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A NEURAL MACHINE VISION MODEL FOR ROAD
DETECTION IN AUTONOMOUS NAVIGATION

Victor-Emil NEAGOE?, Cristian-Tudor TUDORAN?

In aceastd lucrare este prezentatd o abordare originald privind solutionarea
problemei identificarii directiei de deplasare a unui robot vehicular autonom prin
utilizarea clasificatorului cu module neurale autoorganizabile concurente
(MONACO) - Concurrent Self-Organizing Maps (CSOM), model introdus de primul
autor. Pentru comparatie, sunt evaluate de asemenea si performantele obtinute cu
ajutorul altor trei clasificatori uzuali. Directia ce urmeazd a fi identificatd este
cuantizatd in trei clase: inainte, stanga §i dreapta. Sunt prezentate rezultatele
obtinute prin simularea pe calculator a modelului propus, precum si implementarea
practicd pe un robot mobil (masind-jucdrie telecomandatd) a acestui model.

This paper presents an original approach for visual identification of road
direction in autonomous vehicle navigation using a neural network classifier called
Concurrent Self-Organizing Maps (CSOM), previously introduced by first author.
For comparison, we also evaluate the performances of three other usual classifiers.
The path to be identified has been quantized in three output directions: straight
ahead, left and right. We present the experimental results obtained by computer
simulation (using a data set of 210 road images from the CMU VASC Image
Database), as well as a real-time neural path follower based on CSOM model,
implemented on a mobile robot (car toy).

Keywords: road following, autonomous vehicle navigation, neural network
classifier, Concurrent Self-Organizing Maps, Hough transform

1. Introduction

After many years of extensive research in the autonomous navigation field,
building a robust driverless vehicle is still a challenge [1], mainly because of the very
high variability of the environmental conditions, such as the type of the road the
vehicle runs on, the surroundings or the lightening conditions.

Apart from their basic role of providing an automated steering, the road
direction identification algorithms can also assist the human driver, proving useful as
an active safety system for detecting potentially hazardous situations (for example,
when the driver does not steer following the road due to lack of attention or lost of

! Prof., Depart. Electronics, Telecommunications and Information Technology, University
POLITEHNICA of Bucharest, Romania, e-mail: victoremil@gmail.com

2 PhD student, Depart. Electronics, Telecommunications and Information Technology, University
POLITEHNICA of Bucharest, Romania, e-mail: tudorcristian80@gmail.com



168 Victor-Emil Neagoe, Cristian-Tudor Tudoran

consciousness). Such “lane-departure” warning systems are already integrated by
some car manufacturers.

The automatic detection of the path to be followed by the vehicle is a difficult
task, especially when dealing with outdoors scenes, requiring a system who is able to
adapt to changing conditions. Most of the model-based road following systems are
unable to cope with the change of the environmental variables like road width and
lightning conditions, making them unreliable.

Since the artificial neural networks proved to be a promising solution for
other pattern recognition problems (for example, in handwriting or face recognition),
such conexionist techniques have been adopted for the autonomous navigation tasks,
and specifically in autonomous road following.

One of the first successful implementation architecture for visual road
following was ALVINN (Autonomous Land Vehicle in a Neural Network) developed
by Pomerleau [2] at Carnegie Mellon University, Pittsburgh, USA. ALVINN is based
on a feedforward network (multilayer perceptron), where the network is fed directly
with image data at a low resolution level. ALVINN is a perceptron system which
learns to control the NAVLAB vehicles by watching a person drive.
ALVINN's architecture consists of a single hidden layer backpropagation network.
The input layer of the network is a 30x32 unit two dimensional "retina" which
receives input from the vehicle video camera. Each input neuron is fully connected to
a layer of five hidden units which are in turn fully connected to a layer of 30 output
units. The output layer is a linear representation of the direction the vehicle should
travel in order to keep the vehicle on the road. ALVINN is the most successful
development of the ARPA UGV (Unmanned Ground Vehicle) program. ALVINN
has been demonstrated on several test vehicles driving at speeds of up to 70 mph, and
for distances of over 90 miles without human intervention. ALVINN was originally
designed as part of an unmanned vehicle for the modern battlefield, performing
reconnaissance, surveillance as well as nuclear, biological, and chemical (NBC)
detection missions [3]. However, it was adapted for civilian use, as part of the
Intelligent Vehicle Highway System (IVHS) initiative.

