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ITERATIVE ALGORITHMS FOR THE

PROXIMAL SPLIT FEASIBILITY PROBLEM

by Yonghong Yao1, Mihai Postolache2, Xiaolong Qin3 and Jen-Chih Yao4

The proximal split feasibility problem is considered. An iterative algorithm has
been constructed for solving the proximal split feasibility problem. Strong convergence

result is given.
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1. Introduction

Let H1 and H2 be two real Hilbert spaces. Let φ : H1 → R ∪ {+∞} and ψ : H2 →
R ∪ {+∞} be two proper and lower semi-continuous convex functions. Let A : H1 → H2

be a bounded linear operator with its adjoint A∗. Let λ be a given positive number. The
Moreau envelope of ψ of index λ, also known as the Moreau[9]-Yosida[28] approximate,
Yosida approximate or Moreau-Yosida regularization, is defined as

ψλ(x) = min
u∈H2

{
ψ(u) +

1

2λ
∥u− x∥2

}
, x ∈ H2.

The proximity operator of ψ is defined by

proxλψ(x) = arg min
u∈H2

{
ψ(u) +

1

2λ
∥u− x∥2

}
, x ∈ H2.

Recall that the subdifferential ∂ψ(x†) of ψ at x† is defined as follows

∂ψ(x†) = {x∗ ∈ H2 : ψ(x‡) ≥ ψ(x†) + ⟨x∗, x‡ − x†⟩, ∀x‡ ∈ H2}.
It is easy to see that

0 ∈ ∂ψ(x†)⇐⇒ x† = proxλψ(x
†).

This is to say that the minimizer of any function is the fixed point of its proximity operator.
We can apply this equivalent relation to solve optimization problems by using fixed point
methods.

Recall that the proximal split feasibility problem is to find a point x† ∈ H1 such that

min
x†∈H1

{φ(x†) + ψλ(Ax
†)}. (1.1)

In the sequel, we use Γ to denote the solution set of the problem (1.1).
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If φ and ψ are the indicator functions of two nonempty closed convex sets C ⊂ H1

and Q ∈ H2, respectively, then

φ(x†) = δC(x
†) =

{
0, if x† ∈ C,
+∞, otherwise;

ψ(x‡) = δQ(x
‡) =

{
0, if x‡ ∈ Q,
+∞, otherwise.

In this case, the problem (1) reduces to

min
x†∈H1

{δC(x†) + (δQ)λ(Ax
†)},

which is equivalent to

min
x†∈C

{ 1

2λ
∥(I − projQ)(Ax

†)∥2
}
, (2)

where projQ is the metric projection from H2 onto Q.

Solving (2) is exactly to solve the split feasibility problem of finding x† such that

x† ∈ C and Ax† ∈ Q. (3)

The split feasibility problem (3) has received much attention due to its applications in signal
processing and image reconstruction [5] with particular progress in intensity modulated
therapy [3]. Recently, the split feasibility problem (3) has been studied extensively by many
authors (see, for instance, [1, 2, 4, 6, 7, 8, 11, 13, 14], [16]-[25] and [27, 29]).

Note that problem (1) can be converted to the fixed point problem. By the differen-
tiability of the Yosida-approximate ψλ, we have

∂(φ(x†) + ψλ(Ax
†)) = ∂φ(x†) +A∗

(I − proxλψ
λ

)
(Ax†). (4)

The optimality condition of (4) is 0 ∈ ∂φ(x†) + A∗
(
I−proxλψ

λ

)
(Ax†), which can be

rewritten as

0 ∈ µλ∂φ(x†) + µA∗(I − proxλψ)(Ax
†).

This relation is equivalent to the following fixed point equation

x† = proxµλφ(x
† − µA∗(I − proxλψ)(Ax

†)). (5)

By using the above fixed point equation (5), Moudafi and Thakur [10] presented the
following split proximal algorithm to solve problem (1).

Algorithm 1.1

1. Given an initialization x0 ∈ H1.
2. Assume that {xn} in H1 has been constructed. Compute

θ(xn) =
√
∥∇h(xn)∥2 + ∥∇l(xn)∥2

where h(xn) =
1
2∥(I − proxλψ)Axn∥2 and l(xn) =

1
2∥(I − proxµnλφ)xn∥

2.
If θ(xn) = 0, then the iterative process stops, otherwise

3. Compute
xn+1 = proxµnλφ(xn − µnA

∗(I − proxλψ)Axn)

where the step size µn = ρn
h(xn)+l(xn)

θ2(xn)
in which 0 < ρn < 4.

