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MULTIPLE (n,m)-HYBRID LAPLACE TRANSFORMATION

AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID
SYSTEMS. PART I

Valeriu PREPELITA'

Este prezentat un spatiu de functii original care sunt continue in raport cu n
variabile si discrete in raport cu m variabile. Pe aceastd multime se defineste o
transformare hibrida multipla de tip Laplace si z. Se studiaza principalele
proprietdti ale acestei transformari, printre care teoremele de liniaritate, intdrziere,
deplasare, derivare gi diferentd a originalului, derivare a imaginii. Aceste
proprietati vor fi utilizate intr-o lucrare ulterioard pentru a rezolva ecuatii multiple
diferentiale cu diferente i ecuatii integrale multiple §i pentru obtinerea
reprezentarii sistemelor de comandd hibride multiple in domeniul frecventd.

A space of original functions which are continuous with respect to n
variables and discrete with respect to m variables is presented. A multiple hybrid
Laplace and z type transformation is defined on this set. Its main properties are
studied, including linearity, time-delay, translation, differentiation and difference of
the original, differentiation of the image. Other theorems such as integration and
sum of the original, convolution, initial and final values etc. will be presented in a
subsequent paper, as well as some methods to determine the originals.

These properties will be used to solve multiple differential-difference and
multiple integral equations and to obtain the frequency-domain representations of
multidimensional hybrid control systems.

Key words: original functions, multiple hybrid Laplace transformation,
continuous-discrete (nD) systems

1. Introduction

In the last three decades the theory of multidimensional (nD) control

systems knew a strong development, due to its applications in various important
domains as image processing, computer tomography, geophysics, seismology etc.

A distinct branch of this theory is represented by the continuous-discrete
nD systems which appear as models in many problems, for instance in the study
of linear repetitive processes [1], [2], [10] or in the iterative learning control
synthesis [6]. Such hybrid systems were studied in [3], [4], [S], [7], [8].

! Prof., Department of Mathematics I, University POLITEHNICA of Bucharest, Romania, e-mail:
vprepelita@mathem.pub.ro



106 Valeriu Prepelita

In the theory of "classical" 1D systems the frequency domain methods,
based on Laplace transformation in the continuous case or z -transformation in
the discrete-time case, play a very important role. In order to extend the frequency
domain methods to multiple hybrid systems one needs a generalization of these
transformation.

The aim of this paper is to give a complete analysis of a suitable hybrid
Laplace-z type transformation and to emphasize its applications in the study of
multidimensional continuous-discrete systems or for solving multiple hybrid
equations. In section 2 the continuous-discrete original functions are defined and
it is shown that their set is a complex commutative linear algebra with unity. A
multiple hybrid Laplace transformation is defined as a linear operator defined on
this algebra and taking values in the set of multivariable functions which are
analytic over a suitable domain.

The main properties of this transformation are stated and proved, including
linearity, homothety, two time-delay theorems, translation, differentiation and
difference of the original, differentiation of the image, integration and sum of the
original, integration of the image, convolution, product of originals, initial and
final values. Some results are generalizations of the properties of the 2D
continuous-discrete transformation studied in [9]. Other properties and some
methods for determining the original will be presented in Part II.

Some applications of the (n,m) -hybrid Laplace transform will be provided

in Part III to solve multiple differential-difference and integral equations as well
as for the study of multidimensional continuous-discrete systems.

2. Multiple (n,m)-hybrid Laplace transformation

We denote by (n) the set {1,2,...,n}.

Definition 2.1. A function f:R"xZ" — C is said to be a continuous-
discrete original function (or simply an original) if f has the following
properties:

D) f(t,eestpskys k) =0 if £, <0 or k; <0 for some ie(n) or
jem).

() fCyeoyskyy..nky,) 1S piecewise smooth on R for any
(ky,... k) € 2.

(ii1) M, >0,0,eR,ien), Ry >0, je(m) such that

Lo

n
| fWstyikyse k) [SM pexpl Y ot [ R (2.1)
j=1

j=1
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Vi;>0,ie(n), Vk; 20, je(m).

