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MULTIPLE )(n,m -HYBRID LAPLACE TRANSFORMATION 
AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID 

SYSTEMS. PART I 

Valeriu PREPELIŢĂ1 

Este prezentat un spaţiu de funcţii original care sunt continue în raport cu n 
variabile şi discrete în raport cu m variabile. Pe această mulţime se defineşte o 
transformare hibridă multiplă de tip Laplace şi z. Se studiază principalele 
proprietăţi ale acestei transformări, printre care teoremele de liniaritate, întârziere, 
deplasare, derivare şi diferenţă a originalului, derivare a imaginii. Aceste 
proprietăţi  vor fi utilizate într-o lucrare ulterioară pentru a rezolva ecuaţii multiple 
diferenţiale cu diferenţe şi ecuaţii integrale multiple şi pentru obţinerea 
reprezentării sistemelor de comandă hibride multiple în domeniul frecvenţă. 

 
A space of original functions which are continuous with respect to n 

variables and discrete with respect to m variables is presented. A multiple hybrid 
Laplace and z type transformation is defined on this set. Its main properties are 
studied, including linearity, time-delay, translation, differentiation and difference of 
the original, differentiation of the image. Other theorems such as integration and 
sum of the original, convolution, initial and final values etc. will be presented in a 
subsequent paper, as well as some methods to determine the originals.  

These properties will be used to solve multiple differential-difference and 
multiple integral equations and to obtain the frequency-domain representations of 
multidimensional hybrid control systems. 

 

Key words: original functions, multiple hybrid Laplace transformation, 
continuous-discrete D)(n  systems 

1. Introduction 

In the last three decades the theory of multidimensional D)(n  control 
systems knew a strong development, due to its applications in various important 
domains as image processing, computer tomography, geophysics, seismology etc. 

A distinct branch of this theory is represented by the continuous-discrete 
Dn  systems which appear as models in many problems, for instance in the study 

of linear repetitive processes [1], [2], [10] or in the iterative learning control  
synthesis [6]. Such hybrid systems were studied in [3], [4], [5], [7], [8]. 
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In the theory of "classical" 1D systems the frequency domain methods, 
based on Laplace transformation in the continuous case or z -transformation in 
the discrete-time case, play a very important role. In order to extend the frequency 
domain methods to multiple hybrid systems one needs a generalization of these 
transformation.  

The aim of this paper is to give a complete analysis of a suitable hybrid 
Laplace- z  type transformation and to emphasize its applications in the study of 
multidimensional continuous-discrete systems or for solving multiple hybrid 
equations. In section 2 the continuous-discrete original functions are defined and 
it is shown that their set is a complex commutative linear algebra with unity. A 
multiple hybrid Laplace transformation is defined as a linear operator defined on 
this algebra and taking values in the set of multivariable functions which are 
analytic over a suitable domain. 

The main properties of this transformation are stated and proved, including 
linearity, homothety, two time-delay theorems, translation, differentiation and 
difference of the original, differentiation of the image, integration and sum of the 
original, integration of the image, convolution, product of originals, initial and 
final values. Some results are generalizations of the properties of the 2D 
continuous-discrete transformation studied in [9]. Other properties and some 
methods for determining the original will be presented in Part II. 

Some applications of the ),( mn -hybrid Laplace transform will be provided 
in Part III to solve multiple differential-difference and integral equations as well 
as for the study of multidimensional continuous-discrete systems. 

2. Multiple ),( mn -hybrid Laplace transformation 

We denote by 〉〈n  the set },,2,1{ n… . 
Definition 2.1. A function CZR →× mnf :  is said to be a continuous-

discrete original function (or simply an original) if f  has the following 
properties: 

(i) 0),,;,,( 11 =mn kkttf ……  if 0<it  or 0<jk  for some 〉〈∈ ni  or 
〉〈∈ mj . 

(ii) ),,;,,( 1 mkkf …… ⋅⋅  is piecewise smooth on n
+R  for any 

m
mkk +∈Z),,( 1 … . 

