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THE 1-JET GENERALIZED LAGRANGE GEOMETRY INDUCED
BY THE RHEONOMIC CHERNOV METRIC

Vladimir BALAN', Mircea NEAGU?

Lucrarea studiaza modelul Lagrange Generalizat pentru metrica Chernov
reonomd (cf. [13, 12, 11); [5, 4]), pe spatiul jeturilor de ordinul intdi J* (R, M*).
Sunt determinate ecuatiile de camp gravitational gi electromagnetic asociate,
evidentiindu-se relevanta fizicd a acestora.

The aim of this paper is to develop on the 1-jet space J*(R,M*), the jet
Generalized Lagrange Geometry ([13, 12]) for the rheonomic Chernov metric

Foy(t,9) = VA(D) - {/yivivi + vlvdt +vivivt +viuivt.
The associated gravitational and electromagnetic field equations of the associated
model are determined, and the Physical relevance is emphasized.

Keywords: rheonomic Chernov metric of order three, canonical nonlinear con-
nection, Cartan canonical connection, d—torsions and d—curvatures, geometrical
Einstein equations.
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1. Introduction

It is obvious that our natural physical intuition distinguishes four dimen-
sions in a natural correspondence with material environment. Consequently, four-
dimensionality plays a special role in almost all modern physical theories.

On the other hand, it is an well known fact that, in order to create the Rel-
ativity Theory, Einstein was forced to use the Riemannian geometry instead of
the classical Euclidean geometry, the Riemannian geometry representing the nat-
ural mathematical model for the local isotropic space-time. But recent studies of
physicists suggest a non-isotropic perspective of Space-Time - e.g., the concept of
inertial body mass emphasizes the necessity of study of locally non-isotropic spaces
([7]). Among the possible models for the study of non-isotropic physical phenomena,
Finsler geometry is an appropriate and effective mathematical framework.
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The works of Russian scholars ([1, 10, 7]) emphasize the importance of the
Finsler geometry which is characterized by the complete equivalence of all non-
isotropic directions and promote in their works models based on special locally-
Minkowski types of m—root metrics - e.g., Berwald-Mo6r or Chernov. Since any of
the directions can be related to proper time, such spaces were generically called
as having "multi-dimensional time” ([15]). In the framework of the 3- and 4-
dimensional linear space with Berwald-Mo6r metric (i.e., having three- and four-
dimensional time), Pavlov and his co-workers ([7, 14, 15]) provide new physical
model-supporting evidence and geometrical interpretations, such as:

physical events = points in the multi-dimensional time;

straight lines = shortest curves;

intervals = distances between the points along of a straight line;

light pyramids < light cones in a pseudo-Euclidian space;

surfaces of simultaneity = the surfaces of simultaneous physical events.

An important model of m—root type - the Chernov metric ([5, 4]),
F:TM =R, Fy) = Vyly?® +yl?y + iyt + 2% (1)

was recently shown to be relevant for Relativity. The larger class of Finsler metrics

to which this metric belongs, the m—root metrics, have been previously studied by
the Japanese geometers Matsumoto and Shimada ([8, 9, 16]).

Considering the former geometrical and physical reasons, the present paper is
devoted to the development on the 1-jet space J*(R, M*) of the Finsler-like geometry,
applied to geometric gravitational and electromagnetic field theory associated to the
natural 1-time rheonomic jet extension of the Chernov metric (1)

Figy(t,y) = VR (1) - Vlvivi +vivivi + vivivi +vivivi,
where h11(t) is a Riemannian metric on R and (¢, ', 22, 2%, 2%, 1,92, v}, y1) are the
coordinates of the 1-jet space J!(R, M*).

The geometry that models gravitational and electromagnetic theories, relying
on distinguished (d—)connections (and their d—torsions and d—curvatures), pro-
duced by a jet theonomic Lagrangian function L : J'(R, M") — R, was extensively
described in [13], where the geometrical ideas are similar, but exhibiting distinct
features compared to the ones developed by Miron and Anastasiei in classical Gen-

eralized Lagrange Geometry ([11]). The geometrical jet distinguished framework
from [13] - generically called as jet geometrical theory of the rheonomic Lagrange
spaces, was initially stated by Asanov in [2] and developed further in the book [12].