The constants o fi> R 4 will be also denoted by o;, R - The smallest such
constants are called respectively the indices of the order of growth and the radii of
convergence of the original function f .

We denote by 0, , the set of original functions f:R"xZ"™ —C.
Sometimes we shall denote by f(#;k) the value of f at f=(t,....t,),
(k15...,ky,) . The structure of O, , is established in the Propositions 2.2 and 2.4

below, whose proofs are omitted for lack of space.
Proposition 2.2. The set Oy, ,, with the addition, multiplication and scalar

multiplication is a complex commutative linear algebra with unity, where the unit
element is the "unit step function” u, u(ty,...,t,;ky,....k,,) =1 on RIxZ! and

equal to 0 otherwise .
Definition 2.3. Given f,g €0, ,,, the (n,m)-hybrid convolution of f

and g is the function denoted by f * g defined by

ky K
t t,
* g)(t,....t k... k,) = Uyt 31,00 ) -
(f * Q) k) =[] Z Zf( b))

gt —uy,..t, —u sk —1,...k, =1 )du,...du,

for (t1,...tmk1,...km)ER’ xZ" and equal to 0 otherwise.
Proposition 2.4. 0,, ,,, is closed under the (n,m)-hybrid convolution.
Proposition 2.5. 0, ,, with the addition, the (n,m)-hybrid convolution

and the scalar multiplication by complex numbers is a commutative linear
algebra with unity.

Proof. By Propositions 2.2 and 2.4, O, , is closed under the three
mentioned operations. One can verify that the (n,m)-hybrid convolution is
distributive, commutative and o(f*g)=(of)*g=f*(ag), VaeC,
f*8,,=3,,%f=/f where 3, , €0, , is defined by

n
13 if k=..=k,=0
i=l
Sn,m(tl""’tn;kl""ﬂkm):
0 otherwise,
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where 0 is the Dirac distribution.

Definition 2.6. For any original f', the function

F(Sl""’sn;ZID""Zm):JO -[O : :0..~kZ::0f(tl,.u-atn;klﬂ""km)' (23)

oSt L Sl SRy
e ezt eeez trdt L dt,

is called the (n,m)-hybrid Laplace transform (or the image) of f .
We shall also use the notation F'(s;z) for F(s,,...,8,52,...,2,).

Proposition 2.7. The multiple improper integral and the multivariable
Taylor series in (2.3) are absolutely convergent in the domain

D(f)=A(S1s+sSp3 215 s 2) € CT ™ |Res; > 0 i €(n)s | 2 > Ry, j € (m)} (2.4)
and uniformly convergent on any domain
D'(f) = (S5 es8p3 2155 2n) €C"T ™ [Res; 2 07, i€ m); |2 |2 R, j e (m)}

with >0, ie(n) and R}- >Rp, jelm).

—(Res;—o ;)1

Proof. Since Res; >oc 4 and |z, [> R;, lim e =0, Vie(n)

t;—>0

o9 R kj

and the geometric series z v/ are convergent and have the sum
k;=0 E

Z.

)] , j €{(m) . Then, by (2.3) and (iii) we obtain
12 1=Ry

Mfﬁ| z, |
(ll[ (Res, — O_/z)j(lﬂ[q Z; | _Rﬁ)J

Analogously, for Res; 20;>04, ie(n) and |z;[>R;>R;, je(m),

| F(SyseeesS,5Z10e 002, |S

>%m

<o, (2.5)

one obtains

n
|F(Sl,...,Sn;Zl,...,Zm)|S[H (

i=l1

© _( ;'_ /)ti o Ry
,[0 G dtijJHR—J:J -

j=1
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m
MIT R;
j=1

LH (o —Gﬁ)]{H (R} —Rﬁ)J
i=1 j=1

and the uniform convergence results as a consequence of the Weierstrass criterion.

i
Corollary 2.8. The (n,m)-hybrid Laplace transform F(s;z) is analytic in
the domain D(f) (2.4).

<00,

b

Remark 2.9. Assume that s, > o and Argsl.e(—g E) for some
ie(n);then Res, > o and by (2.5) lim | F(s),...,5,521,---,2) |=0.
§;—>0

Let us denote by 4, , the complex linear algebra of the functions
F :C"™™ — C which are analytic in a domain of the form (2.4).

