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THE 1-JET GENERALIZED LAGRANGE GEOMETRY INDUCED

BY THE RHEONOMIC CHERNOV METRIC

Vladimir Balan1, Mircea Neagu2

Lucrarea studiază modelul Lagrange Generalizat pentru metrica Chernov

reonomă (cf. [13, 12, 11]; [5, 4]), pe spaţiul jeturilor de ordinul ı̂ntâi J1(ℝ,M4).

Sunt determinate ecuaţiile de câmp gravitaţional şi electromagnetic asociate,

evidenţiindu-se relevanţa fizică a acestora.

The aim of this paper is to develop on the 1-jet space J1(ℝ,M4), the jet

Generalized Lagrange Geometry ([13, 12]) for the rheonomic Chernov metric
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The associated gravitational and electromagnetic field equations of the associated

model are determined, and the Physical relevance is emphasized.

Keywords: rheonomic Chernov metric of order three, canonical nonlinear con-

nection, Cartan canonical connection, d−torsions and d−curvatures, geometrical

Einstein equations.
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1. Introduction

It is obvious that our natural physical intuition distinguishes four dimen-

sions in a natural correspondence with material environment. Consequently, four-

dimensionality plays a special role in almost all modern physical theories.

On the other hand, it is an well known fact that, in order to create the Rel-

ativity Theory, Einstein was forced to use the Riemannian geometry instead of

the classical Euclidean geometry, the Riemannian geometry representing the nat-

ural mathematical model for the local isotropic space-time. But recent studies of

physicists suggest a non-isotropic perspective of Space-Time - e.g., the concept of

inertial body mass emphasizes the necessity of study of locally non-isotropic spaces

([7]). Among the possible models for the study of non-isotropic physical phenomena,

Finsler geometry is an appropriate and effective mathematical framework.
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The works of Russian scholars ([1, 10, 7]) emphasize the importance of the

Finsler geometry which is characterized by the complete equivalence of all non-

isotropic directions and promote in their works models based on special locally-

Minkowski types of m−root metrics - e.g., Berwald-Moór or Chernov. Since any of

the directions can be related to proper time, such spaces were generically called

as having ”multi-dimensional time” ([15]). In the framework of the 3- and 4-

dimensional linear space with Berwald-Moór metric (i.e., having three- and four-

dimensional time), Pavlov and his co-workers ([7, 14, 15]) provide new physical

model-supporting evidence and geometrical interpretations, such as:

∙ physical events = points in the multi-dimensional time;
∙ straight lines = shortest curves;
∙ intervals = distances between the points along of a straight line;
∙ light pyramids ⇔ light cones in a pseudo-Euclidian space;
∙ surfaces of simultaneity = the surfaces of simultaneous physical events.

An important model of m−root type - the Chernov metric ([5, 4]),

F : TM → ℝ, F (y) = 3
√
y1y2y3 + y1y2y4 + y1y3y4 + y2y3y4, (1)

was recently shown to be relevant for Relativity. The larger class of Finsler metrics

to which this metric belongs, the m−root metrics, have been previously studied by

the Japanese geometers Matsumoto and Shimada ([8, 9, 16]).

Considering the former geometrical and physical reasons, the present paper is

devoted to the development on the 1-jet space J1(ℝ,M4) of the Finsler-like geometry,

applied to geometric gravitational and electromagnetic field theory associated to the

natural 1-time rheonomic jet extension of the Chernov metric (1)
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where ℎ11(t) is a Riemannian metric on ℝ and (t, x1, x2, x3, x4, y11, y
2
1, y

3
1, y

4
1) are the

coordinates of the 1-jet space J1(ℝ,M4).

