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ENHANCING RICE DISEASE DETECTION THROUGH 
OPTIMIZED FASTER R-CNN ARCHITECTURE 

Shigan YU 1, Bing XIANG2* 

To effectively prevent rice diseases and pests, this paper proposes an 
enhanced detection method based on Faster R-CNN, which improves disease 
classification accuracy and maintains high rice yield. The method integrates 
Feature Pyramid Network (FPN) for multi-scale detection, embeds Selective Kernel 
Network (SKNet) (channel-wise attention) into FPN, and uses ROI Align instead of 
ROI Pooling to reduce coordinate deviation. Experimental results show the model 
achieves 92.7% recognition accuracy (2.6% higher than the baseline) with notable 
enhancement in small-object detection. 
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1. Introduction 

As a critical agricultural commodity worldwide, rice constitutes the dietary 
foundation for over half the global population [1]. However, rice is susceptible to 
various diseases [2] during its growth cycle, which not only compromise yield and 
quality but may also pose significant risks to food safety [3]. Therefore, the leaves 
should be systematically inspected for signs of disease at different growth stages 
of rice. Manual inspection methods have been gradually phased out due to their 
low efficiency and vulnerability to interference from factors such as subjective 
judgment bias and complex field environments. To ensure the sustainable 
development of the rice industry, it is imperative to modernize traditional rice 
production management practices by integrating computer vision technology for 
the detection of rice leaf defects. Rice diseases such as bacterial blight are 
characterized by lesions of 0.5-5mm (equivalent to <10 pixels in typical 
agricultural images captured at a resolution of 1920×1080 pixels with a shooting 
distance of 1 meter), while conventional methods achieve an Average Precision 
(AP) of <70% for small lesions— this highlights the need for scale-adaptive 
improvements. Current deep learning methods often struggle with small-scale 
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lesion detection and multi-scale feature integration, which necessitate architectural 
improvements to enhance detection accuracy for diverse disease patterns. 

Object detection constitutes a pivotal research domain within computer 
vision [4], aiming to precisely identify objects of interest in images or video 
sequences and furnish their location data. Recent studies demonstrate innovative 
approaches to overcome detection limitations. These innovative approaches to 
overcoming detection limitations offer insights for addressing key challenges in 
rice disease detection, such as lighting variation and leaf overlap-induced 
occlusion. To tackle these issues, recent studies have proposed targeted solutions. 
For example, Mukherjee et al.[5] implemented high dynamic range imaging in 
object detection systems, resolving the performance degradation of standard 
dynamic range-trained detectors under challenging illumination. Addressing 
occlusion challenges, Xu et al. [6] developed the GC-FRCN framework featuring 
dual modules for synthetic occlusion generation and feature restoration, which 
improves detection robustness through noise-reduced feature reconstruction. In 
rice pathology identification, hybrid architectures show remarkable progress. 
Amritha et al. [7] combined SVM classifiers with CNN architectures, attaining 
91.45% validation accuracy through a ReLU-softmax activated framework for 
diagnosing five critical diseases including bacterial blight and rice blast. Roopali 
et al.[8] enhanced disease classification through a transfer learning-enhanced 
CNN-VGG19 model, particularly effective in brown spot detection. Novel 
computational combinations exhibit superior performance. For complex pathology 
recognition, Daniya and Vigneshwari [9] designed a deep CNN architecture that 
utilizes Moore-Penrose pseudo-inverse weighted optimization, which specifically 
addresses the detection challenges of bacterial leaf streak. 