Subsequently, in [26], Yao et al. presented a regularized algorithm. We observe,
however, that the stepsize sequence {µn}, which appeared in Algorithm 1.1, seems to be
implicit because of the terms l(xn) and θ(xn). Very recently, Shehu and Iyiola [12] suggested
the following split proximal algorithm to solve problem (1).
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Algorithm 1.2
1. Given u ∈ H1 and x1 ∈ H1, starting points.
2. Set n = 1 and compute:
3. yn = αnu+ (1− αn)xn
4. θ(yn) = ∥A∗(I − proxλψ)Ayn + (I − proxλφ)yn∥
5. zn = yn − ρn h(yn)+l(yn)θ2(yn)

(A∗(I − proxλψ)Ayn + (I − proxλφ)yn)

6. Then compute xn+1 = (1− βn)yn + βnzn
7. If A∗(I − proxλψ)Ayn = 0 = (I − proxλφ)yn and xn+1 = xn, the iterative

process stops, otherwise
8. Set n← n+ 1 and repeat steps 3-6.

Remark 1.1. Note that in Algorithm 1.2, A∗(I−proxλψ)Ayn = 0 = (I−proxλφ)yn implies
θ(yn) = 0. In this case, we can not compute zn and xn+1.

In the present paper, our main purpose is to suggest a modified proximal split fea-
sibility algorithm for solving the proximal SFP (1). We prove that the generated sequence
converges strongly to a solution of the proximal SFP (1) under some appropriate conditions
on the iterative parameters.

2. Preliminaries

Let H be a real Hilbert space with the inner product ⟨·, ·⟩ and the norm ∥ · ∥, respec-
tively and C be a nonempty closed convex subset of H. Recall that a mapping T : C → C
is said to be:

(i) nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C,
(ii) firmly nonexpansive if

∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(I − T )x− (I − T )y∥2, ∀x, y ∈ C,
where I denotes the identity, which is equivalent to

∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩
for all x, y ∈ C. Also, the mapping I−T is firmly nonexpansive. Throughout, Fix(T ) stands
for the set of fixed points of T .

Note that the proximal mapping of ψ is firmly nonexpansive, namely,

⟨proxλψ(x)− proxλψ(y), x− y⟩ ≥ ∥proxλψ(x)− proxλψ(y)∥2

for all x, y ∈ H2 and it is also the case for complement I − proxλψ.
For all x ∈ H, there exists a unique nearest point in C, denoted by projC(x), such

that
∥x− projC(x)∥ ≤ ∥x− y∥

for all y ∈ C. The mapping projC is called the metric projection of H onto C. It is well
known that projC is a nonexpansive mapping and is characterized by the following property:

⟨x− projC(x), y − projC(x)⟩ ≤ 0

for all x ∈ H and y ∈ C.
Now, we introduce two lemmas for our main results in this paper.

Lemma 2.1 ([15]). Let {an} be a sequence of non-negative real numbers satisfying the
following relation:

an+1 ≤ (1− αn)an + αnσn + δn, n ≥ 0,

where
(i) {αn}n∈N ⊂ [0, 1] and

∑∞
n=1 αn =∞;
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(ii) lim supn→∞ σn ≤ 0;
(iii)

∑∞
n=1 δn <∞.

Then limn→∞ an = 0.

3. Main results

Now, we are in a position to introduce a modified proximal split feasibility algorithm
for solving problem (1). In the sequel, assume that problem (1) is consistent, i.e., Γ ̸= ∅.

Algorithm 3.1

1. Given fixed point u ∈ H1 and initial value x1 ∈ H1.
2. Assume that the current iteration xn ∈ H1 has been constructed.

Compute
θ(xn) = A∗(I − proxλψ)Axn + (I − proxλφ)xn.

If θ(xn) = 0, then stop iteration, otherwise proceeds the next step.
3. Compute the next iteration for n ≥ 1,

xn+1 = (1− βn)(αnu+ (1− αn)xn) + βn

[
xn − ρn h(xn)+l(xn)∥θ(xn)∥2 θ(xn)

]
,

where h(xn) =
1
2∥(I − proxλψ)Axn∥2 and l(xn) =

1
2∥(I − proxλφ)xn∥2.

Remark 3.1. In Algorithm 3.1, if θ(xn) = 0, then xn is a solution of the proximal split
feasibility problem (1). As a matter of fact, taking any x̃ ∈ Γ, we have x̃ = proxλφx̃ and
Ax̃ = proxλψAx̃.

