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In this paper we prove the equivalence of different norms on normal
normed finite dimensional weak hypervector spaces, the weak isomorphism between
weak hypervector spaces and their correspondent classical vector spaces. Finally,
we prove the continuity of operators on normal normed weak hypervector spaces.
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1. Introduction

The concept of hyperstructure was first introduced by Marty [3] in 1934 and
has attracted attention of many authors in last decades and has constructed some
other structures such as hyperrings, hypergroups, hypermodules, hyperfields, and
hypervector spaces. These constructions has been applied to many disciplines such as
geometry, hypergraphs, binary relations, combinatorics, codes, cryptography, proba-
bility, and etc. A wealth of applications of this concepts are given in [1, 2, 4−7, 10, 11].

In 1988 the concept of hypervector space was first introduced by Scafati-
Tallini. She studied more properties of this new structure in [9]. Note that the
hypervector spaces used in this paper are the special case where there is only one
hyperoperation, the external one, all the others are ordinary operations. The general
hypervector spaces have all operations multivalued also in the hyperfield (see [11]).
In [4] we defined the concepts of dimension of weak hypervector spaces and proved
some results. Now we want to use that results and prove the equivalence of different
norms on normal normed finite dimensional weak hypervector spaces. We define the
concept of a weak isomorphism and prove that normal normed weak hypervector
spaces and their correspondent classical finite dimensional vector spaces with the
same dimension are weak isomorphic. Also we prove another results in this field.
Finally, we prove the continuity of operators on normal normed weak hypervector
spaces. This paper is arranged as follows. In section 2 we define the preliminary
concepts and then in section 3 we state the main results of this note.
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2. Preliminaries

Definition 2.1. [9] A weak or weakly distributive hypervectorspace over a field
F is a quadruple (X,+,o,F ) such that (X,+) is an abelian group and o : F ×X −→
P∗(X) is a multivalued product such that:

(1) ∀a ∈ F, ∀x, y ∈ X, [ao(x+ y)] ∩ [aox+ aoy] ̸= ∅,

(2) ∀a, b ∈ F, ∀x ∈ X, [(a+ b)ox] ∩ [aox+ box] ̸= ∅,

(3) ∀a, b ∈ F, ∀x ∈ X, ao(box) = (ab)ox,

(4) ∀a ∈ F, ∀x ∈ X, ao(−x) = (−a)ox = −(aox),

(5) ∀x ∈ X, x ∈ 1ox.

We call (1) and (2) weak right and left distributive laws, respectively. Note that
the set ao(box) in (3) is of the form ∪y∈boxaoy.

Definition 2.2. [9] Let (X,+, o, F ) be a weak hypervector space over a field F , that
is the field of real or complex numbers. We define a pseudonorm in X as a mapping
∥∥: X −→ R, of X into the reals such that:

(i) ∥ 0 ∥= 0,
(ii) ∀x, y ∈ X, ∥ x+ y ∥≤∥ x ∥ + ∥ y ∥ ,
(iii) ∀a ∈ F, ∀x ∈ X, sup ∥ aox ∥=| a |∥ x ∥.

Definition 2.3. Let X and Y be hypervector spaces over F . A map T : X −→ Y
is called
(i) linear if and only if

T (x+ y) = T (x) + T (y), T (aox) ⊆ aoT (x), ∀x, y ∈ X, a ∈ F
(ii) antilinear if and only if

T (x+ y) = T (x) + T (y), T (aox) ⊇ aoT (x), ∀x, y ∈ X, a ∈ F ,
(iii) strong linear if and only if

T (x+ y) = T (x) + T (y), T (aox) = aoT (x), ∀x, y ∈ X, a ∈ F .

3. Main results

By Lemma 3.1 in [4] we have the following definition.

Definition 3.1. [4] If a ∈ F and x ∈ X, then Special point zaox for 0 ̸= a is the
element of aox such that x ∈ a−1ozaox and for a = 0, we define zaox = 0.