Definition 2.10. The operator L, ,, : Oy, —> Ay, defined by (2.3) is
called the (n,m)-hybrid Laplace transformation ((n,m)-HLT).

Now, we shall emphasize the principal properties of the operator £, ,, .

Theorem 2.11 (Linearity). Forany f,g €0, , and a,B€C,

Ly mlof +Bg]= Ly [ f1+B Ly mlg]. (2.6)

Proof. Equality (2.6) is an immediate consequence of (2.3) and
Proposition 2.2 and it holds in D(f)(1D(g).
i

Theorem 2.12 (Homothety). If there exists (by,...,b,) € (N*)m such that

S(Wseestyshyyekyy)=0  for any  (f1,....t:k,....ky) € R} x 21 with
(k1s.... k) # (By,....by,), then

Ln,m[f(altla---,antn;blkla---:bmkm)] =

n - - 2.7)

-1 -1 1. b ! (
:[ a; ]F(al Sloeens@y Sp3Z) seeesZpt)
i=1



110 Valeriu Prepelita

for any a;>0, s5;€C with Res;>a054, i€(n) and any z;eC with

b, .
|z |>Rﬁ’ , je{m).
Proof. By using the change of the variables of integration a;t; = x;,

i € (n) and the change of the indices of summation b jk j= / js J€ (m) , we get

Ln,m[f(alll""7antn;b1klﬂ""bmkm)] =

0 0]
j;” j;” S S F @yt byk) -
k=0 k,=0

n { Mmooy
expl — ) a; st H z; 7 dxy .. .dxy =
i=1

1. b b,
(H a; }F(al Sloeeos@p Sp3Z) seeesZpt )

Theorem 2.13 (First time-delay theorem). For any (ay,...,a,) € RY,
b,....b,)eZ’

Ly mlf (G —ays. sty —apsky = by, ok — b)) =

-b;
:eXP[ z alSlJ H Zj SAF(S1e o803 2150 Z)-

i=1
Proof. By the change of variables #—a; =x;, ie(n), k;=b;=1;,

2.8)

j €{m) and by taking into account condition (i) in Definition 2.1, we obtain:
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Jo Iy Z Zf(tl_al’a sk =Dl = by

=0

n mo .
- €XPp —z Siti H Zj 4 dfl...dtn =

exp[_ﬁaisi][ﬁ Jj N Z Zf(xl, il il )
N

equality which proves (2.8).
O
We shall use the following notations : for some sets o = {ij,...,i,} <(n)

and  B={j,....Jq}=(m), |a|=p (the cardinality of a), [Bl=q,
wa=tleca or e=d}, Eg={3|6cP or §=}; for e€ £, and S€ Ep,
e=(n)\e, d=(m)\3.1f e={i} or 5=1{j}, i, denote € and § respectively.
For a:(ai)l-eaeR‘f‘ with a; >0, Vieo and b=(bj)jEBeZ|E|, with
bj>0, Vjep and for 8=(81,...,8y)€Ea and 8=(61,...,6H)€Ef3 we denote
by D, and Dj 5 the sets D, . =H [0,a;] and Dp, 5 = H {0.L....,6; -1} and
ieg jebd

by J.D and ) the multiple integral j:' JZ’ , respectively the multiple

o Dy s
b51 -1 b5 -1
sum z Z if €= or = the corresponding multiple integral or sum
5=0 ks, =0

lack; f (t+a;k+b) denotes
Sty oty + @5t o li 1t 4G St el

kl""’kjl—l’kjl +bj1’kj1+1""’qu_1’k +b kj T P ’km)

Definition 2.14. For a = {its..sipt < (n) and B={j,...,j,} =(m), the
(o, B) -partial (n,m)-hybrid transform of the original f is defined by
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PN o 3 sty

kj =0 k; —0

. exp(— Zn: st ]{H z]_.kf ]dtl
iea jep

If a=(ny and B=(m), LB =1, , ;if =D, L35 = L, (the multiple Laplace
transformation) ; if a=4, Lf,f =2, (the multiple z-transformation); if
a=p=0, Lo f1=1.