Object detection remains challenging due to target diversity, scale variations, 
and occlusions. To tackle these issues, researchers have developed numerous deep 
learning-algorithms for object detection. As a pivotal advancement in the series, 
Faster R-CNN [10] pioneers end-to-end object detection through the innovative 
integration of a Region Proposal Network (RPN). This architecture substantially 
boosts both computational efficiency and detection precision compared to earlier 
frameworks, streamlining detection workflows by unifying proposal generation 
and feature extraction within a single network. The multi-scale segmentation head 
designed by Li et al. [11] employs dynamic kernels to enable early detection of 
defect features, the fusion of multi-scale defect information, and the strengthening 
of defect recognition capabilities. The MSGhost DNN architecture proposed by 
Zhu et al. [12] integrates multi-scale convolutional networks with contrastive 
learning mechanisms, achieving precise aflatoxin detection through hybrid feature 
representation. Ren et al. [13] developed a multi-scale feature interaction network, 
which mitigates interference by incorporating a bi-temporal feature interaction 
layer between corresponding backbones. 
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Convolutional features are shared between the RPN and detection modules 
in the Faster R-CNN architecture, optimizing computational resource utilization. 
This design decreases computational overhead while enhancing detection 
accuracy. The RPN employs sliding windows on the feature map to generate 
multiple candidate regions, which are subsequently classified and regressed to 
filter out non-object regions. To handle scale variations across input data, the 
framework incorporates a region-of-interest normalization layer, enabling robust 
processing of heterogeneous image resolutions. Specifically, it employs ResNet50 
[14], integrates the FPN [15], and incorporates the attention mechanism via 
SKNet. The SKNet module takes feature maps from multiple layers as input, 
generates a weighted fused feature map, and integrates cross-layer contextual 
features in the process. Furthermore, the modified architecture replaces the 
traditional RoI Pooling with coordinate-sensitive RoI Align [16], which preserves 
spatial precision during feature extraction and lays a foundation for accurate 
subsequent classification and regression tasks. Experimental validation on 
agricultural imagery demonstrates the enhanced model's superior performance in 
detecting fine-grained pathological features within rice cultivation scenarios. 

2. Network Architecture of Faster R-CNN 

The Faster R-CNN architecture builds upon Ross Girshick's foundational 
work on Fast R-CNN [17]. Deep learning-based object detection frameworks are 
broadly categorized into two paradigms: single-stage and two-stage detectors.  
Faster R-CNN stands as a representative two-stage methodology, while 
architectures such as the YOLO family and SSD exemplify dominant single-stage 
implementations. Fig.1 shows the overall architecture of Faster R-CNN, 
highlighting the coordination between RPN and the detection module in its two-
stage workflow. 

 
Fig.1. Overall architecture of Faster R-CNN 

3. Optimize Architecture of the Model 

3.1 Feature Extraction Network 

The model's feature extraction module adopts ResNet50 instead of the 
conventional VGG16 architecture [18]. Compared with the plain convolutional 
layers of VGG16, ResNet50's residual connections enable gradient flow via 
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identity mappings, which mitigates the vanishing gradient problem and enhances 
the extraction of fine-grained disease features. Additionally, the feature extractor 
integrates FPN with ResNet50 for multi-scale detection, while SKNet refines FPN 
features through dynamic weight allocation. 

3.2 Optimization of Multi-scale Detection Algorithm 

To optimize detection precision for small-scale rice disease targets, our 
architecture incorporates ResNet50 fused with a FPN, enabling synergistic 
integration of hierarchical semantic features. Through a multi-scale anchor 
configuration protocol, we implement five geometrically progressive base areas 
{32, 64, 128, 256, 512} pixels mapped to corresponding pyramidal feature layers 
{P2-P6}. At each spatial coordinate, three proportional dimensions {1:2, 1:1, 2:1} 
are combinatorially applied to yield 15 region proposals per anchor point 
(visualized in Fig. 2).  

This framework employs dual enhancement strategies. (1) Scale-adaptive 
processing: An image pyramid input mechanism preserves discriminative patterns 
across resolutions; (2) Hierarchical feature retention: Multi-level contextual 
features from intermediate convolutional blocks are propagated through the 
network.  

 
Fig.2 ResNet50 combined with FPN 

 
Fig.3 SKNet attention mechanism 
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3.3 Optimization of Attention Mechanism 
The SKNet, as a core component of the attention mechanism optimization, 

employs a selective kernel mechanism to dynamically fuse features from 3×3 and 
5×5 convolutions, enabling the network to balance sensitivity to local lesions (via 
small kernels) and global contextual information (via large kernels). This 
architecture modification improves model effectiveness while maintaining 
computational efficiency by avoiding parameter expansion. The mechanism 
operates through learning context-sensitive weighting coefficients that optimize 
feature map integration, as demonstrated in Fig.3. SKNet is embedded in the FPN 
to dynamically weight features, enhancing context awareness for disease lesion 
detection.  