In the sequel, we apply the general geometrical results from [13] to the rheo-
nomic Chernov metric Flg).

2. Preliminary notations and formulas

Let (R, hy1(t)) be a Riemannian manifold, where R is the set of real numbers.
The Christoffel symbol of the Riemannian metric hj;(¢) is

' dhyy 1
%%1 = TW, where hll = hill > 0. (2)
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Let also M* be a manifold of dimension four, whose local coordinates are (z!, 22, 23, 4).

Let us consider the 1-jet space J'(R, M%), whose local coordinates are

1.2 ,3 .4 .1 2 3 4
(t,$ L, L, T 7y17y17y17y1)'

These transform by the rules (the Einstein convention of summation is used through-

out this work):

~ ~ - - o0zP dt
t=1t(t), zF=7zP(z?), @f:i—,yl, p,q=1,4, (3)

where dt/dt # 0 and rank (0ZP/dx7) = 4.
We further consider that the manifold M? is endowed with a tensor of kind

(0,3), given by the local components Sp,-(x), which is totally symmetric in the
indices p, ¢ and r. We shall use the notations

Sij1 = 6Sipyts  Sitt = 3Sipg(x)yyl, S = Spar¥yivi (4)

We assume that the d—tensor S;j1 is non-degenerate, i.e., there exists the d—tensor
SIFL on JL(R, M%), such that S;;15/% = §F. In this context, we can consider the
third-root Finsler-like function ([16], [3]), which is 1-positive homogenous in the
variable y,

F(t,2,y) = ) Sper(@)y1yiyi - VPI(E) = ¥/ Su(z,y) - VRU(D), (5)

where the Finsler function F' has as domain of definition all values (¢, z,y) which

satisfy the condition Si11(x,y) # 0. Then the 3-positive homogeneity of the ”y-
function” S111 (which is a d—tensor on the 1-jet space J'(R, M*%)), leads to the
equalities:

05111 ; ; S 0%S1n
Sitt = ———, Syl =351, Syl = 2511, S = — =
Ay} dyl  Oyioy
o 0S.: 1
Sijyiy] = 65111, 7%1 = 6Sik,  Sijpyl = =Sij1.
oy} 6

The fundamental metrical d—tensor produced by F' is given by the formula
hi1(t) 0*F?
2 oyioy

By direct computations, the fundamental metrical d—tensor takes the form

gij (ta z, y) =

S 1
gij(l’ay) =t [Sijl - Fﬂl

Moreover, since the d—tensor Sj;1 is non-degenerate, the matrix g = (¢;;) admits an

Sz'nsjn] : (6)

inverse g~! = (¢’%), whose entries are

R Ll [ CLL R o BN 7
g i 3 (S111 — S111) (@)

where S{ = Sjplspn and 38111 = Spqlspnsqn.

S9 5k ]
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Following the ideas from [13], the energy action functional

E(t, z(t)) = /FQta: )/ A ()dt = / S5 1 /hyydt,

where y(t) = dx/dt, produces on the 1-jet space J'(R, M%), via the Euler-Lagrange
equations, the canonical time dependent spray

- (@) (%)
&= (H(l)l’ G(l)l) ’ (8)
where, using the notations (2) and (4), we have H((i))l — _%yi and
(3) _ gim 8Sm11 p 1 1 aSlll -
Sl 85111 p
6 (S111 — S111) ( g 1T 35415111

Remark 2.1. In the particular case when the components Gpqr are independent on
the variable x, the expression of (9) simplifies as

i S111 '
G() S s S— 10
(1 192 (S111 —Sin) ! (10)

Note that, in this case, the Finsler-like function (5) is of locally-Minkowski type.

