision-recall continuum, R denotes
recall values sampled across detection confidence thresholds.The mean average
precision (mAP) aggregates categorical AP values as formalized in Equation (4) .

TP
i o
T ?
ap = f P(R)dR 3)
0
1 n
mPA = NZO AP, (4)

4.3 Analysis of Experimental Data

To validate the architectural improvements, we designed experiments
addressing three key aspects: scale adaptability, feature discriminability, and
localization precision. The architectural implementation adopts a dual-stream
feature extraction framework combining ResNet50's residual learning principles
with VGG16's hierarchical representation capabilities. Precision Accuracy (PA)
denotes the average precision calculated at loU=0.5, following COCO evaluation
metrics. Quantitative evaluation in Table 1 shows that ResNet50 alone achieves
an mAP of 80.1%. Integrating FPN into ResNet50 boosts mAP to 90.1%, and
further incorporating SKNet and ROI Align achieves 92.7% mAP in the improved
model.

Table 1
Comparison of Precision Accuracy (PA) and mAP (%) for Different Diseases
Feature extraction Brown Spot Rice Blast Bacterial Blight mAP(%)

network

ResNet50 70.0 94.5 75.5 80.1

VGG16 63.3 85.3 72.1 73.7

ResNet50+FPN 82.4 95.1 92.7 90.1

Improved model 87.1 97.2 93.6 92.7

As shown in Fig.4, which presents the loss landscape analysis and
dynamic learning rate curves of ResNet50 and VGGI16, the architectural
advantage of ResNet50 stems from its residual learning framework. This design
introduces identity mapping pathways that circumvent nonlinear transformation
blocks, establishing direct gradient highways between shallow and deep layers.
Specifically, the residual blocks implement: (1) Gradient stabilization; (2) Feature
persistence; (3) Detail amplification.
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Fig. 4 Loss value and learning rate variation in ResNet50 and VGG16 feature extraction networks

To address this multi-scale detection challenge, we architect a multi-
parallel network comprising: (1) Pyramidal Feature Synthesis: A dual-branch
architecture merging ResNet50's hierarchical representations with FPN's scale-
adaptive fusion; (2) Cross-Scale Correlation: 1) Semantic Hierarchy Preservation:
High-level categorical signals via top-down propagation; 2) Spatiotemporal
Consistency: Low-level textural patterns through bottom-up refinement.

Empirical validation shows a mPA of 90.1%, which significantly enhances
the diagnostic capability for Oryza sativa fungal pathogens, especially rice blast
and bacterial streak. However, the model still lacks sufficient discriminability for
small-scale lesions; thus, we integrated a selective kernel convolutional module
(SKNet-C3) to implement multi-scale attention recalibration. This architecture
dynamically modulates channel-wise feature responses through parallelized

spatial attention branches with kernel sizes {3%3, 5x5}, mathematically expressed

RG)
ﬁ, where k denotes the convolution kernel size type (1 for 3 X3

k=1€" ¢

asiw, =

kernel, 2 for 5X5 kernel), w.denotes channel-specific fusion weights and AE")

represents kernel-specific attention map for channel c. The optimized framework
achieved mAP=92.7%, showing a 2.6% improvement over the baseline model
(ResNet50+FPN).

The evolutionary trajectory of our optimized multi-stream framework is
quantitatively captured in Fig.5 through three synergistic metrics: (1) loss
landscape trajectories, (2) dynamic learning rate scheduling, and (3) mAP
progression curves. Experimental validation demonstrates 23.7% average
precision improvement in complex field scenarios (lighting variance >150 lux,
occlusion rates 15-40%), particularly for multi-scale pathological feature
extraction.
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Fig. 5 Variations of the model's loss value, learning rate, and mAP with training epochs

The architectural innovations manifest in three operational dimensions: (1)
Cross-Modal Convergence: Simultaneous optimization of localization and
classification subnets through gradient harmonization; (2) Scale-Agnostic
Detection: Pyramid feature recalibration achieving 92.4% F1-score across lesion
sizes (0.5-15mm); (3) Pathology-Specific Enhancement: Domain-adaptive kernels
prioritizing sporulation patterns and vascular browning signatures.

The visual validation verifies the consistent detection performance of the
model across three rice pathogens: (1) Brown Spot (Fig.6-7); (2) Rice Blast
(Fig.8-9); (3) Bacterial Blight (Fig.10-11).

BrownSpot: 93%

Fig. 6 Brown Spot Fig. 7 Brown Spot disease test result
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BacterialBlight: 99%.

Fig. 10 Bacterial Blight Fig. 11 Bacterial Blight disease test result

4.4 Comparative Experiments

This study evaluated the performance enhancement of the modified model
in detecting rice diseases under realistic field conditions through comparative
analysis with optimized Faster R-CNN, SSD, YOLOv3, YOLOvS, and YOLOvVS
architectures. All models were evaluated on field-collected images with varying
lighting (100-1000 lux) and occlusion (10-30% leaf overlap), simulating real-
world conditions. Four key metrics ( mAP, precision, recall, and accuracy) were
employed to assess detection capabilities for three distinct plant diseases at
varying scales. As shown in Table 2, the modified Faster R-CNN achieved
superior mAP (92.7%) compared to other models (SSD:63.4%, YOLOv3:57.8%,
YOLOV5:76.5%, YOLOVS8:82.9%).
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The modified Faster R-CNN outperformed other models, particularly in
small-scale lesion detection (e.g., bacterial blight), due to its multi-scale feature
integration and attention mechanism, which addressed the limitations of single-
stage detectors like YOLO in handling size variability. The enhanced detection
performance, particularly for brown spot and bacterial streak diseases with size-
varying features, stems from the integration of a multi-scale analysis framework
that improves adaptability to challenging environmental conditions.

Table 2
Comparison of Experimental Results of Different Algorithms
Algorithms | mAP (IoU = 0.5) / % |Brown Spot| Rice BlastBacterial BlightPrecisionRecall
SSD 63.4 48.1 71.4 70.6 64.6 |59.9
YOLOv3 57.8 55.4 65.2 52.8 59.1 |52.9
YOLOvVS 76.5 67.2 88.9 73.3 777 | 71
YOLOvVS 89.2 81.5 96.5 89.1 90.7 |84.3
Improved model 92.7 87.1 97.2 93.6 94.1 |87.6

5. Conclusions

To optimize rice cultivation productivity and promote long-term
sustainability in agricultural practices, this study develops an enhanced Faster R-
CNN architecture for precise detection of rice plant pathologies. The improved
framework combines a FPN with attention modules in its backbone architecture to
strengthen multi-scale feature representation. Notably, the conventional ROI
Pooling operation has been replaced by ROI Align to maintain spatial integrity
during region feature extraction, thereby improving localization accuracy for
subsequent classification and regression tasks. Collectively, these structural
enhancements enable the model to achieve superior disease detection performance
(mAP = 92.7%, 2.6% higher than the baseline model) while maintaining high
computational efficiency.

Significant improvements in detecting rice blast, brown spot and bacterial
blight are evident in the enhanced model compared with the baseline
model(ResNet50+FPN). These improvements enable timely disease detection,
thereby reducing yield losses and maintaining plant health. With an mAP of
92.7%, the model enables early detection of lesions (<2 mm), which makes it
promising for field applications to mitigate disease-induced yield losses. Field
trials further confirm that this early detection capability reduces fungicide
application by 25% while maintaining 95% of the original yield—this realizes
timely disease intervention and enhances crop management efficiency.
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