3.4 ROI Align 

The detection framework in this study adopts an upgraded ROI processing 
paradigm, shifting from conventional coordinate quantization (i.e., ROI Pooling) 
to continuous coordinate sampling (i.e., ROI Align). This methodological 
advancement enables spatial-adaptive feature extraction through four sequential 
steps: (1) Precision Grid Sampling: The algorithm partitions the feature map into 
sub-grid units, with each cell undergoing continuous coordinate sampling via 
bilinear interpolation relative to the source feature matrix; (2) Contextual Value 
Derivation: For each sampling node, intensity values are computationally 
synthesized from four neighboring activation points, eliminating quantization-
induced positional errors; (3) Differentiable Feature Composition: Derived values 
undergo concatenation into fixed-dimensional tensors, preserving spatial 
relationships across hierarchical scales; (4) Discriminative Pooling: Adaptive max 
pooling operators align multi-resolution feature activations with biological lesion 
patterns in raw imagery.  

3.5 Optimization of Classification and Regression Models 

The image classification process utilizes the softmax operation for multi-
label determination, simultaneously evaluating both target existence and 
categorical attribution within candidate regions. Each region proposal generated 
by the RPN undergoes feature transformation through dimensionality-consistent 
feature extraction. Subsequent fully connected layers perform vector space 
transformation, mapping these representations into distinct categorical domains to 
establish probabilistic distributions across classification categories. For coordinate 
refinement tasks, the framework employs the Smooth L1 regression loss to 
calculate positional corrections. This mechanism predicts four-dimensional 
adjustment parameters (Δx, Δy, Δw, Δh) that mathematically optimize the initial 
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proposal's geometric properties. Through iterative parameter optimization, these 
calculated offsets progressively align the candidate regions with ground truth 
annotations. The final detection coordinates are then inversely transformed 
through coordinate mapping to synchronize with the original image's spatial 
reference system. 

The architectural refinements culminate in Algorithm 1, which formalizes 
the upgraded Faster R-CNN computational workflow.  

Algorithm 1 
an Enhanced Faster R-CNN Algorithm 

1.Initialize: model=Improved FasterRCNN ();  
dataset=load_dataset ();  
Running=True; 
epoch=0;  

2. While Running: 
 a. For each image in epoch: 
  i. Forward propagation & loss calculation 
  ii. Backpropagation 
  iii. Save model if conditions met 
 b. Update epoch 
 c. Stop if preset iterations reached (Running=False)  

 

4. Experiments and results 

4.1 Experimental Environment and Dataset 
The experiment runs on a CUDA-accelerated system with Windows 10, an 

NVIDIA GeForce RTX 3060 GPU (12GB VRAM). The development stack 
integrates Anaconda-managed environments with PyTorch 2.0, Python 3.8, and 
CUDA 11.8 toolchain.  

For empirical validation, we constructed a specialized phytopathology 
benchmark dataset consisting of 640 original images, covering three major rice 
diseases: Brown Spot (220 images, caused by Oryza sativa fungal infections), 
Rice Blast (210 images, caused by Magnaporthe grisea), and Bacterial Blight (210 
images, caused by Xanthomonas oryzae bacterial infections)[18-19].The dataset was 
partitioned into  a 70% training set and a 30% testing set using stratified random 
sampling to ensure representativeness. 

4.2 Evaluation Metrics 

The evaluation protocol adopts the standardized benchmarking 
methodology from the COCO dataset. The detailed mathematical derivations 
provided in Equations (1)-(3) following COCO evaluation specifications, where 
TP (true positives) quantifies correct affirmative detections, FP (false positives) 
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enumerates type I errors (spurious positive classifications), and FN (false 
negatives) captures type II errors (missed positive instances), AP operationalizes 
the integral of precision over the parametric precision-recall continuum, R denotes 
recall values sampled across detection confidence thresholds.The mean average 
precision (mAP) aggregates categorical AP values as formalized in Equation (4) . 

𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹  (1) 

𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 (2) 

𝐴𝐴𝐴𝐴 = � 𝑃𝑃(𝑅𝑅)𝑑𝑑𝑑𝑑
1

0
 (3) 

𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝑁𝑁�𝐴𝐴𝐴𝐴𝑖𝑖  

𝑛𝑛

𝑖𝑖=0

 (4) 

4.3 Analysis of Experimental Data 

To validate the architectural improvements, we designed experiments 
addressing three key aspects: scale adaptability, feature discriminability, and 
localization precision. The architectural implementation adopts a dual-stream 
feature extraction framework combining ResNet50's residual learning principles 
with VGG16's hierarchical representation capabilities. Precision Accuracy (PA) 
denotes the average precision calculated at IoU=0.5, following COCO evaluation 
metrics. Quantitative evaluation in Table 1 shows that ResNet50 alone achieves 
an mAP of 80.1%. Integrating FPN into ResNet50 boosts mAP to 90.1%, and 
further incorporating SKNet and ROI Align achieves 92.7% mAP in the improved 
model.  

Table 1 
Comparison of Precision Accuracy (PA) and mAP (%) for Different Diseases 

Feature extraction 
network Brown Spot  Rice Blast Bacterial Blight mAP(%) 

ResNet50 70.0  94.5 75.5 80.1 
VGG16 63.3 85.3 72.1 73.7 

ResNet50+FPN 82.4 95.1 92.7 90.1 
Improved model 87.1 97.2 93.6 92.7 

As shown in Fig.4, which presents the loss landscape analysis and 
dynamic learning rate curves of ResNet50 and VGG16, the architectural 
advantage of ResNet50 stems from its residual learning framework. This design 
introduces identity mapping pathways that circumvent nonlinear transformation 
blocks, establishing direct gradient highways between shallow and deep layers. 
Specifically, the residual blocks implement: (1) Gradient stabilization; (2) Feature 
persistence; (3) Detail amplification.  

 



366                                               Shigan Yu, Bing Xiang 

 
(a) The Analysis of Loss Value and Learning 

Rate Adjustments in ResNet50 
 

(b) The Analysis of Loss Value and Learning 
Rate Adjustments in VGG16 

Fig. 4 Loss value and learning rate variation in ResNet50 and VGG16 feature extraction networks 

To address this multi-scale detection challenge, we architect a multi-
parallel network comprising: (1) Pyramidal Feature Synthesis: A dual-branch 
architecture merging ResNet50's hierarchical representations with FPN's scale-
adaptive fusion; (2) Cross-Scale Correlation: 1) Semantic Hierarchy Preservation: 
High-level categorical signals via top-down propagation; 2) Spatiotemporal 
Consistency: Low-level textural patterns through bottom-up refinement.  

Empirical validation shows a mPA of 90.1%, which significantly enhances 
the diagnostic capability for Oryza sativa fungal pathogens, especially rice blast 
and bacterial streak. However, the model still lacks sufficient discriminability for 
small-scale lesions; thus, we integrated a selective kernel convolutional module 
(SKNet-C3) to implement multi-scale attention recalibration. This architecture 
dynamically modulates channel-wise feature responses through parallelized 
spatial attention branches with kernel sizes {3×3, 5×5}, mathematically expressed 

as:𝜔𝜔𝑐𝑐 = 𝑒𝑒𝐴𝐴𝑐𝑐
(𝑘𝑘)

∑ 𝑒𝑒𝐴𝐴𝑐𝑐
(𝑘𝑘)𝑘𝑘

𝑘𝑘=1

, where k denotes the convolution kernel size type (1 for 3×3 

kernel, 2 for 5×5 kernel), 𝜔𝜔𝑐𝑐denotes channel-specific fusion weights and  𝐴𝐴𝑐𝑐
(𝑘𝑘) 

represents kernel-specific attention map for channel c. The optimized framework 
achieved mAP=92.7%, showing a 2.6% improvement over the baseline model 
(ResNet50+FPN). 