It is known ([13]) that the canonical time dependent spray S given by (8)
determines on the 1-jet space J(R, M*) a canonical nonlinear connection given by

A e
_ () _ (@) _ 1 @ _ —M1
F = M(l) = 2H(1)1 %11y1, N(l)j = Ty{ . (11)

3. The rheonomic Chernov metric

Beginning with this Section we will focus only on the rheonomic Chernov
metric, which is the Finsler-like metric (5) for the particular case

1

_ ) 3

{p,q,r} - distinct indices
Spar = Si3lpgr =

0, otherwise.

Consequently, the rheonomic Chernov metric is given by

Fg(t,y) = VR'(1) - f’/y%y%yi‘ +ylytyl +yivivi +yivivi. (12)

Moreover, using the preceding notations and formulas, we obtain the following rela-

tions:
Si1 = S = Vvl + vivivi + iyt + viviuis
85[3]111 - 5[3]111% - 5[4}1111

Si11 = Sz = oyl (yz)Q ;
1
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Sijl = S[3]Z]1 = - = - 3

ayi Oy 0y,

where Siy111 = yiy?y3yt and Sup = yi + 9?2 + y + yi. Note that, for i # j, the
following equality holds true as well:

S 0*Spnn _ Sijn—yi — yl, i#]
07 = j7

5[24]1111
. N 27
()* ()

ij=14 — 4 [45[4}1111 - 5[1]15[3]111] := Di111, we find

5[3}1'11 ' S[S]jll = 5[3]111 (5[1]1 - Z/i - y{) +

Because we have 0 # det (.5;51)

J

i S41111 .
yiyk + 2HL £k
y

Gikl . gkl _ 191
BT
: (v +44) '
- — "‘ 3 — k.
Diun vl ll_Il niTmh !
Further, laborious computations lead to:

. . , 1 .
J._— gl _ qgirl — T
St = 5[3}1 - 5[3] Sigp11 = §y1a

(13)

1
St111:= Sy = Sﬁ;}ﬂ‘g[?ﬂplls[i{]qll = 55[3}111-

Replacing now the above computed entities into the formulas (6) and (7), we
get gij 1= g3)ij =

4

S8 N 1
3)111 ; 41111 L,
% 2(5[1]1—91_3/{)_;;1 T Nl i J
_ B (1) (o) (14)
—4/3
3111
\ [9] 5[23,]@'117 t=J
and
ik gk — 35118 [Sj’“ + ] ’“} : 15
g 9i3] [3]111 65[3}1113/13/1 (15)

Consequently, using (10) and (13), we find the following geometrical result:

Proposition 3.1. For the rheonomic Chernov metric (12), the energy action func-
tional

b
2
Epg(t, 2(t)) = / i’/ (viviy? +ylviyt +viydul + yiviyl)” - h''Vhndt
a

produces on the 1-jet space J'(R, M*) the canonical time dependent spray

1 1
_ (@) _ 711 i @ _ 11
Spg) = (H(m == 2113/17 Gy =~ 21191) : (16)

Moreover, the formulas (11) and (16) imply
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Corollary 3.1. The canonical nonlinear connection on the 1-jet space J'(R, M*)
produced by the rheonomic Chernov metric (12) is

i i i e i
g = (5 =~k 8, =205 w

where 5; is the Kronecker symbol.

4. Cartan canonical connection. d—torsions and curvatures

The importance of the nonlinear connection (17) is coming from the possibility
of construction of the dual local adapted bases: of d—vector fields

6 _ 9 4 0 § 9 0 0
= = . T | - 10 1
{6t ot UG Sa T ad T 2 oy ayif &) )

and of d—covector fields

{dt odat s Syl = dyt — sdyyidt — }gldx’} C X*(E), (19)

where E = J(R, M*). Note that, under a change of coordinates (3), the elements
of the adapted bases (18) and (19) transform as classical tensors. Consequently, all
subsequent geometrical objects on the 1-jet space J(R, M*) (as Cartan canonical
connection, torsion, curvature etc.) will be described in local adapted components.
We emphasize that the definition of local components of connections, torsion and
curvature, obey the formalism used in the works [11, 12, 13, 3].

