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A NEURAL MACHINE VISION MODEL FOR ROAD 
DETECTION IN AUTONOMOUS NAVIGATION 

Victor-Emil NEAGOE1, Cristian-Tudor TUDORAN2 

În această lucrare este prezentată o abordare originală privind soluţionarea 
problemei identificării direcţiei de deplasare a unui robot vehicular autonom prin 
utilizarea clasificatorului cu module neurale autoorganizabile concurente 
(MONACO) - Concurrent Self-Organizing Maps (CSOM), model introdus de primul 
autor. Pentru comparaţie, sunt evaluate de asemenea şi performanţele obţinute cu 
ajutorul altor trei clasificatori uzuali. Direcţia ce urmează a fi identificată este 
cuantizată în trei clase: înainte, stânga şi dreapta. Sunt prezentate rezultatele 
obţinute prin simularea pe calculator a modelului propus, precum şi implementarea 
practică pe un robot mobil (maşină-jucărie telecomandată) a acestui model. 

This paper presents an original approach for visual identification of road 
direction in autonomous vehicle navigation using a neural network classifier called 
Concurrent Self-Organizing Maps (CSOM), previously introduced by first author. 
For comparison, we also evaluate the performances of three other usual classifiers. 
The path to be identified has been quantized in three output directions: straight 
ahead, left and right. We present the experimental results obtained by computer 
simulation (using a data set of 210 road images from the CMU VASC Image 
Database), as well as a real-time neural path follower based on CSOM model, 
implemented on a mobile robot (car toy). 
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1. Introduction 

After many years of extensive research in the autonomous navigation field, 
building a robust driverless vehicle is still a challenge [1], mainly because of the very 
high variability of the environmental conditions, such as the type of the road the 
vehicle runs on, the surroundings or the lightening conditions. 

Apart from their basic role of providing an automated steering, the road 
direction identification algorithms can also assist the human driver, proving useful as 
an active safety system for detecting potentially hazardous situations (for example, 
when the driver does not steer following the road due to lack of attention or lost of 
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consciousness). Such “lane-departure” warning systems are already integrated by 
some car manufacturers. 

The automatic detection of the path to be followed by the vehicle is a difficult 
task, especially when dealing with outdoors scenes, requiring a system who is able to 
adapt to changing conditions. Most of the model-based road following systems are 
unable to cope with the change of the environmental variables like road width and 
lightning conditions, making them unreliable. 

Since the artificial neural networks proved to be a promising solution for 
other pattern recognition problems (for example, in handwriting or face recognition), 
such conexionist techniques have been adopted for the autonomous navigation tasks, 
and specifically in autonomous road following. 

One of the first successful implementation architecture for visual road 
following was ALVINN (Autonomous Land Vehicle in a Neural Network) developed 
by Pomerleau [2] at Carnegie Mellon University, Pittsburgh, USA. ALVINN is based 
on a feedforward network (multilayer perceptron), where the network is fed directly 
with image data at a low resolution level. ALVINN is a perceptron system which 
learns to control the NAVLAB vehicles by watching a person drive. 
ALVINN's architecture consists of a single hidden layer backpropagation network. 
The input layer of the network is a 30x32 unit two dimensional "retina" which 
receives input from the vehicle video camera. Each input neuron is fully connected to 
a layer of five hidden units which are in turn fully connected to a layer of 30 output 
units. The output layer is a linear representation of the direction the vehicle should 
travel in order to keep the vehicle on the road. ALVINN is the most successful 
development of the ARPA UGV (Unmanned Ground Vehicle) program. ALVINN 
has been demonstrated on several test vehicles driving at speeds of up to 70 mph, and 
for distances of over 90 miles without human intervention. ALVINN was originally 
designed as part of an unmanned vehicle for the modern battlefield, performing 
reconnaissance, surveillance as well as nuclear, biological, and chemical (NBC) 
detection missions [3]. However, it was adapted for civilian use, as part of the 
Intelligent Vehicle Highway System (IVHS) initiative. 

The same team lead by Pomerleau designed an improved variant of 
ALVINN called MANIAC (Multiple ALVINN Networks In Autonomous Control) 
[4], which confers to the autonomous vehicle the ability to robustly and 
transparently navigate between many different road types. MANIAC is composed 
of several ALVINN networks, each trained for a single road type that is expected 
to be encountered during driving. 