The geometry that models gravitational and electromagnetic theories, relying

on distinguished (d−)connections (and their d−torsions and d−curvatures), pro-

duced by a jet rheonomic Lagrangian function L : J1(ℝ,Mn)→ ℝ, was extensively

described in [13], where the geometrical ideas are similar, but exhibiting distinct

features compared to the ones developed by Miron and Anastasiei in classical Gen-

eralized Lagrange Geometry ([11]). The geometrical jet distinguished framework

from [13] - generically called as jet geometrical theory of the rheonomic Lagrange

spaces, was initially stated by Asanov in [2] and developed further in the book [12].

In the sequel, we apply the general geometrical results from [13] to the rheo-

nomic Chernov metric F[3].

2. Preliminary notations and formulas

Let (ℝ, ℎ11(t)) be a Riemannian manifold, where ℝ is the set of real numbers.

The Christoffel symbol of the Riemannian metric ℎ11(t) is

ϰ1
11 =

ℎ11

2

dℎ11
dt

, where ℎ11 =
1

ℎ11
> 0. (2)
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Let alsoM4 be a manifold of dimension four, whose local coordinates are (x1, x2, x3, x4).

Let us consider the 1-jet space J1(ℝ,M4), whose local coordinates are

(t, x1, x2, x3, x4, y11, y
2
1, y

3
1, y

4
1).

These transform by the rules (the Einstein convention of summation is used through-

out this work):

t̃ = t̃(t), x̃p = x̃p(xq), ỹp1 =
∂x̃p

∂xq
dt

dt̃
⋅ yq1, p, q = 1, 4, (3)

where dt̃/dt ∕= 0 and rank (∂x̃p/∂xq) = 4.

We further consider that the manifold M4 is endowed with a tensor of kind

(0, 3), given by the local components Spqr(x), which is totally symmetric in the

indices p, q and r. We shall use the notations

Sij1 = 6Sijpy
p
1 , Si11 = 3Sipq(x)yp1y

q
1, S111 = Spqry

p
1y
q
1y
r
1 (4)

We assume that the d−tensor Sij1 is non-degenerate, i.e., there exists the d−tensor

Sjk1 on J1(ℝ,M4), such that Sij1S
jk1 = �ki . In this context, we can consider the

third-root Finsler-like function ([16], [3]), which is 1-positive homogenous in the

variable y,

F (t, x, y) = 3

√
Spqr(x)yp1y

q
1y
r
1 ⋅
√
ℎ11(t) = 3

√
S111(x, y) ⋅

√
ℎ11(t), (5)

where the Finsler function F has as domain of definition all values (t, x, y) which

satisfy the condition S111(x, y) ∕= 0. Then the 3-positive homogeneity of the ”y-

function” S111 (which is a d−tensor on the 1-jet space J1(ℝ,M4)), leads to the

equalities:

Si11 =
∂S111
∂yi1

, Si11y
i
1 = 3S111, Sij1y

j
1 = 2Si11, Sij1 =

∂Si11

∂yj1
=
∂2S111

∂yi1∂y
j
1

,

Sij1y
i
1y
j
1 = 6S111,

∂Sij1

∂yk1
= 6Sijk, Sijpy

p
1 =

1

6
Sij1.

The fundamental metrical d−tensor produced by F is given by the formula

gij(t, x, y) =
ℎ11(t)

2

∂2F 2

∂yi1∂y
j
1

.

By direct computations, the fundamental metrical d−tensor takes the form

gij(x, y) =
S
−1/3
111

3

[
Sij1 −

1

3S111
Si11Sj11

]
. (6)

Moreover, since the d−tensor Sij1 is non-degenerate, the matrix g = (gij) admits an

inverse g−1 = (gjk), whose entries are

gjk = 3S
1/3
111

[
Sjk1 +

Sj1S
k
1

3 (S111 − S111)

]
, (7)

where Sj1 = Sjp1Sp11 and 3S111 = Spq1Sp11Sq11.
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Following the ideas from [13], the energy action functional

E(t, x(t)) =

∫ b

a
F 2(t, x(t), y(t))

