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IMPLICIT TYPE FIXED POINT THEOREMS FOR BOUNDED
MULTIMAPS

Muhammad Usman ALI*?, Tayyab KAMRAN®*? Quanita KIRAN*

In this paper, we prove some implicit type fixed point theorems for bounded
multimaps in a partial metric space by introducing a new family of mappings from
4
( +) to R+ . Our results generalize some existing fixed point theorems. We also
construct some examples to establish the generality of our results.
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1. Introduction and Preliminaries

Matthews [1] introduced the notion of a partial metric space by using the
idea that in many problems the distance between same points is not always zero.
This notion has many applications not only in mathematics but also in computer
sciences [1]. Several authors compliment the work of Matthews and proved
several fixed point results in this setting, see for example [2-15]. We collect some
basis definitions and results to work with a partial metric space.

Definition 1.1 [1] Let X be a nonempty set. A mapping p: X x X - R" =[0,0)
is a partial metricon X, if for all x,y,z e X, we have

(P1) p(x,x)= p(y.y)= p(x,y) ifand only if x=y;
(P2) p(x,x)< p(x,y);

(P3) p(x,y)=p(y,x);

(P4) p(x,z)< p(x, y)+ p(y,z)- p(y.y).
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Remark 1.2 ([1]) If p(x,y)=0 then (P1) and (P2) implies x =y but converse is

not true in general.
Lemma 1.3 [1] Every metric space is a partial metric space.
Example 14 [1] Let X ={ab]:a,beR,a<b}. Define a function

p:XxX —>R* by, p(abl[c,d])=max{p,d}-min{a,c}. Then (X,p) is a
partial metric space. Note that p is not a metricon X.
Remark 1.5 [1] Every partial metric p on X generates a T, topology 7, on X
with base consisting of open balls (p—balls) {B,(x,&):x € X, & > 0f, where

B, (x,&)=1{ye X :p(x,y)< p(x,x)+&}
Definition 1.6 [1] Let (X, p) be a partial metric space. Then,
(a) A sequence {xn} in (X, p) is said to be convergent to a point xe X with
respect to 7, if and only if p(x,x)= lim p(x, x, )

(b) A sequence {xn} in X is said to be a Cauchy sequence if and only if
lim p(x,,x,) exists and is finite.

(c) A partial metric space (X, p) is called a complete partial metric space if every

Cauchy sequence {xn} in X converges with respect to 7, to a point x € X.

Remark 1.7 [1] For a partial metric space p on X, the function
d,(x,y)=2p(x, y)= p(x, %)= p(y, y)

defines a metric on X.

Lemma 1.8 [1] Let (X, p) be a partial metric space. A sequence {xn} in (X,dp)

is said to be convergent to a point x € X if and only if

p(x,x)= lim p(x, x,)= lim p(x,,x, ).
Lemma 1.9 [1] Let (X, p) be a partial metric space. Then
(a) A sequence {xn} in X is Cauchy in (X, p) if and only if it is Cauchy in
(x,d,).
(b) A partial metric space (X, p) is complete if and only if the metric space
(X, dp) is complete.

By Aydi et al. [16], a subset A of a partial metric space (X, p) is said to
be bounded, if there exist x, € X and M >0 such that for all ae A we have
aeB,(x,M), that is, p(x,,a)< p(x,,%,)+M. A subset A is closed, if
closedness is taken from (X,rp) where 7 is the topology induced by p. Let
Bp(x) be the family of all nonempty bounded subsets of the partial metric space
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(X, p). Now we recollect some important notions from [16]. Let A Be Bp(X),
then
p(x,A)=inf{p(x,a):ac A},
p(A,B)=inf{p(x,y):xe A yeB},
the function &, : B, (X)xB,(X)—>R" is defined as
5,(A,B)=sup{p(a,b):ae AbeBj.
Remark 1.10 [16] If d (x, A) = inf {dp(x,a): ae A}, then it is easy to prove that
p(x, A)=0 implies that d (x, A)=0.

Matthews [1] proved the Banach contraction principle in the setting of
partial metric spaces as follows:

Theorem 1.13 [1] Let (X, p) be a complete partial metric space and let
T : X — X be a mapping such that there exists « €[0,1) satisfying

p(TX, Ty) <ap(X,y)
for each x,y € X . Then T has a unique fixed point.