Theorem 2.15. (Second delay theorem). For any a=(a;);cq € R‘f' and
b=(b;)jep 2P

L, [f(t+ak+b)] —exp(Z as](n z JF(s;z)+ (2.10)

ica jep

DD I Z LS (6K)] exp( > s,.z,.)[n z_,_.k’)H dt,.

eek, Oeky ica jeo ice

2.9)

Proof. By the change of variables #; +a; =x;, iea, k;+b;=1;, jep,

one obtains the (n,m) -hybrid transform in (2.10) in the form:

[ kéo...kéof(wa;kw)exp[ S, J(Hz }dtl

i=l

ica jep “ip =

-f(tl,...,xil,...,xip,...,xn;kl,...,ljl,...,qu,...,kn)dtl... xl-l ...dxip dtn
i . 0 0 a; il i i
By replacing succesively -[a,- :-[0 _-[0 and Z = z - Z , a long but
L=b, 1,=0 ;=0

straightforward calculus gives (2.10).
Theorem 2.16. (Translation). For any a;€C, ie(n), b; eC\{0},

Jemy,
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n
Ln,m exp[z altlJ H b j f(t tn,kl, °9 ) =

i=1 (2.11)

=F(sy—ay,...,s, —an;zlbl_ ,...,zmb,; )

where Res; >Rea;+0;, ie(n) and |z; |>[b; Ry, jel{m).

Proof. The (n,m)-hybrid Laplace transform in (2.11) has the expression

[ Z Z exp(z iti)Hbff Ftseestyikye sy

=0 i=1 j=1

m

n m —k. 0 0 0 0
- €Xp —Z H Z; J dy ... J.O J.O kzo ...kzof(l‘l,...,tn;tl,...,lm)'
= 1= m=

n
'eXp[—Z (s1—q; )ti} H (z; b_1 k dty,...,dt, =
i=1

- -1
=F(sy—ay,....s, —a,;z1h ,...,Zmbm ).
i
We introduce the following notations: given o ={i,...,i,} =(n), a p-

tuple (yil,...,yip)eNp is denoted by y, or simply by vy and

of o _ S
ot’ 6t,.7"' --~8l‘,.7“’
1 P

Si’" . The family of all unvoid subsets € of a is

denoted by E;,X or Ey. For seE;x, g=ao\g, sgﬂ =H Slyi and sgg =1 if
iee
e=a; if e={y,...1,} and ngz(nll,...,n,p)eN”, Ne <y means m; <7y;,
Vieg; [ (Og;k) denotes the limit from the right
f(tl"'"t11—170+’tl1+17"'9t1p—170+’tlp+l""’tn;klﬁ""km);
if e={i} then f(0i;k) is denoted by  f(0/;k). Similarly
S k... k, 1,0,k

je1s--ok,) 1s denoted f(#0;) and we can use the notation

£(07;0 ;) which combines these notations.

Theorem 2.17 (Differentiation of the original). For any i € (n)
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L, m[af G k)} = §iF(5:2) = Ly L£ (0F 1] (2.12i)

Ln,m{aay; (t;k)} =s"F(s;z)+

IS RN WS- :ﬁf’{a’ L0 )}

¢ek, n.<y.-1

(2.12ii)

Proof. By Definition 2.1 we have

| f(t;k)exp(=s;t;) < M exp[z GltlJ{l—m[ ijf }exp(—(Re §; —G)t;) .

1#i j=l1

Since Res; >o;, lim exp(—(Res; —o;)t;) =0, hence lim f(¢,k)exp(—s;t;)=0.
t;—>0 t;—>0

We integrate by parts the i-th integral in £, ,, {% (t;k)} and we get

i

lh 5 v o GRISXPs )t = [0 | - [ Ft)=s)yexp(=st,)dt, =

=, j Ft;k)exp(=s,t,)dt, — £(O;k).
By applying the other n —1 integrals and the m series of Definition 2.6 we obtain