Note that I − proxλψ and I − proxλφ are firmly-nonexpansive. Hence,

0 = ⟨θ(xn), xn − x̃⟩
= ⟨A∗(I − proxλψ)Axn + (I − proxλφ)xn, xn − x̃⟩
= ⟨A∗(I − proxλψ)Axn, xn − x̃⟩+ ⟨(I − proxλφ)xn, xn − x̃⟩
= ⟨(I − proxλψ)Axn,Axn −Ax̃⟩+ ⟨(I − proxλφ)xn, xn − x̃⟩
≥ ∥(I − proxλψ)Axn∥2 + ∥(I − proxλφ)xn∥2.

(6)

Thus,

(I − proxλψ)Axn = 0 and (I − proxλφ)xn = 0.

Therefore, xn ∈ Fix(proxλφ) and Axn ∈ Fix(proxλψ), i.e., xn ∈ Γ.

Theorem 3.1. Suppose the real sequences {αn}, {βn} and {ρn} satisfy the following con-
ditions:

(i) {αn} ⊂ (0, 1) with limn→∞ αn = 0 and
∑∞
n=1 αn = +∞;

(ii) {βn} ⊂ (0, 1) with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) {ρn} ⊂ (0,+∞) with lim infn→∞ ρn(4− ρn) > 0.
Then sequence {xn} generated by Algorithm 3.1 strongly converges to the solution

z ∈ Γ, where z = projΓ(u).

Proof. Set yn = αnu+ (1− αn)xn and zn = xn − ρn h(xn)+l(xn)∥θ(xn)∥2 θ(xn) for all n ≥ 1.

It follows that

∥zn − z∥2 = ∥xn − z − ρn
h(xn) + l(xn)

∥θ(xn)∥2
θ(xn)∥

= ∥xn − z∥2 − 2ρn
h(xn) + l(xn)

∥θ(xn)∥2
⟨θ(xn), xn − z⟩

+
ρ2n(h(xn) + l(xn))

2

∥θ(xn)∥2
.

(7)
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By (6), we deduce

⟨θ(xn), xn − z⟩ ≥ ∥(I − proxλψ)Axn∥2 + ∥(I − proxλφ)xn∥2

= 2h(xn) + 2l(xn).
(8)

From (7) and (8), we get

∥zn − z∥2 ≤ ∥xn − z∥2 − 2ρn
h(xn) + l(xn)

∥θ(xn)∥2
(2h(xn) + 2l(xn))

+
ρ2n(h(xn) + l(xn))

2

∥θ(xn)∥2

= ∥xn − z∥2 − ρn(4− ρn)
(h(xn) + l(xn))

2

∥θ(xn)∥2

≤ ∥xn − z∥2.

(9)

Note that

∥yn − z∥ = ∥αn(u− z) + (1− αn)(xn − z)∥
≤ αn∥u− z∥+ (1− αn)∥xn − z∥.

Thus,

∥xn+1 − z∥ = ∥(1− βn)(yn − z) + βn(zn − z)∥
≤ (1− βn)∥yn − z∥+ βn∥zn − z∥
≤ αn(1− βn)∥u− z∥+ [1− αn(1− βn)]∥xn − z∥
≤ max{∥u− z∥, ∥xn − z∥}.

An induction induces that

∥xn − z∥ ≤ max{∥u− z∥, ∥x0 − z∥}.

This implies that {xn} is bounded. Consequently, {yn}, {Axn} and {zn} are all bounded.
At the same time, we have

∥yn − z∥2 = ∥αn(u− z) + (1− αn)(xn − z)∥2

= α2
n∥u− z∥2 + (1− αn)2∥xn − z∥2

+ 2αn(1− αn)⟨u− z, xn − z⟩,
(10)

and

∥xn+1 − z∥2 ≤ (1− βn)∥yn − z∥2 + βn∥zn − z∥2. (11)

In light of (9)-(11), we obtain

∥xn+1 − z∥2 ≤ (1− βn)[α2
n∥u− z∥2 + 2αn(1− αn)⟨u− z, xn − z⟩

+ (1− αn)2∥xn − z∥2] + βn∥xn − z∥2

− βnρn(4− ρn)
(h(xn) + l(xn))

2

∥θ(xn)∥2

≤ (1− βn)αn
[
αn∥u− z∥2 + 2(1− αn)⟨u− z, xn − z⟩

− βnρn(4− ρn)
(h(xn) + l(xn))

2

αn(1− βn)∥θ(xn)∥2

]
+ [1− αn(1− βn)]∥xn − z∥2.

(12)
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Set δn = ∥xn − z∥2 and

σn = αn∥u− z∥2 + 2(1− αn)⟨u− z, xn − z⟩

− βnρn(4− ρn)
(h(xn) + l(xn))

2

αn(1− βn)∥θ(xn)∥2
.