In this paper, we introduce a new class of implict type mappings, then by
using it we prove some implicit type fixed point theorems for bounded
multivalued mappings in partial metric space, as well as in partial metric space
endowed with a partial order relation. Haghi et al. [8] showed that the fixed point
theorem for mapping satisfying the given contractive condition in 0-complete
partial metric space may follows from the corresponding fixed point theorem for
mapping satisfying the same contractive condition in a complete metric space. It
is worth mentioning that the contractive condition we will use is new even in the
setting of metric space.

2. Main result

Let :[0,0) >[0,00) be a nondecreasing mapping such that
z:;lyx”(t)mo for all t>0 and w(t)<t for all t>0. By @, we denote the

family of functions ¢: (R*)* - R" =[0,), satisfying the following conditions:
(i) ¢ is continuous and nondecreasing in each coordinate;

(i) let u,,u, e R™ such that if u, <u, and u, <¢(u,,u,,u;,u,), then u, <y (u,). If
u, 2u, and u, <¢(u,,u,,u;,u,), then u, =0;

(iii) if ueR" such that u Sqﬁ(0,0,u,%uj, then u=0.

Following are some examples of g @, :
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* Let ¢ (u,,u,,u,,u,) = amax{u,,u,,u,,u,} with (t) = ot , where a €[0,1).
* Let ¢,(u;,u,,u,,u,) = au, with (t) = at, where a €[0,1).

e Let ¢,(u,u,,u,,u,) = amax{u,u,,u,} with w(t) = at, where « €[0,1).

e Let ¢,(u,,u,,U,,U,) = amax{u,,u,} with w(t) = ot , where a €[0,1).

e Let ¢, (u,,u,,u,,u,) = au, with y(t) = ot , where a €[0,1).

* Let ¢ (u,u,,Ug,U,) = %(u2 +Uu,) with y(t) = %t , Where a €[0,1).

o Let ¢7(u1,u2,u3,u4)=amax{ul,%(u2+u3),u4} with  w(t)=oat, where

a €[0,1).

o Let ¢(u,u,,u,u,)=au, +b(u,+u,)+cu, with w(t)=(a+2b+c)t, where
a,b,c are nonnegative real numbers such that a+2b+c<[0,1).

* Let ¢,(u,u,,u;,u,) =au, +bu, +cu, with w(t)=(a+b+c)t, where a,b,c are
nonnegative real numbers such that a+b+c €[0,1).

Theorem 2.1 Let (X, p) be a complete partial metric space and T : X — B, (X)
be a mapping such that for each X,y € X , there exist ¢ € @, and L >0 with

8, (Tx,Ty) < ¢( p(X,y), P(X,TX), p(y,Ty),%(p(y,TXH p(x,Ty))J

+L(p(y,TX) - p(y,y))- 1)
Then T has a fixed point.

Proof. Let {X,} be a sequence in X such that x,,, € Tx, for each ne NU{0}. If
Xy, = Xy for some N eNuU{0}. Then x, is a fixed point of T. Suppose
X, = X, foreach ne NU{0}. From (1), we have

P(Xn1s Xni2) < 8 (TXq, TX,)

1
< ¢( p(xn ' Xn+1)1 p(xn ’Txn)’ p(xn+1’TXn+1)1§( p(xn+1'TXn) + p(xn 'Txn+l))j
+ L( p(xml’TXn) - p(xn+1' Xn+l))

] PO X0 PG 5,0, PO 8,2) 3 (PO 1)+ 6 %,
+L(0)

< ¢( p(xn ! Xn+1)' p(xn ! Xn+1)’ p(xn+1’ Xn+2)’%( p(xn ! Xn+1) + p(Xn+1' Xn+2 ))j (2)
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We claim that p(X,.;, X,,,) < P(X,,X,,,) for each ne NU{0}. Suppose on
contrary that p(X,,;, X,,,) = P(X,. X,,,) for some n. Since ¢ is nondecreasing, by
using this in (2), we have

P(Xni1r Xni2) < PP(Xnu1 Xni2)s POXGs X1 ) P(Xg0 X2 )y P(Xpazs X 2))- @)
By (3) and property (ii) of @, we have

P(Xn.10 Xp2) = 0.
Which is a contradiction to our assumption, i.e. X, # X, for each ne NuU{0}.
Thus p(X,,;, X,,,) < P(X,,X,,,) forall n. From (2), we have
P(Xnsas Xai2) < AP (Ko Xy PR Xia)s PRy Xoia)s PO X00))- (4)