The same team lead by Pomerleau designed an improved variant of
ALVINN called MANIAC (Multiple ALVINN Networks In Autonomous Control)
[4], which confers to the autonomous vehicle the ability to robustly and
transparently navigate between many different road types. MANIAC is composed
of several ALVINN networks, each trained for a single road type that is expected
to be encountered during driving.

A few approaches for visual identification of road direction of an
autonomous vehicle using radial basis function (RBF) neural networks have been
performed and reported by Rosenblum and Davis [5] as well as by Neagoe et al [6].
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The well known road detection and tracking algorithm (RDT), developed
at the Universitat der Bundeswehr Minchen (UBM), has been adapted for
following unpaved paths (dirt road detection) and contour lines [7].

Road detection is also a key issue for autonomous driving in urban traffic.
He, Wang, and Zhang [8] have proposed a road-area detection algorithm based on
color images.

Recently, Dahlkamp et al [9] have presented a method for identifying
drivable surfaces in difficult unpaved and off-road terrain conditions as
encountered in the DARPA Grand Challenge robot race. Instead of relying on a
static, pre-computed road appearance model, this method adjusts its model to
changing environments.

In this paper we present and evaluate an original algorithm for visual
identification of road direction of an autonomous vehicle, based on a neural network
classifier called Concurrent Self-Organizing Maps (CSOM) [10] introduced by
V.E. Neagoe, representing a winner-takes-all collection of neural modules. Thus, we
further extend the approaches presented in [11] and [12].

2. Algorithm Description

As shown in Fig. 1, the proposed model for visual autonomous road
following consists of two main processing steps:

(a) feature selection using either a standard edge detection algorithm, or
an algorithm based on the Hough transform, or no feature selection at all,

(b) classification using one of the four classifiers: Concurrent
Self-Organizing Maps (CSOM), Multilayer Perceptron (MLP), supervised Self
Organizing Map (SOM) [13], and K-Means (Nearest Mean) [14].

We have quantized the path to be followed in three classes (directions):
left, straight ahead and right, so the output of the road following model is one of
the above three directions.

2.1. Feature Selection
2.1.1. Edge Detection

The first considered feature selection algorithm is the classic Canny Edge
Detector [15]. Basically, when applying this algorithm, a binary image of the same
size as the input image is obtained, with the points belonging to edges marked as
1’s and the others marked as 0’s. This way, a large amount of useless information
is filtered out, reducing the total amount of data to be further processed (by the
classifier), while preserving the structural properties of the input image.
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Fig. 1. Flowchart of the Road Direction Visual Identification algorithm
2.1.2. Hough Transform

The Hough transform is a computer vision technique used for identifying
certain features (shapes) within a digital image. It consists of parameterizing a
description of a feature at any given location in the original image's space.
Because it requires that the desired features are specified in a parametric form, the
Hough transform is most commonly used for the detection of regular curves such
as lines, circles or ellipses. We have used its simplest form, namely the
Hough line transform. The algorithm operates using the edge points detected with
an embedded Canny Edge Detector.

In order to use the Hough transform, we must also choose a way of
characterizing a line. One basic representation of a line is the slope-intercept form

y=mx +b, (1)
where m is the slope of the line and 4 is the y-intercept (that is, the y component
of the coordinate where the line intersects the Oy-axis).
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This method cannot be used, however, to describe any given line, because
when lines get more and more vertical, the magnitudes of m and » grow towards
infinity. Another representation of a line, that solves the aforementioned problem,
is the “normal form”

x cos @+ ysin 6 =p. (2

This equation describes a set of lines passing through (X, y), where p is the
length of a normal from the origin to this line and @ is the orientation of p with
respect to the Ox-axis. For any point (x;, y;) on such a line, p and 6 are constant.