A few approaches for visual identification of road direction of an 
autonomous vehicle using radial basis function (RBF) neural networks have been 
performed and reported by Rosenblum and Davis [5] as well as by Neagoe et al [6]. 
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The well known road detection and tracking algorithm (RDT), developed 
at the Universität der Bundeswehr München (UBM), has been adapted for 
following unpaved paths (dirt road detection) and contour lines [7]. 

Road detection is also a key issue for autonomous driving in urban traffic. 
He, Wang, and Zhang [8] have proposed a road-area detection algorithm based on 
color images. 

Recently, Dahlkamp et al [9] have presented a method for identifying 
drivable surfaces in difficult unpaved and off-road terrain conditions as 
encountered in the DARPA Grand Challenge robot race. Instead of relying on a 
static, pre-computed road appearance model, this method adjusts its model to 
changing environments. 

In this paper we present and evaluate an original algorithm for visual 
identification of road direction of an autonomous vehicle, based on a neural network 
classifier called Concurrent Self-Organizing Maps (CSOM) [10] introduced by 
V.E. Neagoe, representing a winner-takes-all collection of neural modules. Thus, we 
further extend the approaches presented in [11] and [12]. 

2. Algorithm Description 

As shown in Fig. 1, the proposed model for visual autonomous road 
following consists of two main processing steps: 

(a) feature selection using either a standard edge detection algorithm, or 
an algorithm based on the Hough transform, or no feature selection at all; 

(b) classification using one of the four classifiers: Concurrent 
Self-Organizing Maps (CSOM), Multilayer Perceptron (MLP), supervised Self 
Organizing Map (SOM) [13], and K-Means (Nearest Mean) [14]. 

We have quantized the path to be followed in three classes (directions): 
left, straight ahead and right, so the output of the road following model is one of 
the above three directions. 

2.1. Feature Selection 

2.1.1. Edge Detection 

The first considered feature selection algorithm is the classic Canny Edge 
Detector [15]. Basically, when applying this algorithm, a binary image of the same 
size as the input image is obtained, with the points belonging to edges marked as 
1’s and the others marked as 0’s. This way, a large amount of useless information 
is filtered out, reducing the total amount of data to be further processed (by the 
classifier), while preserving the structural properties of the input image. 
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Fig. 1. Flowchart of the Road Direction Visual Identification algorithm 

2.1.2. Hough Transform 

The Hough transform is a computer vision technique used for identifying 
certain features (shapes) within a digital image. It consists of parameterizing a 
description of a feature at any given location in the original image's space. 
Because it requires that the desired features are specified in a parametric form, the 
Hough transform is most commonly used for the detection of regular curves such 
as lines, circles or ellipses. We have used its simplest form, namely the 
Hough line transform. The algorithm operates using the edge points detected with 
an embedded Canny Edge Detector. 

In order to use the Hough transform, we must also choose a way of 
characterizing a line. One basic representation of a line is the slope-intercept form 

 y = mx + b,                                                 (1) 
where m is the slope of the line and b is the y-intercept (that is, the y component 
of the coordinate where the line intersects the Oy-axis). 
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This method cannot be used, however, to describe any given line, because 
when lines get more and more vertical, the magnitudes of m and b grow towards 
infinity. Another representation of a line, that solves the aforementioned problem, 
is the “normal form” 
 x cos θ + y sin θ = ρ. (2) 

This equation describes a set of lines passing through (x, y), where ρ is the 
length of a normal from the origin to this line and θ is the orientation of ρ with 
respect to the Ox-axis. For any point (xi, yi) on such a line, ρ and θ are constant. 

