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SPARSE REPRESENTATION AND DENOISING FOR
IMAGES AFFECTED BY GENERALIZED GAUSSIAN NOISE

Florin Ilarion Miertoiu1 and Bogdan Dumitrescu2

In this paper, the image denoising problem is considered, when the
image is perturbed with noise generated from a Generalized Gaussian dis-
tribution with an unknown shape parameter. We start by extending the
algorithm for estimating the shape parameter presented in [1], in the con-
text of sparse representations, with an alternative variant for its update
step. Both variants of the update step, new and old, combined with the Fea-
sibility Pump adaptation for Generalized Gaussian noise, give better results
than `p versions of Orthogonal Matching Pursuit (OMP) or `1 regulariza-
tion (LP L1). The quality of the sparse representations is comparable with
that given by algorithms informed of the true shape parameter value. As an
application, we employ our algorithms to the image denoising problem and
obtain a favorable comparison, in terms of Peak SNR and SSIM, with other
state of the art algorithms using sparse representations.

Keywords: sparse representations; image denoising; feasibility pump; Gen-
eralized Gaussian noise; shape parameter estimation; regularization; prob-
ability density function;

1. Introduction

1.1. Problem Formulation

Sparse representations are one of the most important linear optimization
problems. They originated from the desire to increase the flexibility of linear
representations, and they were successfully used in machine learning, data
analysis, compressed sensing, image processing and many other topics. The
sparse representation x ∈ Rn of a signal y is obtained by solving the linear
system y = Dx, where D ∈ Rm×n, m < n, is the dictionary, under the
constraint that most of the coefficients of x are zero. In practice, the signal y
is affected by noise, and diverse optimization models were proposed depending
on the type of noise.
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A Generalized Gaussian noise is obtained by sampling a Generalized
Gaussian distribution [2]. This distribution is used in image processing appli-
cations, communication channel modeling, radar, finance and noise modeling.
In [3] the problem of communication over an additive noise channel, where the
noise is obtained by sampling a Generalized Gaussian distribution, is analyzed.
In [4], the Generalized Gaussian distribution is modeled for edge modeling of
images. Communication channels affected by Generalized Gaussian noise are
also analyzed in [5] for amplitude modulation.

The Generalized Gaussian probability density function is defined as [6]

g(ξ;µ, σ, p) =
1

2Γ(1 + 1/p)A(p, σ)
e−|

ξ−µ
A(p,σ)

|p , ξ ∈ R (1)

where µ represents the mean, σ2 is the variance, p is the shape parameter and
A(p, σ) is a scaling factor; Γ is the Gamma function. The parameter p dictates
the general shape of the distribution; for p = 1, the distribution is Laplacian
and for p = 2, the Gaussian distribution is obtained.

Problems with signals affected by Generalized Gaussian noise lead to
optimization programs in which the lp norm is used. The general form of such
a sparse representation problem is

minimize
x∈Rn

‖y −Dx‖p

subject to ‖x‖0 ≤ K
(2)

where K is the sparsity level, namely the number of atoms K from dictionary
D that can be used for the representation x.

In most applications, problem (2) can be relaxed by replacing the l0 norm
with the l1 one, which results in the LASSO problem

minimize
x∈Rn

‖y −Dx‖p + λ‖x‖1 (3)

1.2. Previous Work

There are only few algorithms for solving problems (2) or (3). OMP-p
[7] and LP L1 [8] assume that the value of p is known. In paper [1], as in this
paper, the value of p is not known, and so the focus is both on finding the
shape estimation parameter p, with p ≥ 1, as well as recovering the sparse
signal with the smallest representation error.

There are other works on shape parameter estimation, but proposing an
a posteriori estimation and not for a sparse model. In [6], an estimator for the
shape parameter, using the method of moments, for a Generalized Gaussian
Distribution is presented. The method of moment estimation is also used in [9],
together with maximum likelihood method, to obtain the shape parameter of
the Generalized Gaussian Distribution. Both methods are analyzed separately
also in [10]. Other variants of moment-based estimators are proposed in [11].
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By matching the entropy of a generalized Gaussian distribution with
the empirical data obtained from that distribution, in [12] a new method for
obtaining the shape parameter is presented.

Image denoising is one of the important problems in signal processing.
Images can be affected by low quality sensors or natural perturbations. Many
sparse reconstruction methods showed good results in solving this problem
because they can effectively represent the true image while ignoring the noise.