(iii) 0>∃ jM , R∈fiσ , 〉〈∈ ni , 0>fjR , 〉〈∈ mj  such that 
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0>∀ it , 〉〈∈ ni , 0≥∀ jk , 〉〈∈ mj . 

The constants fjfi R,σ  will be also denoted by iσ , jR . The smallest such 
constants are called respectively the indices of the order of growth and the radii of 
convergence of the original function f . 

We denote by mn,O  the set of original functions CZR →× mnf : .  
Sometimes we shall denote by );( ktf  the value of f  at ),,( 1 nttt …= ,  

),,( 1 mkk … . The structure of  mn,O  is established in the Propositions 2.2 and 2.4 
below, whose proofs are omitted for lack of space. 

Proposition 2.2. The set mn,O  with the addition, multiplication and scalar 
multiplication is a complex commutative linear algebra with unity, where the unit 
element is the "unit step function" u , 1),,;,,( 11 =mn kkttu ……  on mn

++ ×ZR  and 
equal to 0 otherwise . 

Definition 2.3. Given mngf ,, O∈ , the ),( mn -hybrid convolution of f  
and g  is the function denoted by gf ∗  defined by 
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for (ݐ,…,1ݐn;݇1,…,݇mሻא mn
++ ×ZR  and equal to 0 otherwise. 

Proposition 2.4. mn,O  is closed under the ),( mn -hybrid convolution. 
Proposition 2.5.  mn,O  with the addition, the ),( mn -hybrid convolution 

and the scalar multiplication by complex numbers is a commutative linear 
algebra with unity. 

Proof. By Propositions 2.2 and 2.4, mn,O  is closed under the three 
mentioned operations. One can verify that the ),( mn -hybrid convolution is 
distributive, commutative and )()()( gfgfgf α∗=∗α=∗α , C∈α∀ , 

fff mnmn =∗δ=δ∗ ,,  where mnmn ,, O∈δ  is defined by 
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where δ  is the Dirac distribution. 
□ 

Definition 2.6. For any original f , the function 
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is called the ),( mn -hybrid Laplace transform (or the image) of  f . 
We shall also use the notation );( zsF  for ),,;,,( 11 mn zzssF …… .  

Proposition 2.7. The multiple improper integral and the multivariable 
Taylor series in (2.3) are absolutely convergent in the domain    

},||;,Re|),,;,,{()( 11 〉〈∈>〉〈∈σ>∈= + mjRznisCzzssfD fjjfii
mn

mn   …… (2.4) 

and uniformly convergent on any domain 
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mn   ……  

with fii σσ >′ , 〉〈∈ ni  and fjj RR >′ ,  〉〈∈ mj . 
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 Analogously, for fiiis σ>σ′≥Re , 〉〈∈ ni  and fjjj RRz >′>|| , 〉〈∈ mj , 
one obtains  
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and the uniform convergence results as a consequence of the Weierstrass criterion. 
□ 

Corollary 2.8. The ),( mn -hybrid Laplace transform );( zsF  is analytic in 
the domain )( fD  (2.4). 
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Let us denote by mn,A  the complex linear algebra of the functions  

CC →+mnF :  which are analytic in  a domain of the form (2.4). 
Definition 2.10. The operator mnmnmn ,,, : AOL →  defined by (2.3) is 

called the ),( mn -hybrid Laplace transformation ( ),( mn -HLT). 
Now, we shall emphasize the principal properties of the operator mn,L . 
Theorem 2.11 (Linearity).   For any mngf ,, O∈  and  C∈βα, ,  

][][][ ,,, gfgf mnmnmn LLL β+α=β+α .       (2.6) 

Proof. Equality (2.6) is an immediate consequence of (2.3) and 
Proposition 2.2 and it holds in )()( gDfD ∩ .  

□ 
Theorem 2.12 (Homothety).  If there exists m
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for any 0>ia ,  C∈is  with fiii as σ>Re , 〉〈∈ ni  and any C∈jz  with 

jb
fjj Rz >|| , 〉〈∈ mj .  