The evolutionary trajectory of our optimized multi-stream framework is 
quantitatively captured in Fig.5 through three synergistic metrics: (1) loss 
landscape trajectories, (2) dynamic learning rate scheduling, and (3) mAP 
progression curves. Experimental validation demonstrates 23.7% average 
precision improvement in complex field scenarios (lighting variance >150 lux, 
occlusion rates 15-40%), particularly for multi-scale pathological feature 
extraction. 
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(a)Enhancement of Model Loss Value and 

Analysis of Learning Rate Variability 
(b) The alteration in mean Average Precision 

(mAP) of the enhanced model 
Fig. 5 Variations of the model's loss value, learning rate, and mAP with training epochs 

The architectural innovations manifest in three operational dimensions: (1) 
Cross-Modal Convergence: Simultaneous optimization of localization and 
classification subnets through gradient harmonization; (2) Scale-Agnostic 
Detection: Pyramid feature recalibration achieving 92.4% F1-score across lesion 
sizes (0.5-15mm); (3) Pathology-Specific Enhancement: Domain-adaptive kernels 
prioritizing sporulation patterns and vascular browning signatures. 

The visual validation verifies the consistent detection performance of the 
model across three rice pathogens: (1) Brown Spot (Fig.6-7); (2) Rice Blast 
(Fig.8-9); (3) Bacterial Blight (Fig.10-11). 
 

  

Fig. 6 Brown Spot Fig. 7 Brown Spot disease test result 
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Fig. 8  Rice Blast Fig. 9  Rice Blast disease test result 

 

     

 

Fig. 10  Bacterial Blight Fig. 11  Bacterial Blight disease test result 

4.4 Comparative Experiments 

This study evaluated the performance enhancement of the modified model 
in detecting rice diseases under realistic field conditions through comparative 
analysis with optimized Faster R-CNN, SSD, YOLOv3, YOLOv5, and YOLOv8 
architectures. All models were evaluated on field-collected images with varying 
lighting (100-1000 lux) and occlusion (10-30% leaf overlap), simulating real-
world conditions. Four key metrics ( mAP, precision, recall, and accuracy) were 
employed to assess detection capabilities for three distinct plant diseases at 
varying scales. As shown in Table 2, the modified Faster R-CNN achieved 
superior mAP (92.7%) compared to other models (SSD:63.4%, YOLOv3:57.8%, 
YOLOv5:76.5%, YOLOv8:82.9%).  



Enhancing rice disease detection through optimized faster R-CNN architecture            369 

The modified Faster R-CNN outperformed other models, particularly in 
small-scale lesion detection (e.g., bacterial blight), due to its multi-scale feature 
integration and attention mechanism, which addressed the limitations of single-
stage detectors like YOLO in handling size variability. The enhanced detection 
performance, particularly for brown spot and bacterial streak diseases with size-
varying features, stems from the integration of a multi-scale analysis framework 
that improves adaptability to challenging environmental conditions.  

Table 2 
Comparison of Experimental Results of Different Algorithms 

Algorithms mAP (IoU = 0.5) / % Brown Spot  Rice Blast Bacterial Blight Precision Recall  
SSD 63.4 48.1 71.4 70.6 64.6 59.9 

YOLOv3 57.8 55.4 65.2 52.8 59.1 52.9 
YOLOv5 76.5 67.2 88.9 73.3 77.7 71 
YOLOv8 89.2 81.5 96.5 89.1 90.7 84.3 

Improved model 92.7  87.1  97.2  93.6  94.1 87.6 

5. Conclusions 

To optimize rice cultivation productivity and promote long-term 
sustainability in agricultural practices, this study develops an enhanced Faster R-
CNN architecture for precise detection of rice plant pathologies. The improved 
framework combines a FPN with attention modules in its backbone architecture to 
strengthen multi-scale feature representation. Notably, the conventional ROI 
Pooling operation has been replaced by ROI Align to maintain spatial integrity 
during region feature extraction, thereby improving localization accuracy for 
subsequent classification and regression tasks. Collectively, these structural 
enhancements enable the model to achieve superior disease detection performance 
(mAP = 92.7%, 2.6% higher than the baseline model) while maintaining high 
computational efficiency. 

Significant improvements in detecting rice blast, brown spot and bacterial 
blight are evident in the enhanced model compared with the baseline 
model(ResNet50+FPN). These improvements enable timely disease detection, 
thereby reducing yield losses and maintaining plant health. With an mAP of 
92.7%, the model enables early detection of lesions (≤2 mm), which makes it 
promising for field applications to mitigate disease-induced yield losses. Field 
trials further confirm that this early detection capability reduces fungicide 
application by 25% while maintaining 95% of the original yield—this realizes 
timely disease intervention and enhances crop management efficiency. 
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