In [13], Bayesian reconstruction is used on a dictionary trained with the
K-SVD algorithm in order to perform image denoising on a signal perturbed by
Generalized Gaussian Noise. In [14], wavelet decomposition is combined with
K-SVD for dictionary training to denoise images affected by Gaussian Noise.
In [15], three weight matrices are added to the data and regularization terms
in the model for images perturbed by Generalized Gaussian Noise, in order
to improve the statistical characterization of the image data. The denoising
step is done using the alternating directions method of multipliers (ADM)
algorithm.

The Branch and Cut algorithm is adapted for image denoising in [16],
using K-SVD for the dictionary learning. Deep Neural Networks can also be
used both for the dictionary learning step and the sparsity recovering step in
[17]. In [18] two algorithms are proposed for hyperspectral image restoration
when the noise that affects the image is Gaussian or Poissonian.

1.3. Contributions

In this paper, the image denoising problem is posed as follows. The orig-
inal (clean) image C ∈ Rt×t is additively perturbed by Generalized Gaussian
noise V ∈ Rt×t with zero mean and shape parameter p. We are in possession
of the noisy image

C̃ = C + V (4)

The goal is to recover C as well as possible. To this purpose, we use the
following approach. Firstly, using a small number of patches P ∈ Rs×s from

the perturbed image C̃, with s ≤ t, a dictionary D is trained using a dictionary

learning algorithm. Then, a matrix Ỹ ∈ Rm×q is built, having as columns

vectorized patches P from C̃. Ideally, all possible distinct patches are used,
but practically it may be more appropriate to use only a limited degree of
overlap between patches; we denote q the number of patches and m = s2 is the
number of pixels in a patch. We represent the patches using the dictionary D,
by solving the sparse representation problem

minimize
X∈Rn×q

‖Ỹ −DX‖p

subject to ‖Xi‖0 ≤ K, i ∈ {1, ..., q}
(5)
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Problem (5) can be reformulated in LASSO form, which gives the opti-
mization problem

minimize
X∈Rn×q

‖Ỹ −DX‖p + λ‖X‖1 (6)

Once (5) or (6) are solved, the cleaned image Ĉ is obtained by averag-
ing the values that a pixel has in the reconstructed patches DX to which it
belongs.

While the above denoising scheme has a standard structure, our contri-
bution consists in adapting the solution to Gaussian Generalized noise whose
shape parameter p is unknown. We use the algorithms from [1], proposing
also a new method for shape parameter estimation. The results that we have
obtained with such an approach are comparable to or even better than those
obtained with sparse representation algorithms knowing the true value of the
shape parameter.

2. Algorithm

2.1. Algorithm for shape parameter estimation

A sparse representation algorithm (SRA) assumes that the noise has a
certain distribution. In the framework adopted in this paper, we are interested
in Flexible SRAs (FSRA), which can use any given p, like OMP-p [7] and LP L1
[8].

In most engineering problems the shape parameter ptrue is not known a
priori. In particular, noise affecting images has often an impulsive component,
better modeled with a shape parameter p < 2, which give distribution with
longer tail than the Gaussian.

The shape parameter estimation (SPE) algorithm from [6] uses the error

Ỹ −DX obtained by the FSRA in order to estimate the shape parameter p̃,
which is clearly different from ptrue as well as from the p we have used.

A contribution of this paper is to extend the algorithm for the estimation
of ptrue using a FSRA, presented in [1], with a new update step for the shape
parameter. Algorithm 1 shows the operations of our enhanced algorithm.

Both variants of the algorithm start with a given p (we start from 2, as in
most cases the noise is assumed to be Gaussian). At each step of our iterative

algorithm, the error Ỹ −DX is computed and the algorithm presented in [6]
is used to compute the associated p̃.

The difference between the two variants of the algorithm is given by the
updates of the shape parameter p. For the first version of the algorithm, named
Half-Adapt, which was proposed in [1], the norm is updated via

p← (p+ p̃)/2. (7)
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Data: Signals to represent Ỹ ∈ Rm×q, dictionary D ∈ Rm×n, sparsity
level K ∈ Z, maximum number of iterations for norm
estimation Iternorm, stopping threshold θ

Result: Sparse representations X ∈ Rn×q, estimated shape parameter
p ∈ R, p ≥ 1

1 Compute sparse representations X using algorithm with p = 2
2 Use algorithm in [6] to estimate shape parameter p̃ from representation

errors
3 Update norm p using (7) or (8)
4 while number of iterations ≤ Iternorm or |p− p̃| > θ do
5 Compute sparse representations X using algorithm with p from the

previous step
6 Use algorithm in [6] to estimate shape parameter p̃
7 Update p using (7) or (8)
8 end
9 If update (8) was used and the number of iterations was larger than 1,

compute final p as the mean value of all previous values of p̃.
10 Compute sparse representations X using algorithm with the obtained p.