√
ℎ11(t)dt =

∫ b

a
S
2/3
111 ⋅ ℎ

11
√
ℎ11dt,

where y(t) = dx/dt, produces on the 1-jet space J1(ℝ,M4), via the Euler-Lagrange

equations, the canonical time dependent spray

S =
(
H

(i)
(1)1, G

(i)
(1)1

)
, (8)

where, using the notations (2) and (4), we have H
(i)
(1)1 = −ϰ1

11

2
yi1 and

G
(i)
(1)1 =

gim

6 3
√
S111

[
∂Sm11

∂xp
yp1 −

(
1− ϰ1

11

) ∂S111
∂xm

]
− (9)

− Si1
6 (S111 − S111)

(
∂S111
∂xp

yp1 + 3ϰ1
11S111

)
.

Remark 2.1. In the particular case when the components Gpqr are independent on

the variable x, the expression of (9) simplifies as

G
(i)
(1)1 = −ϰ1

11

S111
2 (S111 − S111)

Si1. (10)

Note that, in this case, the Finsler-like function (5) is of locally-Minkowski type.

It is known ([13]) that the canonical time dependent spray S given by (8)

determines on the 1-jet space J1(ℝ,M4) a canonical nonlinear connection given by

Γ =

⎛⎝M (i)
(1)1 = 2H

(i)
(1)1 = −ϰ1

11y
i
1, N

(i)
(1)j =

G
(i)
(1)1

∂yj1

⎞⎠ . (11)

3. The rheonomic Chernov metric

Beginning with this Section we will focus only on the rheonomic Chernov

metric, which is the Finsler-like metric (5) for the particular case

Spqr := S[3]pqr =

⎧⎨⎩
1

3!
, {p, q, r} - distinct indices

0, otherwise.

Consequently, the rheonomic Chernov metric is given by

F[3](t, y) =
√
ℎ11(t) ⋅ 3

√
y11y

2
1y

3
1 + y11y

2
1y

4
1 + y11y

3
1y

4
1 + y21y

3
1y

4
1. (12)

Moreover, using the preceding notations and formulas, we obtain the following rela-

tions:

S111 := S[3]111 = y11y
2
1y

3
1 + y11y

2
1y

4
1 + y11y

3
1y

4
1 + y21y

3
1y

4
1,

Si11 := S[3]i11 =
∂S[3]111

∂yi1
=
S[3]111y

i
1 − S[4]1111(
yi1
)2 ,
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Sij1 := S[3]ij1 =
∂S[3]i11

∂yj1
=
∂2S[3]111

∂yi1∂y
j
1

=

{
S[1]1 − yi1 − y

j
1, i ∕= j

0, i = j,

where S[4]1111 = y11y
2
1y

3
1y

4
1 and S[1]1 = y11 + y21 + y31 + y41. Note that, for i ∕= j, the

following equality holds true as well:

S[3]i11 ⋅ S[3]j11 = S[3]111

(
S[1]1 − yi1 − y

j
1

)
+

S2
[4]1111(

yi1
)2 (

yj1

)2 .
Because we have 0 ∕= det (Sij1)i,j=1,4 = 4

[
4S[4]1111 − S[1]1S[3]111

]
:= D1111, we find

Sjk1 := Sjk1[3] =

⎧⎨⎩
−2

D1111

(
yj1 + yk1

)[
yj1y

k
1 +

S[4]1111

yj1y
k
1

]
, j ∕= k

1

D1111
⋅ 1

yj1

[
4∏
l=1

(
yj1 + yl1

)]
, j = k.