By (4) and property (ii) of @, we have

p(Xn+1’ Xn+2) < W( p(Xn ! Xn+1)) V ne N U{O}
Consequently, we get

DXyt X0,0) <" (p(%,,)), forall ne N U{0}. (5)
Let n>m, we have

n-1
p(xm’Xn) < p(xm’Xm+1)+ p(Xm+1'Xm+2)+“'+ p(Xn—l’Xn)_ Z p(Xi’Xi

i=m+1
< p(xm ) Xm+1) + p(Xm+1’ Xm+2) +eeet p(Xn—l’ Xn)
< l//m(p(XO! X)) +‘//m+l(p(xo' X)) +"'+‘//n71( P(Xo, X))

= S0 (Pt ).
Thus, we have B
(o 20) 20060, 1) <23 (05 X)) <
Therefore, we conclude that {x,} is a Cauchy sle_t;uence in (X,d,). Since (X, p)

is a complete partial metric space, by Lemma 1.9-(b), (X,d,) is a complete

metric space. Then there exists X" € X such that x, — x" e X with respectto d ,
as n —oo. By Lemma 1.8, we have
PO, XT) = lim PO, X7) = 1im Py, %,) = 0. (6)
From (1), we have |
0, (X TX) <5, (TX,, TXT)

n+1?

S¢( P(X, X7), P(Xy, TX,), p(X*.TX*),%(p(X*,Txm p(xn.Tx*))j
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+ L( p(X*!TXn) - p(X*! X*))
< ¢( p(xn 1 X*)’ p(xn ' Xn+1)1 p(X* !TX*)’%(D(X* ! Xn+1) + p(xn 1TX*))j

+ L(p(X*’ Xn+1) - p(X*! X*))'
By using the triangular inequality, it further implies that
§p (X*vTX*) < p(X*’ Xn+1) + §p (Xn+17TX*) - p(xn+1' Xn+1)
n+1'TX*)

< POXT, X)) FB(P(X, X7), P(Xy X ) POXT,TXT),

< p(X*7 Xn+1) + 5p (X

%(p(x"‘,xnﬂ) + P(X,, X") + (X", Tx")))

+ L( p(X*, Xn+l) - p(X*’ X*)) (7)
Letting n — o in (7), we have

J,(x", Tx) < ¢(0,0, p(x” ,Tx*),%(0+ p(x* ,Tx*))) +L(0)

* * 1 * *
£¢(0,0,5p(x ,TX ),Eép(x ,TX )). (8)
By (8) and property (iii) of @, we have &,(x",Tx") =0. Hence Tx" ={x}.

Corollary 2.2 Let (X, p) be a complete partial metric space and T : X — B, (X)
be a mapping such that for each x,y € X , we have

5,0 Ty) <a max{p(x, )P0, TV S (py. 0 + p(x,Ty))}

+L(p(y, TX) = p(y.y))
where « €[0,1) and L>0.Then T has a fixed point.

Proof. Let ¢(u,,u,,u;,u,) =4 (u,u,,u,,u,) = amax{u,u,,u,,u,} with w(t) =at,
where « €[0,1). From (1), we have

5,(TTy) < amax{p(x, 1), DT, 0TV S (py, 70 + p(x,Ty»}

+L(p(y, TX) = p(y, ),
for all x,y e X . Therefore by Theorem 2.1, T has a fixed point.
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Example 2.3 Let X = {(0,0),(0,%),(0,%],(0,1)} be endowed with partial metric

p define by p(x,y) = max{x,, y,}+max{x,,y,} for each X,y € X . Define

T:X —B,(X) by
{(0,0)} if Xe{(0,0),(O,%)}

e {eofog ) res(og)
() v

Consider ¢(u,,u,,u,,u,) :%max{ul,uz,us,w} with w(t) :%t and L=0. Now,

it can be easy to see that (1) holds. Hence by Theorem 2.1, T has a fixed point.
Theorem 2.4 Let (X, p) be a complete partial metric spaceand T: X — X bea

mapping such that for each x,y € X , there exist e ®, and L >0 with

p(Tx,Ty) < ¢( P(X, Y), P(X,TX), p(y,Ty)é(p(y,TX) + p(x,Ty))J

+L(p(y,TX) - p(y, ¥)).
Then T has a fixed point.
Proof. Proof of this theorem follows on same lines as of Theorem 2.1.