Algorithm 1: General form of the algorithm for shape parameter estima-
tion

So, we go towards ptrue as guided by the empirical noise distribution, but tem-
per the change in p in order to prevent oscillations. The sparse representation
is computed with the new p and so on.

For the second variant of the algorithm, called Mean-Norm, the norm is
updated via

p← p̃. (8)

For this second algorithm, at the end, an additional step is added where the
shape parameter is computed as the mean of all values of p that were found dur-
ing each iteration using the algorithm from [6]. After this final p is computed,
the FSRA is ran one more time with p, in order to get the most appropriate
representation.

The idea of the second variant of the algorithm stems from the following
practical observations; after the FSRA is ran with p = 2, the SRE algorithm
from [6] tends to estimate p̃ close to the true value of p; then, as Algorithm 1
runs using the update (8), the value of p̃ further decreases until the value of
the estimated p is much smaller than the true p. Computing the mean of the
obtained values of p during the algorithm run is used to compensate for this
decrease.

These frameworks are designed so that any FSRA can be used with
it. The algorithm starts by running the FSRA, for p = 2. Using the SPE
algorithm, p̃ is computed. The new p is computed using one of the two updates
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(7) or (8). At each iteration, the FSRA is evaluated with the new value of p,
etc., and the cycle is repeated until the difference |p − p̃| is under a certain
threshold θ or a certain number of iterations Iternorm was completed. If the
Mean-Norm update (8) is used, after the main loop is completed, the mean
of all obtained values of p is computed and the FSRA is run for the obtained
value. This is the final value of p.

The idea of both variants is to compensate sufficiently for the drop of p̃,
computed by the SPE algorithm in [6]. By just taking the value obtained by
the algorithm and simply replacing it, the norm usually will go to a smaller
value than the original one or in some cases close to 1. The Mean-Norm
variant tries to compensate for this by taking the mean of all values obtained,
while the Half-Adapt framework slows the drop by taking the new value of the
shape parameter as the mean between the previous shape parameter and the
obtained parameter by the SRE.

2.2. Image Denoising using the shape parameter estimator

The image denoising framework derived from Algorithm 1 is shown in
Algorithm 2. A dictionary learning algorithm, working with the pd norm of
the error, is used to obtain the dictionary D; here, pd is a rough estimation
of the true shape parameter. Each patch of the noisy image is represented
using the trained dictionary D and Algorithm 1, where we use OMP-p as
FSRA. Using the representations X, the cleaned patches are reconstructed as
Yrec = DX. The image is reconstructed by using these patches. Each pixel
of the image is computed as the mean of the pixel values in all the patches
containing that pixel.

Data: Set of patches to be represented Ỹ ∈ Rm×q, shape parameter for
dictionary learning pd, sparsity level K ∈ Z, maximum number
of iterations for norm estimation Iternorm, stopping threshold θ

Result: Denoised image
1 Train the dictionary D using any dictionary learning algorithm that

optimizes using the pd norm of the error
2 Compute sparse representations X and estimated p using Algorithm 1
3 For each pixel of the image, compute the mean of values of that pixel in

the patches DX that contain it

Algorithm 2: Algorithm for image denoising

3. Results

3.1. Shape parameter estimation for artificial data

In order to test the two versions of shape parameter update in Algorithm
(1), dictionaries of size 50× 100 and signals y with sparsity level K ∈ {5, 7, 9}
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are generated. The additive perturbation noise is Generalized Gaussian and
its variance is chosen such that the signal to noise ratio is 30. The shape
parameters used for the noise are ptrue ∈ {1.2, 1.4, 1.6, 1.8}.

The results obtained by the variants are the sparse representations X
and the shape parameter p.

The sparse representation algorithms that are integrated into Algorithm
1 are FP-GGN [1], OMP-p [7] and LP L1 [8]. FP-GGN is the adaptation of the
Feasibility Pump for the case of a signal perturbed with Generalized Gaussian
noise.

The algorithms are tested on a machine with a 6-core processor and 32
GB of RAM and compared in terms of mean representation errors, recovery
errors and estimated shape parameters.

The training step in Algorithm 2 is done using pd = ptrue in step 1.
The representation error is computed using the lp norm with

e =
‖Dx− y‖p
‖y‖p

, (9)

where x is the computed solution, in accordance with the formulation of the
initial problem (2). The relative recovery error is computed using

erec =
‖x− xtrue‖p
‖y‖p

, (10)

where xtrue is the true representation of the signal y using the dictionary D
in the unperturbed case.