Further, laborious computations lead to:

Sj1 := Sj[3]1 = Sjp1[3] S[3]p11 =
1

2
yj1,

S111 := S[3]111 = Spq1[3] S[3]p11S[3]q11 =
1

2
S[3]111.

(13)

Replacing now the above computed entities into the formulas (6) and (7), we

get gij := g[3]ij =

=

⎧⎨⎩

S
−1/3
[3]111

9

⎡⎢⎣2
(
S[1]1 − yi1 − y

j
1

)
−
S2
[4]1111

S[3]111
⋅ 1(
yi1
)2 (

yj1

)2
⎤⎥⎦ , i ∕= j

−S−4/3[3]111

9
⋅ S2

[3]i11, i = j

(14)

and

gjk := gjk[3] = 3S
1/3
[3]111

[
Sjk1 +

1

6S[3]111
yj1y

k
1

]
. (15)

Consequently, using (10) and (13), we find the following geometrical result:

Proposition 3.1. For the rheonomic Chernov metric (12), the energy action func-

tional

E[3](t, x(t)) =

∫ b

a

3

√(
y11y

2
1y

3
1 + y11y

2
1y

4
1 + y11y

3
1y

4
1 + y21y

3
1y

4
1

)2 ⋅ ℎ11√ℎ11dt
produces on the 1-jet space J1(ℝ,M4) the canonical time dependent spray

S[3] =

(
H

(i)
(1)1 = −ϰ1

11

2
yi1, G

(i)
(1)1 = −ϰ1

11

2
yi1

)
. (16)

Moreover, the formulas (11) and (16) imply
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Corollary 3.1. The canonical nonlinear connection on the 1-jet space J1(ℝ,M4)

produced by the rheonomic Chernov metric (12) is

Γ[3] =

(
M

(i)
(1)1 = −ϰ1

11y
i
1, N

(i)
(1)j = −ϰ1

11

2
�ij

)
, (17)

where �ij is the Kronecker symbol.

4. Cartan canonical connection. d−torsions and curvatures

The importance of the nonlinear connection (17) is coming from the possibility

of construction of the dual local adapted bases: of d−vector fields{
�

�t
=

∂

∂t
+ ϰ1

11y
p
1

∂

∂yp1
;

�

�xi
=

∂

∂xi
+

ϰ1
11

2

∂

∂yi1
;

∂

∂yi1

}
⊂ X (E) (18)

and of d−covector fields{
dt ; dxi ; �yi1 = dyi1 − ϰ1

11y
i
1dt−

ϰ1
11

2
dxi
}
⊂ X ∗(E), (19)

where E = J1(ℝ,M4). Note that, under a change of coordinates (3), the elements

of the adapted bases (18) and (19) transform as classical tensors. Consequently, all

subsequent geometrical objects on the 1-jet space J1(ℝ,M4) (as Cartan canonical

connection, torsion, curvature etc.) will be described in local adapted components.

We emphasize that the definition of local components of connections, torsion and

curvature, obey the formalism used in the works [11, 12, 13, 3].

Using a general result from [13], by direct computations, we can give the

following important geometrical result:

Theorem 4.1. The Cartan canonical Γ[3]-linear connection, produced by the rheo-

nomic Chernov metric (12), has the following adapted local components:

CΓ[3] =

(
ϰ1
11, G

k
j1 = 0, Lijk =

ϰ1
11

2
C
i(1)
j(k), C

i(1)
j(k)

)
,

where

C
i(1)
j(k) = 3Sim1

[3] S[3]jkm +
1

9

1

S2
[3]111

S[3]j11S[3]k11y
i
1−

−1

6

1

S[3]111

[
S[3]jk1

yi1
2

+ �ijS[3]k11 + �ikS[3]j11

]
.