Let (X, p) be a partial metric space endowed with ordering =t and N(X)
is a set of all nonempty subsets of X. For A BeN(X), we have following
relations [17]:

* A<, B, if for each ae A there exists be B suchthat a < b.

<
* A<, B, if for each b € B there exists ae A suchthata < b.

Note that <, and <, are not partial orders on N(X) for detail see [18, Remark
3.5].

Theorem 2.5 Let (X, p) be a complete partial metric space endowed with
partial ordering =. Let T : X — B (X) be a mapping satisfying the following

conditions:
(i) there exists X, € X such that {X,} <, TX,;

(i) for X,y e X, x < y implies Tx <, Ty;
(i) if {x } is a nondecreasing sequence in X such that x, — X, thenx, < x
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for each n e NuU{0};
(iv) there exist g e @, and L >0 such that

8, (Tx,Ty) < ¢( p(X,y), p(X,TX), p(y,Ty),%(p(y,TX) + p(x,Ty))j

+L(p(y, Tx) - p(y, y)), (9)
foreach x,ye X withx < y.
Then T has a fixed point.

Proof. By hypothesis (i) there exists x, € X such that {x,} <, Tx,. Then there
exists x;, e Tx, such that x, < x;. By hypothesis (ii) we have Tx; <, Tx,. Then for
X, € TX, there exists x, e Tx, such that x; < x,. Continuing in this way we have
a sequence {x,} in X suchthat x,,, € Tx, for each ne NuU{0} and

Xo S X S X SX3S S Xy S Xy S (10)

If there exists some N € NU{0} such that x, = x,,, then x,, is a fixed point of
T. Suppose X, # X, foreach N e NU{0}. As x,, < x,,,, for each n. From (9),

we have
p(xn+1’ Xn+2) = 5p (Txn 1TXn+1)

< ¢( p(Xn ' Xn+1)1 p(xn ’Txn)! p(Xn+1’TXn+1)7%( p(Xn+1'TXn) + p(Xn 'Txn+1))]

+ L( p(xn+l’TXn) - p(Xn+17 Xn+l))

< ¢( p(Xn ! Xn+1)’ p(xn ! Xn+1)1 p(xn+l’ Xn+2)’%( p(xn+l’ Xn+1) + p(xn ! Xn+2 )))
+L(0)

< ¢( p(xn ' Xn+1)1 p(xn ! Xn+1)’ p(xn+l’ Xn+2)’%( p(xn ' Xn+1) + p(xn+17 Xn+2))j‘ (11)

We claim that p(X,.,,X.,) < p(X,,X,,,) for each ne NuU{0}. Suppose on
contrary that p(X,.;, X,.,) = P(X,, X,,,) for some n. Since ¢ is nondecreasing, by
using this in (11), we have

P(Xnas Xni2) < PP (Xoas Xo0)s POG Xi1)s PO X2 )s P(Koas X2): (12)
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By (12) and property (ii) of @, , we have p(X,.;,X,,)=0, i.e, X, ; =X, ;.
Which is a contradiction to assumption that x, = x,,, for each ne NU{0}. Thus
P(X,.1) Xi0) < P(X,, X,,,) Toreach ne NU{0}. By using it in (11), we have

DXyt X012) < APy Xi)s PO X1y P Xoi2)s PO %)) (13)
By (13) and property (ii) of @, we have

p(xn+l’ Xn+2) < l//( p(xn ! Xn+1))v ne N U{O}
Consequently, we get

P(Xn1: Xnr2) ¥ " (P(X%0, %))V N e NU{0}. (14)
Let n>m, we have

n-1
p(xm ) Xn) < p(xm J Xm+1) + p(xm+l’ Xm+2) oot p(Xn—l' Xn) - Z p(xi J Xi)

i=m+1
< p(xm ) Xm+1) + p(Xm+l’ Xm+2) +eeet p(xn—l’ Xn)
<y"( P(Xy, X;)) +V/m+l(p(X0'X1)) +"'+V/nil( P(Xy, X;))

= S0 (P04 ).
Thus, we have B
06 %,) < 2006 %,) £ 235 (08 1)) < .
Therefore, we conclude that {x,} is a Cauchy sé;qmuence in (X,d,). Since (X, p)

is a complete partial metric space, by Lemma 1.9-(b), (X,d_ ) is a complete

metric space. Then there exists X" e X such that x, — x" e X with respect to d,
as n —oo. By Lemma 1.8, we have
PO, XT) = 1im p(x,, x7) = lim p(x,,%,) =0. (15)