Ln,m{g—’;@;k)}:sj o 5 . me, 3K )

| — 1_0
n

n m
-exp(— z st ][H zj_.kj Jdtl .dty, —

1=1 j=1

tsk,....k,)-

n®

B ) J. Z Z f(tl’ o z 150+9t1+1a i)

N k=0 k,=0

.exp[_z S,tlJ[H z Jdtl...dtildtm...dtn
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i.e. (2.12i). It results that (2.12ii) is true for y=(y;) where v;=1, a={i},
E={{i}}, e={i}, €= . Assume that (2.12ii) is true for y =(y,v2,...,Y,,) and
we shall prove (2.12ii) for v'=(y;+Lv2,...,v,) and for y"=(y1,v2,--,Y ps1)
with v, =1. By (2.12i) we have

Lol L5y | = | 2| 2L
oY af1 otY

(2.13)
—slﬁnm{ T k)} Bf (of k)}

By (2.11ii)

Y
Slﬁn,mli% (t;k):l =518 F(s;2)+

+ Z (—1)|€‘S1SY§ z SYg MNe— 8(’")[8 f(o ):lz

ecE, N, <y,-1

_VFsz)+ Y (-1 Z £s<m>[5 f(o }

eeky n,<y.-1

r "n-12% ang

N IEILE A o Lizﬁ,’:’{—nf (oz;k>}
seEyzf N <7; -1 ot'e

where

1 2
Ey={ecE [{}ce), Ej={eck, |[{l}ce}.
%
Therefore in z ,{}ce, y; =y, and slslYl =s;/1;in z , Yg =Yg and the

term with s), i.e. with n, =y, —1=1, lacks. In the same manner, we denote

¥=(Y;,..-,¥,) and by a modified version of (2.11ii) we obtain
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B y V4 n
_LLZZM[%T{(OT;I{)} =—r! <m{§y (aatyjlf (Of;k)ﬂ 74 f:{ )
1

. B m 871‘“7; N
_Z ( I)H 7z Z S7 M, lﬁiUrjll}( >|: ]:(OEU{l};k):|'

}_

If we denote € U {1} by ¢; we have |e|+1=¢g|, —sV = (—1)'81|s%is10 and

V4 n
geE 7,<7,—1 6tl ‘ﬁtg

the previous expression becomes
sk
- -1 0
D (_1)|al|svg1 D vgl a7l m) nf (0 3k)
SleEy' ns<Yg_1 a ° E
kokok * wk dEk

where in z , N1 =Y =71—1. By combining z,z,z , formula (2.13)

becomes (2.12ii) with y" = (y; +L7v2,...,7,) instead of v = (y1,72,...7p) -
Now, for y”=(y1,...,yp,yp+1) with Yot =1, we have, by (2.12i) and
(2.12ii):

e e
ot o i

:spﬂgnjm{a S k)} LP“ <’">F A (opﬂ,k)}_s SVF(s;2) +

1
+ Z (_1)|8|Sp+ls“/5 z SYa Mg~ 8<m>[(z f(0+ k)} SYLPH <m>[f(0p+1ak)]_

eek, M <y -1

2
=Y R S st gt WB Lo, p+1,k):|

eek, Ne<ye—1
In 3 the subsets ¢ € E, are the subsets ¢ € E,» which does not include p+1,

2
while in £ we can replace € by g =cU{p+lie Er, hence —(-1) |e|= (—1)|81| ,
z §7e 7" Z S a7l where Yp+1 =1 and 1%, =0, hence finally we

N:<y:—1 Mg <74 -1

obtain (2.12ii) for y", which completes the proof of (2.12ii) by induction.
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[
Theorem 2.18 (Differentiation and delay). For any i e{(n), je{m),
L, g(tl,. otk ok kg Lk, k) | =82, F (s,2) —
“l o, (2.141)
=5z, LT £ (10 )]—z, L £10755)1+ 2, £(0750,).
Forany y = (y,-1 ,...,yl-p) eN?,B= {jl,...,jq} c{m)y b= (bjl,...,qu) e N7,
Lym {ﬂ 1 k+b)} =sT2PF(s,2) 42 Y > (Pt
or? eek, deky
(2.14i1)
ns<yg_1 Dh 3 ]68
Proof. We can combine the proofs of Theorems 2.15 and 2.17.
[