Remark 3.1. Note that if X is a normed weak hypervector space, then ∥zaox∥ =
|a|∥x∥.

As the descriptions in [4], zaox is not unique, necessarily. So the set of all
these elements denoted by Zaox. In the mentioned paper we introduced a certain
category of weak hypervector spaces. These weak hypervector spaces have been
called ”normal”. In [4], the following lemma stated a criterion for normality of a
weak hypervector space.
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Lemma 3.1. [4] Let X be a weak hypervector space over F . X is normal if and
only if

za1ox + za2ox = z(a1+a2)ox, ∀x ∈ X, ∀a1, a2 ∈ F,

zaox1 + zaox2 = zao(x1+x2), ∀x1, x2 ∈ X, ∀a ∈ F.

Remark 3.2. Before to state our results we describe some fundamental concepts
from [4]. Let X be a weak hypervector space over F . A subset M = {x1, ..., xn} of
X is said to be linearly independent if the equation

0 =

n∑
i=1

zαioxi

implies α1 = α2 = ... = αn = 0, where α1, ..., αn are scalars. An arbitrary subset M
is linearly independent if every nonempty finite subset of M is linearly independent.
M is a basis of X if M is linearly independent and for any x of X there exists
scalars α1, ..., αn such that x =

∑n
i=1 zαioxi, where {x1, ..., xn} is a subspace of M .

Now we are prepare to define the new concept of weak isomorphism between
two weak hypervector spaces.

Definition 3.2. Let X and Y be weak hypervector spaces over F . A map T : X −→
Y is called weak linear operator if T is additive and satisfies

T (Zaox) ⊆ aoTx, (a ∈ F, x ∈ X).

Let X and Y be normed spaces. If T is bijective and T and T−1 are continuous,
then T is called a weak isomorphism and X and Y are said to be weak isomorphic.

Proposition 3.1. [4] Let X be a normal weak hypervector space over F . Then X
with the same defined sum and the following scalar product is a classical vector space

a.x = zaox, (a ∈ F, x ∈ X).

Proposition 3.2. Let (X,+, o) be a normal n-dimensional weak hypervector space
over F with the basis {x1, ..., xn}. Then (X,+, .) is n-dimensional classical vector
space with the same basis such that the operation . is a scalar product with the
following definition.

a.x = zaox, (a ∈ F, x ∈ X).

Furthermore, if (X,+, o, ∥ . ∥) is a normed weak hypervector space over F , then
(X,+, ., ∥ . ∥) is normed classical vector space.

Proof. Call (X,+, o) and (X,+, .) by X1 and X2, respectively. By Proposition 3.1,
X2 is a classical vector space. So it is enough to prove that {x1, ..., xn} is a basis for
X2. Let a1, ..., a2 be scalars so that

∑n
i=1 ai.xi = 0. This implies

∑n
i=1 zaioxi = 0.

Since {x1, ..., xn} is linearly independent in X1, we obtain a1 = ... = an = 0 that
implies the linearly independence of {x1, ..., xn} in X2. It is easy to check that
{x1, ..., xn} spans the elements of X2.

If X is normed weak hypervector space, then for any a ∈ F and x ∈ X we
have

∥ a.x ∥=∥ zaox ∥=| a |∥ x ∥ .

the remain properties of norm are inherited. �
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Remark 3.3. Denote the classical vector space correspondent to weak hypervector
space X by Xc.

Lemma 3.2. Let X be a normal normed finite dimensional weak hypervector space.
Then the different norms on X are equivalent.