(20)

Proof. Using the Chernov derivative operators (18) and (19), together with the

relations (14) and (15), we apply the general formulas which give the adapted com-

ponents of the Cartan canonical connection, namely [13]

Gkj1 =
gkm[3]

2

�g[3]mj

�t
, Lijk =

gim[3]

2

(
�g[3]jm

�xk
+
�g[3]km

�xj
−
�g[3]jk

�xm

)
,

C
i(1)
j(k) =

gim[3]

2

(
∂g[3]jm

∂yk1
+
∂g[3]km

∂yj1
−
∂g[3]jk

∂ym1

)
=
gim[3]

2

∂g[3]jk

∂ym1
,
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where, by computations, we have

∂g[3]jk

∂ym1
= 2S

−1/3
[3]111S[3]jkm +

4

27
S
−7/3
[3]111S[3]j11S[3]k11S[3]m11 −

−1

9
S
−4/3
[3]111

{
S[3]jk1S[3]m11 + S[3]km1S[3]j11 + S[3]mj1S[3]k11

}
.

For details, we refer to [16] and [3]. □

Remark 4.1. The following properties of the d−tensor C
i(1)
j(k) hold true:

C
i(1)
j(k) = C

i(1)
k(j), C

i(1)
j(m)y

m
1 = 0.

Theorem 4.2. The Cartan canonical connection CΓ[3] of the rheonomic

Chernov metric (12) has three effective local torsion d-tensors:

P
(k) (1)
(1)i(j) = −1

2
ϰ1
11C

k(1)
i(j) , P

k(1)
i(j) = C

k(1)
i(j) , R

(k)
(1)1j =

1

2

(
dϰ1

11

dt
− ϰ1

11ϰ1
11

)
�kj .

Proof. A general ℎ-normal Γ-linear connection on the 1-jet space J1(ℝ,M4) is char-

acterized by eight effective d−tensors of torsion (cf. [13]). For our Cartan canonical

connection CΓ[3] these reduce to the following three (the other five cancel):

P
(k) (1)
(1)i(j) =

∂N
(k)
(1)i

∂yj1
− Lkji, R

(k)
(1)1j =

�M
(k)
(1)1

�xj
−
�N

(k)
(1)j

�t
, P

k(1)
i(j) = C

k(1)
i(j) . □

Theorem 4.3. The Cartan canonical connection CΓ[3] of the rheonomic

Chernov metric (12) has three effective local curvature d−tensors:

Rlijk =
1

4
ϰ1
11ϰ1

11S
l(1)(1)
i(j)(k), P

l (1)
ij(k) =

1

2
ϰ1
11S

l(1)(1)
i(j)(k),

S
l(1)(1)
i(j)(k) =

∂C
l(1)
i(j)

∂yk1
−
∂C

l(1)
i(k)

∂yj1
+ C

m(1)
i(j) C

l(1)
m(k) − C

m(1)
i(k) C

l(1)
m(j).

Proof. A general ℎ-normal Γ-linear connection on the 1-jet space J1(ℝ,M4) is char-

acterized by five effective d−tensors of curvature (cf. [13]). For our Cartan canonical

connection CΓ[3] these reduce to the following three (the other two cancel):

Rlijk =
�Llij
�xk

−
�Llik
�xj

+ LmijL
l
mk − LmikLlmj ,

P
l (1)
ij(k) =

∂Llij

∂yk1
− C l(1)i(k)∣j + C

l(1)
i(m)P

(m) (1)
(1)j(k) ,

S
l(1)(1)
i(j)(k) =

∂C
l(1)
i(j)

∂yk1
−
∂C

l(1)
i(k)

∂yj1
+ C

m(1)
i(j) C

l(1)
m(k) − C

m(1)
i(k) C

l(1)
m(j),

where C
l(1)
i(k)∣j =

�C
l(1)
i(k)

�xj
+ C

m(1)
i(k) L

l
mj − C

l(1)
m(k)L

m
ij − C

l(1)
i(m)L

m
kj . □

Remark 4.2. We have denoted by /1, ∣i and
∣∣ (1)
(i) the Cartan covariant deriva-

tives with respect to the corresponding ℝ−horizontal (temporal), M−horizontal and

vertical vector fields of the basis (18).
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5. Applications of the rheonomic Chernov metric

5.1. Geometrical gravitational theory

From a physical point of view, on the 1-jet space J1(ℝ,M4), the rheonomic

Chernov metric (12) produces the adapted metrical d−tensor

G[3] = ℎ11dt⊗ dt+ g[3]ijdx
i ⊗ dxj + ℎ11g[3]ij�y

i
1 ⊗ �y

j
1, (21)

where g[3]ij is given by (14). This may be regarded as a ”non-isotropic gravita-

tional potential”. In such a physical context, the nonlinear connection Γ[3] (used in

the construction of the distinguished 1-forms �yi1) prescribes, most likely, a sort of

“interaction” between (t)-, (x)- and (y)-fields.