In our image analysis application, the coordinates of the edge points (Xi, i)
in the image are known and therefore serve as constants in the parametric line
equation, while p and @ are the unknown variables we seek. The transform is
implemented using an accumulator for the Hough parameter space (p, ).
This space is quantized into finite intervals (for both p and 6) that define the
accumulator cells. By iterating through all possible angles for 8, we can compute
the corresponding values for p (using equation (2)) and the corresponding
accumulator cells are incremented. As the algorithm runs, each edge point (x;, i)
is transformed into a discretized (r, 8) curve (a sinusoid) in the Hough space and
the accumulator cells which lie along this curve are incremented. The points
which are collinear in the Cartesian image space can be viewed in the
Hough parameter space as belonging to curves which intersect at a common (p, 6)
point. Equivalently, the resulting peaks in the accumulator array represent strong
evidence that a corresponding straight line exists in the image.

The Hough transform minimizes the effect of the noise present in the
original image and/or in the binary image obtained after the edge detection stage.

2.2. CSOM Classifier
2.2.1. CSOM Architecture

The neural classification model called Concurrent Self-Organizing Maps
(CSOM) represents a collection of small SOMs using a global competition
strategy. The number of these modules equals the number of classes, so in our
case there are three such identical modules, each being trained individually to
provide best results for one class only, corresponding to a specific road direction.

2.2.2. Training the CSOM

As mentioned, each CSOM module is trained independently, using only
the subset of training images corresponding to its assigned class (road direction),
according to Fig. 2; this training is a supervised one.
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Fig. 2. The training phase of the CSOM model

2.2.3. Recognition Phase

After the training phase, the system should be able to correctly classify an
unknown image into one of the three classes (road directions), using the
information stored in the CSOM weights.

The image to be classified is applied to all the three modules of the
CSOM system (see Fig. 3).

The distances between input vector and all the neurons of the three
modules are computed and then the best matching neuron (over all) is determined
as the one “closest” to the input vector. The unknown road image is classified as
“belonging” to the minimum distance neuron, and the label of the module
containing the best matching neuron is assigned to the input image.
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3. Experimental Results
3.1. Database

For our study, we have used road images from the CMU (Carnegie Mellon
University) Vision and Autonomous Systems Center's Image Database.
This database includes a large number of road images captured as part of the
extensive research they conduct at their Robotics Institute, for the NAVLAB
series of vehicles.

Aiming to ensure the maximum road-scenes diversity while keeping the
number of train and test images reasonably low, we have extracted a dataset
containing 210 color images of 256 x 240 pixels, equally divided into 3 road
direction classes. From the 70 images available for each class, a varying number
(minimum 5 and maximum 65 images) have been used for training the system,
while the remaining pictures have been used for testing. Several samples from this
database are presented in Fig. 2.

3.2. Performance evaluation as a function of classifier type

First, we investigate the influence of the classifier type on the correct road
identification rate. The results, shown in Table 1 and Fig. 4, are obtained by
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computer simulations using only the luminance (Y) component of the input
pictures and considering the algorithm variant without feature selection. We have
evaluated the following classifiers:

() the Concurrent Self-Organizing Maps (CSOM) system with SOM
submodules of circular topology and a number of 10 neurons per module,
20 training epochs;

(b) the Multilayer Perceptron (MLP), with one hidden layer containing
30 neurons and with sigmoid activation functions, 50 training epochs;

(c) the Self-Organizing Map (SOM), in two variants, one with a square
topology (SOM-s) having 10 x 10 neurons, and one with a circular topology
(SOM-c) with 30 neurons, both trained for 20 epochs;

(d) the classical statistical classifier of the Nearest Mean (or prototype) —
K-Means.