Using a general result from [13], by direct computations, we can give the
following important geometrical result:

Theorem 4.1. The Cartan canonical T'3-linear connection, produced by the rheo-
nomic Chernov metric (12), has the following adapted local components:

1
(. ko i 21 (1) (1)
CTp = <%117 Gj1 =0, Lj, = 2 Cj(k)’ Cj(k)> ’

where

ngk)) = 3S{ Sg)jhm + g5z OB SEkyI—
31111

i (20)
[5[3]%133 + 055 [3k11 + 525[313'11] .

1 1
6 S[3111

Proof. Using the Chernov derivative operators (18) and (19), together with the
relations (14) and (15), we apply the general formulas which give the adapted com-
ponents of the Cartan canonical connection, namely [13]

95" 59mg i 953 <59[31jm L O903km 59[3}jk>

ko _
Gjl_

9 ot 0 IRT T\ gk o oxm

cit _ 98 (39[31jm L 993 _ 39[31jk> 93] 0931

k) = 79 oyt ay] oy ) T 2 oy
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where, by computations, we have

99135k ~1/3 ~7/3
ay{i = 25[3]1115[3]jkm + 275[3]1115[31311S[S}klls[é‘]mll -
1
[3]111 {5[3 k1S[8Im11 + Sigkm1S(3j11 + Siaimy1 Sigk11 ) -
For details, we refer to [16] and [3]. O

Remark 4.1. The following properties of the d—tensor C’;E?) hold true:
i(1) _ ~i(1) i) m _
City = Oy Cimyt” =0
Theorem 4.2. The Cartan canonical connection CT'3 of the rheonomic
Chernov metric (12) has three effective local torsion d-tensors:

(k) (1) _ 1 k(1) k(1) _ k(L) k) 1 (dx K
P(l)z'(j) - %1100) Pi(j) _Ci(j)’ R(l)l]’_2< dt %11%11>5

Proof. A general h-normal I-linear connection on the 1-jet space J!(R, M*?) is char-
acterized by eight effective d—tensors of torsion (cf. [13]). For our Cartan canonical
connection CT'3) these reduce to the following three (the other five cancel):

(k) ® 5y
po @ _ N e Man Nay ey _ k) -
Wiy = g7 M o T T T T 0 B T %

Theorem 4.3. The Cartan canonical connection CT3 of the rheonomic
Chernov metric (12) has three effective local curvature d—tensors:
ol _ 1o
aw: Fije) = 571556k
I(1) I(1)
oC. oC. k)

) 1¢) I m(1) A1) _ ~m(1) ~I(1)
i)k = gk o] +Citj) Cntey = Citry Oy

1
R = *%%1%115 o

Proof. A general h-normal I-linear connection on the 1-jet space J!(R, M*) is char-
acterized by five effective d—tensors of curvature (cf. [13]). For our Cartan canonical
connection CT'3; these reduce to the following three (the other two cancel):

l
l _5Lij 5L£’k

+Lrmrt — Lmrl

ijk Sk Sxd ij “'mk mjo
oL,
Ly _ 1) ) plm) (1)
Pty = 5y~ Citwis + Citm Pice)
TR
i _ 0% 9% | mm i) om0 i)
0 = gk " g TG0 O~ Gt Oy
where C!\)) :601§k)+cm<1>ﬂ = -l 0
ity =5+ Cigy m(k 55~ Cim)

Remark 4.2. We have denoted by 1, ; and |(i) the Cartan covariant deriva-
tives with respect to the corresponding R—horizontal (temporal), M —horizontal and
vertical vector fields of the basis (18).
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5. Applications of the rheonomic Chernov metric
5.1. Geometrical gravitational theory

From a physical point of view, on the 1-jet space J!(R, M%), the rheonomic
Chernov metric (12) produces the adapted metrical d—tensor

Gy = hi1dt @ dt + ggjijda’ ® da’ + h'' g3,;0y; @ oy, (21)

where g3);; is given by (14). This may be regarded as a “non-isotropic gravita-
tional potential”. In such a physical context, the nonlinear connection I'f3; (used in
the construction of the distinguished 1-forms dy]) prescribes, most likely, a sort of
“interaction” between (t)-, (x)- and (y)-fields.