We postulate that the non-isotropic gravitational potential G[3] is governed by

the geometrical Einstein equations

Ric
(
CΓ[3]

)
−

Sc
(
CΓ[3]

)
2

G[3]=KT , (22)

where Ric
(
CΓ[3]

)
is the Ricci d-tensor associated to the Cartan canonical connec-

tion CΓ[3] (in Riemannian sense and using adapted bases), Sc
(
CΓ[3]

)
is the scalar

curvature, K is the Einstein constant and T is the intrinsic stress-energy d−tensor

of matter.

In this way, working with the adapted basis of vector fields (18), we can find

the local geometrical Einstein equations for the rheonomic Chernov metric (12).

Firstly, by direct computations, we find:

Theorem 5.1. The Ricci d−tensor of the Cartan canonical connection CΓ[3] of

the rheonomic Chernov metric (12) has the following effective local Ricci d−tensor

components:

Rij := Rrijr =
1

4
ϰ1
11ϰ1

11S
(1)(1)
(i)(j) ,

P
(1)
i(j) = P

(1)
(i)j := P

r (1)
ij(r) =

1

2
ϰ1
11S

(1)(1)
(i)(j) ,

S(1)(1)(i)(j) = −9Spq1[3] S
rm1
[3]

(
S[3]ijpS[3]qrm − S[3]iprS[3]jqm

)
+

+
1

12

1

S[3]111
S[3]ij1 −

1

18

1

S2
[3]111

S[3]i11S[3]j11,

where S(1)(1)(i)(j) = S
r(1)(1)
i(j)(r) is the vertical Ricci d−tensor field.

Proof. Using the equality (20), by laborious direct computations, we obtain the

following equalities (we assume implicit summation by r and m):

∂C
r(1)
i(j)

∂yr1
= 3

∂Srm1
[3]

∂yr1
S[3]ijm −

1

2

1

S[3]111
S[3]ij1 +

5

9

1

S2
[3]111

S[3]i11S[3]j11,

∂C
r(1)
i(r)

∂yj1
= 3

∂Srm1
[3]

∂yj1
S[3]irm −

2

3

1

S[3]111
S[3]ij1 +

2

3

1

S2
[3]111

S[3]i11S[3]j11,
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C
m(1)
i(j) C

r(1)
m(r) = 9Smp1[3] Srq1[3] S[3]ijpS[3]mrq +

2

9

1

S2
[3]111

S[3]i11S[3]j11−

−1

2

1

S[3]111
Srq1[3]

{
S[3]irqS[3]j11 + S[3]jrqS[3]i11

}
− 1

6

1

S[3]111
S[3]ij1,

C
m(1)
i(r) C

r(1)
m(j) = 9Smp1[3] Srq1[3] S[3]irpS[3]mjq +

1

6

1

S2
[3]111

S[3]i11S[3]j11−

−1

2

1

S[3]111
Srq1[3]

{
S[3]irqS[3]j11 + S[3]jrqS[3]i11

}
− 1

12

1

S[3]111
S[3]ij1.