By hypothesis (iii), we have x, < x* for each ne NuU{0}. Thus, from (9), we
have

0, Xy, TX) <5, (TX,, TXT)

£¢( P(X, X7), P(X,, TX,), p(X*,TX*),%(p(x*,Txm p(xn,Tx*))j
+L(p(X",Tx,) = p(x", X))
S¢( P(X, X7), P(Xq s Xq,0), p(X*,TX*),%(p(x*,xnﬂ)+ p(xn,Tx*))j

+ L(p(X*’Xml)_ p(X*1X*))' (16)
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By using the triangular inequality, it further implies that
5p (X* ,TX*) < p(X*’ Xn+1) + 5p (Xn+l'TX*) - p(Xn+1’ Xn+1)
n+1’TX*)
< p(X* 1 Xn+1) + ¢( p(xn ' X*)’ p(xn ! Xn+1)’ p(X* ’TX*)v
1 * * * * * * *
5 (PO X00) + P0G XT) + PO, TX))) + LP (X X.0) = POX,X7))-(17)
Letting n — oo in (17), we have

o,(x", Tx") < ¢(0,0, p(x*,Tx*),% p(x*,Tx*))+ L(0)

< PO %) + 6, (X

g¢(0,0,5p(x*,Tx*),%5p(x*,Tx*)). (18)
By (18) and property (ii) of @, we have &,(x",Tx")=0. Hence Tx" ={x}.
Moreover x" is a fixed point.

Corollary 2.6 Let (X, p) be a complete partial metric space endowed with
partial ordering <.Let T: X — B,(X) be a mapping satisfying the following

conditions:
(i) there exists X, € X such that {X,} <, TX,;

(i) for X,y e X, x < y implies Tx <, Ty;

(iii) if {x } is a nondecreasing sequence in X such that x, — X, then x,, < x for
each ne NU{0};

(iv) there exist « €[0,1) and L >0 such that

5,(Tx,Ty) < maX{ p(X, y), P(X, TX), p(y,Ty),%(p(y,TX) + p(x,Ty))}

+L(p(y, TX) = p(y.y))
forall x,ye X withx < y.

Then T has a fixed point.

Proof. Let ¢(u;,u,,u;,u,) =d(u,u,,u,u,) =amax{u,u,,u,u,} with w(t) = o,
where « €[0,1). From (9), we have

5,0 Ty) <a max{p(x, )P0, TV S (py. 0 + p(x,Ty))}
+L(p(Yy, )= p(y, ¥))
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for all x,y e X with x < y. Therefore by Theorem 2.5, T has a fixed point.

Example 2.7 Let X = {(0,0),(0,%),(0%),(0,1),(1,0)} be endowed with partial

metric p define by p(x,y) = max{x,, y,}+max{x,, y,} for each x,y € X and
partial ordering is defined as follows
(x1,%2) < (Y, y2) © X = yand x, <,.

Define T : X — B, (X) by
{(0,0)} if xe {(0,0),[0,%]}

fonfot ot

[o%j if x=(0,1)
{(1.0),O,1)} if x=(1,0)

Consider ¢(u1,u2,u3,u4):%max{ul,uz,u3,u4} with z//(t):%t and L=0. Now,

it can be easy to see that (9) holds. For x, = (1,0) we have {x,}=<, Tx,. Also, if
x <y, then Tx =<, Ty. Hence all conditions of Theorem 2.5 holds. Therefore, T
has a fixed point.

Remark 2.8 Note that Theorem 2.1 is not applicable on above example, when
L=0.To see consider x =(0,0) and y =(1,0).

Theorem 2.9 Let (X, p) be a complete partial metric space endowed with partial
ordering <. Let T : X — B, (X) be a mapping satisfying the following conditions:
(i) there exists x, € X such that Tx, <, {X,};

(ii) for X,y e X, x < y implies Tx<, Ty;

(iit) if {x,} is a nonincreasing sequence in X such that x, — x, then x,, = x for
each ne NuU{0};

(iv) there exist g € @, and L >0 such that

5, (Tx,Ty) < ¢( P(X, ¥), p(X,TX), p(y,Ty),%(p(y,TX) + p(x,Ty))j
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+L(p(y,TX) - p(y.y))
foreach x,ye X withx > y.

Then T has a fixed point.

Proof. The proof follows on the same lines as in Theorem 2.5.
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