We postulate that the non-isotropic gravitational potential Gz is governed by
the geometrical Einstein equations

Sc (CFM)

Ric (CF[g]) — G[3] =KT, (22)

where Ric (CF[g}) is the Ricci d-tensor associated to the Cartan canonical connec-
tion CT'3) (in Riemannian sense and using adapted bases), Sc (CF[g]) is the scalar
curvature, K is the Finstein constant and T is the intrinsic stress-energy d—tensor
of matter.

In this way, working with the adapted basis of vector fields (18), we can find
the local geometrical Einstein equations for the rheonomic Chernov metric (12).
Firstly, by direct computations, we find:

Theorem 5.1. The Ricci d—tensor of the Cartan canonical connection CT'[3 of
the rheonomic Chernov metric (12) has the following effective local Ricci d—tensor
components:

. 1 W)
R 1j = Rzgr 4%11 118(1)0) )
1 _ p) _ pr @) _ (1)(1)
Pigy =Py = Tijey = H%xﬁ’
na 1 orm
ng)((J)) —9SE1 SE (StalipStalgrm — SialiprSialjgm) +
1 1 1 1
+—= 553151 — S131i115731j115
12 Sy B JBS%Hl[} 1317

where SEZI))((JI)) S ((.1))((:)) is the vertical Ricci d—tensor field.

Proof. Using the equality (20), by laborious direct computations, we obtain the
following equalities (we assume implicit summation by r and m):

r(1) rml
oC3) _ 05 Siaij . i+ o 5 1 Sigji11 S
oYy 9yq 28 Y9 5[23]111 Z ]’
807”(1) 65rm1 9 1
i(r 3
() _ g "0l S3)ij1 + 3 SQ S3ji11 St

i SS irm T 9 o
oyl 3111 ¥ 3 S [3]111
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m(1) ~r(1) _ mpl arq 2
Citj) Cminy = 95y 5[3] StgligpSiamra + § Sémls[s]ms[s]m
; 5 5’5]1 {Si3jirg Sigijnn + 5[3}#«15[31111} 6 5 —— S
m(l) r(1 ) _ mpl 1
1 1

rql
2 5[3]111 S (3] {SB]”'(]S[?’]JH + S[3M7’QS[3]111} 12 5[3]111 5[3]131-

Finally, taking into account that we have

oc™M  porW)

s _ gr(@) _ Z(7{) _ () +omWer) Cm(l)or(1?7
() i(5)(r) oy ay{ i(j) “m(r) i(r) ~m(j)
and using the equalities
85rm1
(3] mpl qrql
gy St = =685 S{s] SlispSispmra
65@1”1
oy Siajirm = —6Sg5 [l SialirpSialma:
1
we obtain the required result. O

Remark 5.1. The vertical Ricci d—tensor ngl))((jl)) has the following property of sym-
.MM _ gM(®)

metry: S = S

Proposition 5.1. The scalar curvature of the Cartan canonical connection CT'3)

of the rheonomic Chernov metric (12) is given by

m Sll where Sll pQS( )(1)

Se (CTy) = 1 9350

Proof. The general formula for the scalar curvature of a Cartan connection is

(cf. [13]) Sc (CTyy) = g% Rog + hurglaSLL. -

Describing the global geometrical Einstein equations (22) in the adapted basis
of vector fields (18), it is known the following important geometrical and physical
result (cf. [13]):

Theorem 5.2. The local geometrical Einstein equations that govern the non-
isotropic gravitational potential (21) (produced by the rheonomic Chernov metric
(12)) are given by:

&1SMhi = T
Ltk S(I)(l + 1Sty =T,

4K G (23)
D) | ¢ glipll OIe)
ES( + &S gy = Toy)
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0="Ty, 0=Ta, 0="T31,

24

0T O ) 24
1) 206 i

where  £17 = — K

Remark 5.2. The local geometrical Einstein equations (23) and (24) impose as the
stress-energy d—tensor of matter T to be symmetrical. In other words, the stress-
energy d—tensor of matter T must satisfy the local symmetry conditions

Tap=Ta, VADBE {1, 1, 8))}.