Finally, taking into account that we have

S(1)(1)(i)(j) = S
r(1)(1)
i(j)(r) =

∂C
r(1)
i(j)

∂yr1
−
∂C

r(1)
i(r)

∂yj1
+ C

m(1)
i(j) C

r(1)
m(r) − C

m(1)
i(r) C

r(1)
m(j),

and using the equalities

∂Srm1
[3]

∂yr1
S[3]ijm = −6Smp1[3] Srq1[3] S[3]ijpS[3]mrq,

∂Srm1
[3]

∂yj1
S[3]irm = −6Smp1[3] Srq1[3] S[3]irpS[3]jmq,

we obtain the required result. □

Remark 5.1. The vertical Ricci d−tensor S(1)(1)(i)(j) has the following property of sym-

metry: S(1)(1)(i)(j) = S(1)(1)(j)(i) .

Proposition 5.1. The scalar curvature of the Cartan canonical connection CΓ[3]

of the rheonomic Chernov metric (12) is given by

Sc
(
CΓ[3]

)
=

4ℎ11 + ϰ1
11ϰ1

11

4
⋅ S11, where S11 = gpq[3]S

(1)(1)
(p)(q).

Proof. The general formula for the scalar curvature of a Cartan connection is

(cf. [13]) Sc
(
CΓ[3]

)
= gpq[3]Rpq + ℎ11g

pq
[3]S

(1)(1)
(p)(q). □

Describing the global geometrical Einstein equations (22) in the adapted basis

of vector fields (18), it is known the following important geometrical and physical

result (cf. [13]):

Theorem 5.2. The local geometrical Einstein equations that govern the non-

isotropic gravitational potential (21) (produced by the rheonomic Chernov metric

(12)) are given by: ⎧⎨⎩
�11S11ℎ11 = T11
ϰ1
11ϰ1

11

4K
S(1)(1)(i)(j) + �11S11gij = Tij

1

K
S(1)(1)(i)(j) + �11S11ℎ11gij = T (1)(1)

(i)(j)

(23)
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0 = T1i, 0 = Ti1, 0 = T (1)

(i)1,

0 = T (1)
1(i) ,

ϰ1
11

2K
S(1)(1)(i)(j) = T (1)

i(j) ,
ϰ1
11

2K
S(1)(1)(i)(j) = T (1)

(i)j ,
(24)

where �11 = −4ℎ11 + ϰ1
11ϰ1

11

8K
.

Remark 5.2. The local geometrical Einstein equations (23) and (24) impose as the

stress-energy d−tensor of matter T to be symmetrical. In other words, the stress-

energy d−tensor of matter T must satisfy the local symmetry conditions

TAB = TBA, ∀ A,B ∈
{

1, i,
(1)
(i)

}
.

5.2. Geometrical electromagnetic theory

In the paper [13], using only a given Lagrangian function L on the 1-jet space

J1(ℝ,M4), a geometrical theory for electromagnetism was also constructed. In

this background of jet relativistic rheonomic Lagrange geometry, we work with an

electromagnetic distinguished 2-form F = F
(1)
(i)j�y

i
1 ∧ dxj , where

F
(1)
(i)j =

ℎ11

2

[
gjmN

(m)
(1)i − gimN

(m)
(1)j +

(
girL

r
jm − gjrLrim

)
ym1

]
,

which is characterized by the following geometrical Maxwell equations [13]⎧⎨⎩

F
(1)
(i)j/1 =

1

2
A{i,j}

{
D

(1)
(i)1∣j −D

(1)
(i)mG

m
j1 + d

(1)(1)
(i)(m)R

(m)
(1)1j−

−
[
C
p(1)
j(m)R

(m)
(1)1i −G

p
i1∣j

]
ℎ11gpqy

q
1

}
,

∑
{i,j,k}

F
(1)
(i)j ∣ k = −1

8

∑
{i,j,k}

∂3L

∂yi1∂y
p
1∂y

m
1

⎡⎣�N (m)
(1)j

�xk
−
�N

(m)
(1)k

�xj

⎤⎦ yp1 ,
∑
{i,j,k}

F
(1)
(i)j

∣∣∣ (1)(k) = 0,

where A{i,j} denotes an alternate sum,
∑
{i,j,k} means a cyclic sum and we have⎧⎨⎩