(13)

for all n ≥ 1.
By virtue of (12) and (13), we obtain

δn+1 ≤ [1− (1− βn)αn]δn + (1− βn)αnσn, n ≥ 1. (14)

Next, we show that lim supn→∞ σn is finite. From (13), we get

σn ≤ αn∥u− z∥2 + 2(1− αn)⟨u− z, xn − z⟩ ≤ ∥u− z∥2 + 2∥u− z∥∥xn − z∥.
Since {xn} is bounded, it follows that lim supn→∞ σn < +∞.

Next we prove lim supn→∞ σn ≥ −1 by contradiction. If we assume on the contrary
lim supn→∞ σn < −1, then there exists m0 such that σn ≤ −1 for all n ≥ m0. It then
follows from (14) that

δn+1 ≤ δn − (1− βn)αn
for all n ≥ m0.

By induction, we have

δn+1 ≤ δm0 −
n∑

i=m0

(1− βi)αi. (15)

By taking lim sup as n→∞ in (15), we have

lim sup
n→∞

δn ≤ δm0 − lim
n→∞

n∑
i=m0

(1− βi)αi = −∞,

which induces a contradiction. So,

−1 ≤ lim sup
n→∞

σn < +∞.

Hence, lim supn→∞ σn exists. Thus, we can take a subsequence {nk} such that

lim sup
n→∞

σn = lim
k→∞

σnk

= lim
k→∞

[
αnk∥u− z∥2 + 2(1− αnk)⟨u− z, xnk − z⟩

− βnkρnk(4− ρnk)
(h(xnk) + l(xnk))

2

αnk(1− βnk)∥θ(xnk)∥2

]
.

(16)

Since xnk is a bounded real sequence, without loss of generality, we may assume limk→∞ xnk =
z†. Consequently, from (16), the following limit also exists

lim
k→∞

βnkρnk(4− ρnk)
(h(xnk) + l(xnk))

2

αnk(1− βnk)∥θ(xnk)∥2
. (17)

Note that limk→∞ αnk = 0. It follows from (17) that

lim
k→∞

(h(xnk) + l(xnk))
2

∥θ(xnk)∥2
= 0.

Noting that θ(xnk) is bounded, we deduce immediately that

lim
k→∞

(h(xnk) + l(xnk)) = 0.

Therefore,

lim
k→∞

h(xnk) = lim
k→∞

l(xnk) = 0.
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By the lower semicontinuity of h, we have

0 ≤ h(z†) ≤ lim inf
i→∞

h(xni) = 0.

Thus, we obtain

h(z†) =
1

2
∥(I − proxλψ)Az

†∥2 = 0,

that is, Az† ∈ Fix(proxλψ).
Similarly, from the lower semi-continuity of l, we derive

0 ≤ l(z†) ≤ lim inf
i→∞

l(xni) = 0.

Therefore,

l(z†) =
1

2
∥(I − proxλφ)z

†∥2 = 0,

that is, z† ∈ Fix(proxλφ). Hence z
† ∈ Γ.

So,

lim sup
n→∞

⟨u− z, xn − z⟩ = lim
i→∞
⟨u− z, xni − z⟩

= ⟨u− z, z† − z⟩
≤ 0.

It follows from (16) that lim supn→∞ σn ≤ 0.
Finally, applying Lemma 2.1 to (14) to get that xn → z. This completes the proof. �

We can apply our algorithm and theorem to the split feasibility problem (3).

Algorithm 3.2

1. Given fixed point u ∈ H1 and initial value x1 ∈ H1

2. Assume that the current iteration xn ∈ H1 has been constructed.
Compute

θ(xn) = A∗(I − projQ)Axn + (I − projC)xn.
If θ(xn) = 0, then stop iteration, otherwise proceeds the next step.

3. Compute the next iteration

xn+1 = (1− βn)(αnu+ (1− αn)xn) + βn

[
xn − ρn h(xn)+l(xn)∥θ(xn)∥2 θ(xn)

]
, n ≥ 1,

where h(xn) =
1
2∥(I − projQ)Axn∥2 and l(xn) =

1
2∥(I − projC)xn∥2.

Corollary 3.1. Assume that C ∩A−1(Q) ̸= ∅. Suppose the real sequences {αn}, {βn} and
{ρn} satisfy the following conditions:

(i) {αn} ⊂ (0, 1) with limn→∞ αn = 0 and
∑∞
n=1 αn = +∞;

(ii) {βn} ⊂ (0, 1) with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) {ρn} ⊂ (0,+∞) with lim infn→∞ ρn(4− ρn) > 0.
Then sequence {xn} generated by Algorithm 3.2 strongly converges to the solution

z ∈ C ∩A−1(Q), where z = projC∩A−1(Q)(u).
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