In our image analysis application, the coordinates of the edge points (xi, yi) 
in the image are known and therefore serve as constants in the parametric line 
equation, while ρ and θ are the unknown variables we seek. The transform is 
implemented using an accumulator for the Hough parameter space (ρ, θ). 
This space is quantized into finite intervals (for both ρ and θ) that define the 
accumulator cells. By iterating through all possible angles for θ, we can compute 
the corresponding values for ρ (using equation (2)) and the corresponding 
accumulator cells are incremented. As the algorithm runs, each edge point (xi, yi) 
is transformed into a discretized (r, θ) curve (a sinusoid) in the Hough space and 
the accumulator cells which lie along this curve are incremented. The points 
which are collinear in the Cartesian image space can be viewed in the 
Hough parameter space as belonging to curves which intersect at a common (ρ, θ) 
point. Equivalently, the resulting peaks in the accumulator array represent strong 
evidence that a corresponding straight line exists in the image. 

The Hough transform minimizes the effect of the noise present in the 
original image and/or in the binary image obtained after the edge detection stage. 

2.2. CSOM Classifier 

2.2.1. CSOM Architecture 

The neural classification model called Concurrent Self-Organizing Maps 
(CSOM) represents a collection of small SOMs using a global competition 
strategy. The number of these modules equals the number of classes, so in our 
case there are three such identical modules, each being trained individually to 
provide best results for one class only, corresponding to a specific road direction. 

2.2.2. Training the CSOM 

As mentioned, each CSOM module is trained independently, using only 
the subset of training images corresponding to its assigned class (road direction), 
according to Fig. 2; this training is a supervised one. 
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Fig. 2. The training phase of the CSOM model 

2.2.3. Recognition Phase 

After the training phase, the system should be able to correctly classify an 
unknown image into one of the three classes (road directions), using the 
information stored in the CSOM weights. 

The image to be classified is applied to all the three modules of the 
CSOM system (see Fig. 3). 

The distances between input vector and all the neurons of the three 
modules are computed and then the best matching neuron (over all) is determined 
as the one “closest” to the input vector. The unknown road image is classified as 
“belonging” to the minimum distance neuron, and the label of the module 
containing the best matching neuron is assigned to the input image. 
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Fig. 3. The classification phase of the CSOM model 

3. Experimental Results 

3.1. Database 

For our study, we have used road images from the CMU (Carnegie Mellon 
University) Vision and Autonomous Systems Center's Image Database. 
This database includes a large number of road images captured as part of the 
extensive research they conduct at their Robotics Institute, for the NAVLAB 
series of vehicles. 

Aiming to ensure the maximum road-scenes diversity while keeping the 
number of train and test images reasonably low, we have extracted a dataset 
containing 210 color images of 256 x 240 pixels, equally divided into 3 road 
direction classes. From the 70 images available for each class, a varying number 
(minimum 5 and maximum 65 images) have been used for training the system, 
while the remaining pictures have been used for testing. Several samples from this 
database are presented in Fig. 2. 

3.2. Performance evaluation as a function of classifier type 

First, we investigate the influence of the classifier type on the correct road 
identification rate. The results, shown in Table 1 and Fig. 4, are obtained by 
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computer simulations using only the luminance (Y) component of the input 
pictures and considering the algorithm variant without feature selection. We have 
evaluated the following classifiers: 

(a) the Concurrent Self-Organizing Maps (CSOM) system with SOM 
submodules of circular topology and a number of 10 neurons per module, 
20 training epochs; 

(b) the Multilayer Perceptron (MLP), with one hidden layer containing 
30 neurons and with sigmoid activation functions, 50 training epochs; 

(c) the Self-Organizing Map (SOM), in two variants, one with a square 
topology (SOM-s) having 10 x 10 neurons, and one with a circular topology 
(SOM-c) with 30 neurons, both trained for 20 epochs; 

(d) the classical statistical classifier of the Nearest Mean (or prototype) – 
K-Means. 

Table 1 
Correct road identification rate [%] as a function of the classifier type (gray-scale images) 

Classifier Number of training images 
5 10 20 30 40 50 60 65 

K-Means 39.49 48.89 46 55.83 70 68.33 73.33 66.67 
MLP 68.21 72.78 88.67 89.17 92.22 91.67 90 93.33 

SOM-s 87.18 81.11 98 98.33 100 100 100 100 
SOM-c 88.72 88.33 94.67 96.67 98.89 100 100 100 
CSOM 90.77 93.89 99.33 100 100 100 100 100 
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Fig. 4. Road identification performances as a function of classifier type 