D
(1)
(i)1 =

ℎ11

2

�gip
�t

yp1 , D
(1)
(i)j = ℎ11gip

[
−N (p)

(1)j + Lpjmy
m
1

]
,

d
(1)(1)
(i)(j) = ℎ11

[
gij + gipC

p(1)
m(j)y

m
1

]
, D

(1)
(i)1∣j =

�D
(1)
(i)1

�xj
−D(1)

(m)1L
m
ij ,

Gki1∣j =
�Gki1
�xj

+Gmi1L
k
mj −Gkm1L

m
ij ,
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F
(1)
(i)j/1 =

�F
(1)
(i)j

�t
+ F

(1)
(i)jϰ

1
11 − F

(1)
(m)jG

m
i1 − F

(1)
(i)mG

m
j1,

F
(1)
(i)j ∣ k =

�F
(1)
(i)j

�xk
− F (1)

(m)jL
m
ik − F

(1)
(i)mL

m
jk,

F
(1)
(i)j

∣∣ (1)
(k) =

∂F
(1)
(i)j

∂yk1
− F (1)

(m)jC
m(1)
i(k) − F

(1)
(i)mC

m(1)
j(k) .

For the rheonomic Chernov metric (12) we have L = F 2
[3] and, consequently, we

obtain the electromagnetic 2-form F := F[3] = 0.

In conclusion, the locally-Minkowski rheonomic Chernov geometrical elec-

tromagnetic theory is trivial. In our opinion, this fact suggests that the metric

(12) has rather gravitational connotations than electromagnetic ones in its ℎ−flat

(x−independent) version, which leads to the need of considering x−dependent con-

formal deformations of the structure (as, e.g., recently proposed by Garas’ko in [6]).

6. Conclusion

In recent physical and geometrical studies ([1, 7, 14, 15]), an important role

is played by the Finslerian metric

F[2](t, y) =
√
ℎ11(t) ⋅

√
y11y

2
1 + y11y

3
1 + y11y

4
1 + y21y

3
1 + y21y

4
1 + y31y

4
1 (25)

which produces the fundamental metrical d−tensor

gij := g[2]ij =
ℎ11(t)

2

∂2F 2
[2]

∂yi1∂y
j
1

=
1

2
(1− �ij)⇒ gjk := gjk[2] =

2

3

(
1− 3�jk

)
.

The Finslerian metric (25) generates the jet canonical nonlinear connection

Γ[2] =

(
M

(i)
(1)1 = −ϰ1

11y
i
1, N

(i)
(1)j = −ϰ1

11

2
�ij

)
and the Cartan Γ[2]-linear connection

CΓ[2] =
(
ϰ1
11, G

k
j1 = 0, Lijk = 0, C

i(1)
j(k) = 0

)
.

For the Cartan connection CΓ[2] all torsion d−tensors vanish, except

R
(k)
(1)1j =

1

2

[
dϰ1

11

dt
− ϰ1

11ϰ1
11

]
�kj ,

and all curvature d−tensors are zero. Consequently, all Ricci d−tensors vanish and

the scalar curvature cancels. The geometrical Einstein equations (22) produced by

the Finslerian metric (25) become trivial, namely

0 = TAB, ∀ A,B ∈
{

1, i,
(1)
(i)

}
.

At the same time, the electromagnetic 2-form associated to the Finslerian metric (25)

has the trivial form F := F[2] = 0. In conclusion, both the metric-tensor based geo-

metrical (gravitational and electromagnetic) theories are shown to be trivial for the
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case of the rheonomic locally Finslerian Chernov metric (25). Hence, for developing

a non-trivial ℎ−model, one may need to consider other closely related alternatives

offered by ℎ−conformally-deformed models or by x−dependent rheonomic Finsler

metrics of m−root type.
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