Proof. Let ∥ . ∥1 and ∥ . ∥2 be two norms on (X,+,o). By Proposition 3.2, Xc with
any one of these two norms is a normed finite dimensional classical vector space.
We know that the different norms on a normed finite dimensional vector space are
equivalent so we can conclude that ∥ . ∥1 and ∥ . ∥2 are equivalent. �
Remark 3.4. Recall from [4] that the coordinate of x ∈ X with regard to the basis
{x1, ..., xn} is the scalars (a1, ..., an) such that x =

∑n
i=1 zaioxi. It is easy to check

that ∥ x ∥=
∑n

i=1 | ai | has the properties of a norm that by preceding lemma
is equivalent to other norms on X. Moreover in Lemma 3.10 (b) in [4] we have
aozbox = abox.

Lemma 3.3. Let X be a normal normed n-dimensional weak hypervector space over
F. Then Fn and X are weak isomorphic.

Proof. Define T : X −→ Fn by Tx = (a1, ..., an) that therein (a1, ..., an) is the
coordinate of x with regard to {x1, ..xn} as a basis of X. Since X is normal, T is
well-defined and additive, by Lemma 3.3. let a ∈ F . By Lemma 3.10 (b) in [4] and
Lemma 3.1 we have

zaox = zao
∑n

i=1 zaioxi
=

n∑
i=1

zaozaioxi =
n∑

i=1

zaaioxi

that implies
Tzaox = (aa1, ..., aan).

On the other hand we have

aTx = (aa1, ..., aan).

Hence we obtain
Tzaox = aTx

Therefore T is a weak linear operator. Injectivity and surjectivity of T is clear. By
Remark 3.4, assume that

∑n
i=1 | ai | is the norm of x. Let this norm be the norm

of (a1, ..., an) in Fn. So we have

∥ x ∥=
n∑

i=1

| ai |=∥ (a1, ..., an) ∥=∥ Tx ∥ .

Let y ∈ X and (b1, ..., bn) be the coordinate of y. Since T is additive, we obtain

∥ Tx− Ty ∥=∥ x− y ∥
that imply the continuity of T and T−1. So the proof is completed. �
Corollary 3.1. We have the following statemens:

(1) Any two normal normed n-dimensional weak hypervector space over a field
are weak isomorphic.

(2) Any normal normed finite dimensional weak hypervector space is a com-
plete space.
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(3) Any weak subhypervector space of a normal normed finite dimensional weak
hypervector space is closed.

Proof. (1) and (2) are inferred from Lemma 3.11 and then (3) is inferred from (2). �

Theorem 3.1. Let X be a normal normed finite dimensional weak hypervector
space, Y a normed weak hypervector space and T : X → Y a weak linear operator.
Then T is continuous.

Proof. Let the dimension of X be n, {x1, ..., xn} be a basis of X and the coordinate
of an arbitrary element x ∈ X be (a1, ...an). By Remark 3.4,

∑n
i=1 | ai | can be the

norm of x that is equivalent to any other norm on X. So we have

∥ Tx ∥=∥ T (
n∑

i=1

zaioxi) ∥=∥
n∑

i=1

T (zaioxi) ∥ ≤
n∑

i=1

∥ T (zaioxi) ∥

≤
n∑

i=1

| ai |∥ T (xi) ∥

the last inequality is because of the weak linearity of T . Setting k = max{Tx1, ..., Txn}
we obtain

∥ Tx ∥≤ k

n∑
i=1

| ai |= k ∥ x ∥ .

So T is bounded by Definition 3.2 in [6]. It is easy to prove that any additive and
bounded operator is continuous. �

Corollary 3.2. Let X be a normal normed finite dimensional weak hypervector
space, Y a normed weak hypervector space and T : X → Y a linear operator. Then
T is continuous.

Proof. By Definition 2.3, we know T (aox) ⊆ aoT (x) for all x ∈ X and a ∈ F . Since
T (zaox) ∈ T (aox), T is weak linear. Hence by Theorem 3.1, T is continuous. �

As stated in Introduction, the hypervector spaces used in this paper are the
special case where there is only one hyperoperation. So it is natural the following
question:

Question. What is the similar argument of this paper for the general hyper-
vector spaces have all operations multivalued?
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