3.3. Performance evaluation as a function of the selected color component 

Table 2 and Fig. 5 present the road correct identification rate as a function 
of the selected color component: red (R), green (G), blue (B) or luminance (Y). 
The CSOM system contains SOM modules with a circular architecture, with 
10 neurons per module, and no feature selection is employed. The chosen number 
of training epochs is 20. 
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Table 2 
CSOM correct road identification rate [%] as a function of the selected color component 

Color 
component 

Number of training images 
5 10 20 30 40 50 60 65 

Y - luminance 90.77 93.89 99.33 100 100 100 100 100 
R - red 89.75 92.78 98.67 100 100 100 100 100 

G - green 89.23 91.11 98 98.33 98.89 98.33 100 100 
B - blue 91.28 94.44 99.33 100 100 100 100 100 
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Fig. 5. CSOM performance as a function of the color component selection 

3.4. Influence of the feature selection method 

In Table 3 and Fig. 6 one can see the influence of the chosen feature 
selection method on the CSOM identification performance. 

 
Table 3 

CSOM correct road identification rate [%] as a function of the feature selection 
method (luminance component; 20 training images) 

Color 
component 

Feature Selection 
Method 

Number of epochs
3 5 10 20 

Y 
luminance 

None 97.33 98 99.33 99.33 
Edge Detection 98 99.33 99.33 99.33 

Hough Transform 98.67 99.33 99.33 99.33 

R 
red 

None 96.67 97.33 98.67 98.67 
Edge Detection 97.33 98.67 98.67 99.33 

Hough Transform 98 99.33 99.33 99.33 

G 
green 

None 96 96.67 98 98 
Edge Detection 96.67 97.33 98.67 98.67 

Hough Transform 98 98.67 99.33 99.33 

B 
blue 

None 97.33 98.67 99.33 99.33 
Edge Detection 98 99.33 99.33 99.33 

Hough Transform 98.67 99.33 99.33 99.33 
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Fig. 6. CSOM performance as a function of the feature selection method, for 20 training images 

and using only the luminance (Y) component 

4. CSOM for real-time path detection 

We have used a small mobile robot (“police jeep” toy shown in Fig. 8) of 
sizes 30 cm (L) x 22 cm (W) x 19 cm (H). The machine vision system (Fig. 7) has 
two modules: the on-board module and the stationary module. We have used a 
wireless TV camera mounted on the mobile robot and the video signal is 
transmitted through the 1.2 GHz channel to the computer. The second 
communication channel (40 MHz) transmits the direction commands from 
computer to the robot. 

In a preliminary phase, there have been performed the acquisition and 
labeling of the road picture set. A human trainer has driven the mobile robot to 
follow a specific path made by white sheets of paper on a red carpet 
(see Fig. 8 - right). The computer software automatically stores the corresponding 
data (image & its direction label) sequence, obtaining the labeled road image set. 

The training of the CSOM modules has been performed using three classes 
of labeled road images: left, straight ahead and right. Each neural module has 
been trained with the image subset corresponding to its class label. 

The artificial vision system identifies in real time the correct direction as 
follows. The video signal captured by camera is transmitted through the 1.2 GHz 
channel to the computer, where the input path picture is stored. The CSOM 
software computes the minimum distance between the input picture vector and 
every neuron. The minimum distance neuron is the winner and the direction label 
of the module to which the winner belongs is assigned to the input image. This 
direction is coded and transmitted through the 40 MHz channel to the steering 
system of the mobile robot, so that it can follow the correct path. 



A neural machine vision model for road detection in autonomous navigation             177 

 

Fig. 7. General block diagram of the machine vision system for the automated guided mobile robot 
(on-board module, stationary module) 

 

           

Fig. 8. Left: Mobile robot including the on-board module; Right: Autonomous driving area 

5. Conclusions 

The experimental evaluation of the model has shown that the best road 
identification score is obtained by CSOM classifier. Moreover, CSOM 
architecture allows a faster and a more flexible algorithm implementation by 
comparison to other classifiers, a key feature for real-time applications. 
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For color images when choosing a small training lot, the best 
performances are obtained using the blue picture component. 

For a small lot of training color images, the feature selection based on 
Hough transform leads to a better road identification score than that based 
on edge detection. 
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