Proof. By using the change of the variables of integration iii xta = , 
〉〈∈ ni  and the change of the indices of summation jjj lkb = , 〉〈∈ mj , we get 
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□ 
Theorem 2.13 (First time-delay theorem).  For any n

naa +∈R),,( 1 … , 
m

mbb +∈Z),,( 1 …  , 
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Proof. By the change of variables ii xat =−1 , 〉〈∈ ni , jjj lbk =− , 
〉〈∈ mj  and by taking into account condition (i) in Definition 2.1, we obtain: 
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equality which proves (2.8). 
□ 

 We shall use the following notations : for some sets 〉〈⊂=α nii p},,{ 1 …  

and 〉〈⊂=β mjj q},,{ 1 … , p=α ||  (the cardinality of α ), q=β || , 

α⊂εε=α |{E  or }∅=ε ,  β⊂δδ=′β |{E  or }∅=δ ; for α∈ε E  and β′∈δ E , 

ε〉〈=ε \n , δ〉〈=δ \m . If }{i=ε  or }{ j=δ , ji ,  denote ε  and δ  respectively. 
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 Definition 2.14. For 〉〈⊂=α nii p},,{ 1 …  and 〉〈⊂=β mjj q},,{ 1 … , the 
),( βα -partial ),( mn -hybrid transform of the original f  is defined by  
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If 〉〈=α n  and 〉〈=β m , mnmn ,
,
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,  (the multiple Laplace 
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 Proof. The ),( mn -hybrid Laplace transform in (2.11) has the expression 
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ε∈∀i ; );0( kf +
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 Theorem 2.17 (Differentiation of the original). For any 〉〈∈ ni  
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i.e. (2.12i). It results that (2.12ii) is true for )( iγ=γ  where 1=γi , }{i=α , 
}}{{iE = , }{i=ε , ∅=ε . Assume that (2.12ii) is true for ),,,( 21 pγγγ=γ …  and 

we shall prove (2.12ii) for ),,,1( 21 pγγ+γ=γ′ …  and for ),,,( 121 +γγγ=γ ′′ p…  

with 11 =γ +p . By (2.12i) we have 
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where  
}}1{|{},}1{|{ 21 ε⊂∈ε=ε⊂/∈ε= γγ′γγ′ EEEE . 

Therefore in ∑
∗

, ε⊂}1{ , εε γ=γ′  and 11
111
γ′γ = sss ; in  ∑

∗∗
, εε γ=γ′   and  the  

term  with  1
0s ,  i.e.  with 111 1 γ=−γ′=η  lacks.  In  the  same  manner,  we  denote  
),,(ˆ 2 pγγ=γ …  and by a modified version of (2.11ii) we obtain 
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 If we denote }1{∪ε  by 1ε  we have ||1|| 1ε=+ε , 0
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,, , formula (2.13) 

becomes (2.12ii) with ),,,1( 21 pγγ+γ=γ′ …  instead of ),,,( 21 pγγγ=γ … .  

 Now, for ),,,( 11 +γγγ=γ ′′ pp…  with 11 =γ +p , we have, by (2.12i) and 
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obtain (2.12ii) for γ ′′ , which completes the proof of (2.12ii) by induction. 
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 Theorem 2.18 (Differentiation and delay). For any 〉〈∈ ni , 〉〈∈ mj ,  
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 Proof. We can combine the proofs of Theorems 2.15 and 2.17. 
� 

 Definition 2.19. For 〉〈∈ mj , the j-first difference ( )1,( j -difference) of  
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β∈

j
j

z . 

Theorem 2.21 (Differentiation and difference of the original). For any 
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 Proof. By linearity and by Theorem 2.15 we get 
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 Formula (2.16iii) can be obtained by combining (2.16ii) and (2.12ii). 
� 
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which is the left hand member of (2.17). 
� 

3. Conclusion 

In this paper a complete theory of a multiple ),( mn -Hybrid Laplace 
transformation has been developed. Other properties, such as integration and sum 
of the original, integration of the image, convolution, product of originals, initial 
and final values, inversion formulas and applications of this transformation will be 
presented in two subsequent papers, including differential-difference and integral 
equations, as well as the frequency-domain representation of multidimensional 
hybrid control systems.  
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