Table 1
Correct road identification rate [%] as a function of the classifier type (gray-scale images)
Classifier Number of training images
5 10 20 30 40 50 60 65
K-Means 39.49 48.89 46 55.83 70 68.33 73.33 66.67
MLP 68.21 72.78 88.67 89.17 92.22 91.67 90 93.33
SOM-s 87.18 81.11 98 98.33 100 100 100 100
SOM-c 88.72 88.33 94.67 96.67 98.89 100 100 100
CSOM 90.77 93.89 99.33 100 100 100 100 100
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Fig. 4. Road identification performances as a function of classifier type
3.3. Performance evaluation as a function of the selected color component

Table 2 and Fig. 5 present the road correct identification rate as a function
of the selected color component: red (R), green (G), blue (B) or luminance (Y).
The CSOM system contains SOM modules with a circular architecture, with
10 neurons per module, and no feature selection is employed. The chosen number
of training epochs is 20.
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Table 2
CSOM correct road identification rate [%] as a function of the selected color component
Color Number of training images
component 5 10 20 30 40 50 60 65
Y - luminance | 90.77 93.89 99.33 100 100 100 100 100
R -red 89.75 92.78 98.67 100 100 100 100 100
G - green 89.23 91.11 98 98.33 98.89 98.33 100 100
B - blue 91.28 94.44 99.33 100 100 100 100 100
100 a a o
g 98 - Y -luminance
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8 90 -
5 10 20 30 40 50 60 65

Number of training images
Fig. 5. CSOM performance as a function of the color component selection

3.4. Influence of the feature selection method

In Table 3 and Fig. 6 one can see the influence of the chosen feature
selection method on the CSOM identification performance.

Table 3
CSOM correct road identification rate [%] as a function of the feature selection
method (luminance component; 20 training images)

Color Feature Selection Number of epochs

component Method 3 5 10 20
v None 97.33 98 99.33 99.33
luminance Edge Detection 98 99.33 99.33 99.33
Hough Transform 98.67 99.33 99.33 99.33
R None 96.67 97.33 98.67 98.67
red Edge Detection 97.33 98.67 98.67 99.33
Hough Transform 98 99.33 99.33 99.33

G None 96 96.67 98 98
green Edge Detection 96.67 97.33 98.67 98.67
Hough Transform 98 98.67 99.33 99.33
B None 97.33 98.67 99.33 99.33
blue Edge Detection 98 99.33 99.33 99.33
Hough Transform 98.67 99.33 99.33 99.33
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Fig. 6. CSOM performance as a function of the feature selection method, for 20 training images
and using only the luminance (Y) component

4. CSOM for real-time path detection

We have used a small mobile robot (“police jeep” toy shown in Fig. 8) of
sizes 30 cm (L) x 22 cm (W) x 19 cm (H). The machine vision system (Fig. 7) has
two modules: the on-board module and the stationary module. We have used a
wireless TV camera mounted on the mobile robot and the video signal is
transmitted through the 1.2 GHz channel to the computer. The second
communication channel (40 MHz) transmits the direction commands from
computer to the robot.

In a preliminary phase, there have been performed the acquisition and
labeling of the road picture set. A human trainer has driven the mobile robot to
follow a specific path made by white sheets of paper on a red carpet
(see Fig. 8 - right). The computer software automatically stores the corresponding
data (image & its direction label) sequence, obtaining the labeled road image set.

The training of the CSOM modules has been performed using three classes
of labeled road images: left, straight ahead and right. Each neural module has
been trained with the image subset corresponding to its class label.

The artificial vision system identifies in real time the correct direction as
follows. The video signal captured by camera is transmitted through the 1.2 GHz
channel to the computer, where the input path picture is stored. The CSOM
software computes the minimum distance between the input picture vector and
every neuron. The minimum distance neuron is the winner and the direction label
of the module to which the winner belongs is assigned to the input image. This
direction is coded and transmitted through the 40 MHz channel to the steering
system of the mobile robot, so that it can follow the correct path.
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Fig. 7. General block diagram of the machine vision system for the automated guided mobile robot
(on-board module, stationary module)

Fig. 8. Left: Mobile robot including the on-board module; Right: Autonomous driving area
5. Conclusions

The experimental evaluation of the model has shown that the best road
identification score is obtained by CSOM classifier. Moreover, CSOM
architecture allows a faster and a more flexible algorithm implementation by
comparison to other classifiers, a key feature for real-time applications.
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For color images when choosing a small training lot, the best
performances are obtained using the b/ue picture component.

For a small lot of training color images, the feature selection based on
Hough transform leads to a better road identification score than that based
on edge detection.
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