5.2. Geometrical electromagnetic theory

In the paper [13], using only a given Lagrangian function L on the 1-jet space
JYR, M*), a geometrical theory for electromagnetism was also constructed. In
this background of jet relativistic rheonomic Lagrange geometry, we work with an
electromagnetic distinguished 2-form F = F ((il)z.&yi A dz? | where

nt m T r m
F((ll); 9 [ngN(( )) 9lmN((1)g) + (ng‘m - ngLim) Y1 } )

which is characterized by the following geometrical Mazwell equations [13]

o _1 5D pm W) p(m)
Eayin —*A{ia’}{D(i)uj D iy G+ iy By, —
1) p(m)
[Cf(m)R( 1)1 GZU} hllgpqyi]}a
(m) (m)
Z F(l) _ _} Z 3L 5N(1)j B 5N(1)k yﬁf
{i,5,k} W7 { YS! oyt oyt oy | ok dxd
oo _
Z F(i)j‘ w =0
{4,3,k}

where Ay; ;3 denotes an alternate sum, {i,j,k} means a cyclic sum and we have

= _ hMogyp o )
@i =5 5 Yo Dy

=t { N, + meyin] ;

S0
D

W) _ p(1) =0 _ P =1 .,

Ay =h |9i + 9inCljy i } Dinyg = 53— Plnnlijs
5Gf .
G11|j Sad ! G _anle'jy
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(o FY () 1)
1 - )] 1 1 1 m 1 m
Fogn = 5 T Huiem — £ Ga = FoymGons
1)
P 1 R () R
(@)g | k Sk ( )j zk (iym gk
3F(1)
W0 _ P05 ) emt) _ ) omit
Fail o) = gyt~ LG~ FomCw

For the rheonomic Chernov metric (12) we have L = F[%] and, consequently, we
obtain the electromagnetic 2-form F := i3 = 0.

In conclusion, the locally-Minkowski rheonomic Chernov geometrical elec-
tromagnetic theory is trivial. In our opinion, this fact suggests that the metric
(12) has rather gravitational connotations than electromagnetic ones in its h—flat
(r—independent) version, which leads to the need of considering x—dependent con-
formal deformations of the structure (as, e.g., recently proposed by Garas’ko in [6]).

6. Conclusion

In recent physical and geometrical studies ([1, 7, 14, 15]), an important role
is played by the Finslerian metric

Fg(t,y) = /AL(t) - \/y1y1 +ulyd vt + ol + ot vt (25)

which produces the fundamental metrical d—tensor

ha(2) aFm _1 5 ik gk _ 2 ik
9ij =912 = oy 0y =5 (1—06i)=¢'" = 9o = 3 (1 — 36 ) :

The Finslerian metric (25) generates the jet canonical nonlinear connection

1
_ (@ _ 1.4 @ _ g
Ly = (M(l)l = —11Y1; N(l)j = _2115j>

and the Cartan ['jg-linear connection

Cry = (s, G =0, L =0, €3 =0).

For the Cartan connection CT'g) all torsion d—tensors vanish, except

k 1 [dsd
R®) =3 [ 11 %11%11} 5k

1)1y dt

and all curvature d—tensors are zero. Consequently, all Ricci d—tensors vanish and
the scalar curvature cancels. The geometrical Einstein equations (22) produced by
the Finslerian metric (25) become trivial, namely

0="Tap, VABe{l i ]}

At the same time, the electromagnetic 2-form associated to the Finslerian metric (25)
has the trivial form F := Fy = 0. In conclusion, both the metric-tensor based geo-
metrical (gravitational and electromagnetic) theories are shown to be trivial for the
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case of the rheonomic locally Finslerian Chernov metric (25). Hence, for developing
a non-trivial h—model, one may need to consider other closely related alternatives
offered by h—conformally-deformed models or by z—dependent rheonomic Finsler

metrics of m—root type.
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