Definition 2.19. For je{(m), the j-first difference ((j,))-difference) of
S €0, 1s the function

0 if 7,<0 or k;<0 forsome ie(m) or je(m)

A {f(tk+e) f(t:k) otherwise

where e; =(0,...,0,1,0,....0 € z".
H—J

Jj-1
For je(m) and ye N, y>2, the (j,y)-difference of f is defined by

induction by A", £(1:k) = A (A £ (1K)

For B={ji,....Jg} ©(m) and y={yy,....v4} € (N*)? the (B,1) -difference
and the (B,y) -difference of f* are the functions Agf (k) =A jA Ja f(t;k) and

A f (k) = AVj.ll ---ijqq F(t:k).

We can prove by induction the following result, where C;' represents
combinations :

Proposition 2.20. If B={ji.....j,} ={m) and v="{y1,....7,} € (N,
then
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71 7q Zq:(h—l,) q ;
Ny f() =Y Z (-1 (H C/Jf(t;kntl). (2.15)

,=0
We denote by (z —1)[3 the product H (zj -1).
JjeB
Theorem 2.21 (Differentiation and difference of the original). For any
je(m), B="{jisjgh e (my and y={y;,....v; }€NP, pe(n) we have

ﬁn,m[Ajf(ka)] = (Zj —DF(s;z)— L%Zﬁ][f(t;()j)] (2.16i)
LA (R = (=) F(si)+ 3 (D7) L7/ (0,)] (2161
L,,,m[aa—;Aﬂf(t;k)} =s"(z=-1D)F(s;2) + Z Z(—l)'g“l"“ )

(2.16iii)

- - N
577 2%(z=1)° Z sy _"g_lﬁi:i[a / (02;05)}.

1,571 or'™
Proof. By linearity and by Theorem 2.15 we get
which gives (2.161).
We shall prove (2.16i1) for B=(jj,j») and the general case can be

obtained similarly. Again by linearity and Theorem 2.15
Ln,m[Alej2f(l;k)] = Ln,m[f(t;k +ej1 +ej2 )] _Ln,m[f(t;k +ej1 )]_

— Lyl f (k4 e )+ Ly L f (G =2 2 (F(s:2)— L (80—
— LR L850 )1+ L2 L GO~ 2, (F(s32) ~ L £ (0,0 -
—zj (F(s:2) = Ly 2 Lf (10 D)+ Fs;2) =

=(zj, ~D(z;, ~“DF(s;2)~ 2}, (z, ~DLRN £ (10,1

—zj (2, ~ DL LA (00,)]+ 2,2, L1RC L (1:0p)].

Formula (2.16iii) can be obtained by combining (2.16ii) and (2.12ii).
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Theorem 2.22 (Differentiation of the 1image). For any
yz{yil,...,yip}e(N*)p, o= {ij,...ipy <(ny and b=(b,,....b; )e(N"')’,

B = {jln""jq} - <m> >

n,{( 1) +“’ H 1 [H k(k, +1)--(k, +b, —1)]f(z k)}

icea jep

(2.17)

y‘l+ +7i, +bj +- +b
Vi 7ip by hjq F(S,Z)
/eﬂ 6s . Gzil ---az/.
. Jq

where [y]=)_ v; and [b
iel Jj eJ

Proof. We derive the image F(s;z) given by (2.3) as in (2.17) and we
obtain that the right hand member of (2.17) equals

Hzf.fj:...j;i..i f(t;k)[H(—ti)”Jexp(—isit[)-
jep k=0 k,=0 i=1

ica

ATk )b, =)=k, = b, + 1)z, }dtl .,

jep

which is the left hand member of (2.17).

3. Conclusion

In this paper a complete theory of a multiple (n,m)-Hybrid Laplace

transformation has been developed. Other properties, such as integration and sum
of the original, integration of the image, convolution, product of originals, initial
and final values, inversion formulas and applications of this transformation will be
presented in two subsequent papers, including differential-difference and integral
equations, as well as the frequency-domain representation of multidimensional
hybrid control systems.
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