In Table 1, the value of the estimated shape parameter is shown for
the Half-Adapt and Mean-Norm versions of Algorithm 1. For each value of
K and p, the estimated p that is closest to the true value ptrue is written
in bold. It can be seen that Mean-Norm offers the closest approximation to
the true value of p in most cases. For K = 5 and K = 7, FP-GGN gives
the closest approximation. As K increases, LP L1 appears to have the closer
approximation. We note that all algorithms give estimated values that are
near ptrue.

In Table 2, the mean representation errors are displayed. HA denotes
the Half-Adapt version of the algorithm, MN denotes the Mean-Norm and F
denotes the version with the Fixed value of the norm. For each K, there are
three columns: the left and center ones contain the errors of the adaptive algo-
rithms for which ptrue is unknown (the two versions of Algorithm 1); the right
one contains the errors of the same basic algorithms that are in possession of
ptrue. Similarly to Table 1, for each value of K and p, the smallest recovery
error is written in bold. FP-GGN and LP L1 have similar values of the repre-
sentation errors, with very small differences. As K increases, FP-GGN begins
to have a slightly smaller representation error when compared to LP L1.

In Table 3, the mean recovery errors are displayed. It can be seen in
multiple cases that the mean representation error is better for FP-GGN. Here,
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Table 1
Mean Estimated Shape Parameters for OMP-p (top in each

cell), FP-GGN (middle) and LP L1 (bottom)

K 5 7 9
Half-Adapt Mean-Norm Half-Adapt Mean-Norm Half-Adapt Mean-Norm

p=1.2 1.134 1.212 1.088 1.190 1.067 1.235
1.148 1.215 1.107 1.199 1.051 1.175
1.187 1.297 1.133 1.261 1.064 1.193

p=1.4 1.326 1.386 1.232 1.348 1.176 1.303
1.348 1.399 1.260 1.367 1.187 1.322
1.365 1.427 1.354 1.446 1.240 1.427

p=1.6 1.535 1.587 1.448 1.541 1.284 1.440
1.559 1.608 1.502 1.579 1.337 1.483
1.577 1.640 1.561 1.690 1.432 1.463

p=1.8 1.811 1.830 1.698 1.755 1.675 1.727
1.813 1.833 1.707 1.763 1.676 1.749
1.883 1.893 1.750 1.831 1.661 1.680

Table 2
Mean Representation Errors for OMP-p (top in each cell),

FP-GGN (middle) and LP L1 (bottom)

K 5 7 9
HA MN F HA MN F HA MN F

p=1.2 0.035 0.035 0.032 0.037 0.037 0.036 0.064 0.063 0.058
0.028 0.028 0.028 0.027 0.028 0.028 0.027 0.027 0.028
0.028 0.029 0.028 0.027 0.029 0.028 0.027 0.027 0.027

p=1.4 0.029 0.029 0.029 0.041 0.041 0.038 0.037 0.036 0.034
0.029 0.029 0.029 0.029 0.029 0.029 0.028 0.028 0.028

0.029 0.029 0.029 0.029 0.028 0.029 0.028 0.027 0.029

p=1.6 0.029 0.029 0.029 0.031 0.031 0.030 0.042 0.042 0.039
0.030 0.030 0.030 0.029 0.029 0.029 0.028 0.028 0.028

0.030 0.030 0.030 0.029 0.030 0.029 0.029 0.029 0.029

p=1.8 0.031 0.031 0.031 0.033 0.033 0.034 0.038 0.040 0.043
0.030 0.030 0.030 0.029 0.029 0.029 0.028 0.028 0.028
0.030 0.030 0.030 0.029 0.029 0.029 0.029 0.029 0.028

as well as in Table 2, the adaptive algorithms give values that are very near to
the algorithms knowing ptrue. This shows that both versions of our Algorithm
1 are able to provide good sparse representations without the knowledge of the
shape parameter value.

Regarding support recovery, in average, FP-GGN Half-Adapt has 0.233
false negatives per test (true support recovered in 78.3% of cases, OMP-p Half-
Adapt has 0.750 false negatives per test (true support recovered in 64.1% of
cases) and LP L1 Half-Adapt has 0.341 false negatives per test (true support
recovered in 73.3% of cases). It can be seen that FP-GGN gets the correct
support in more cases that the other two algorithms.

For the Mean-Norm framework, in average, FP-GGN has 0.241 false
negatives per test (true support recovered in 77.5% of cases), OMP-p has 0.667
false negatives per test (true support recovered in 65% of cases) and LP L1
has 0.244 false negatives per test (true support recovered in 72.5% of cases).
Similarly with the previous framework FP-GGN outperforms both algorithms.



Sparse representation and denoising for images affected by generalized Gaussian noise 83

Table 3
Mean Recovery Errors for OMP-p (top in each cell), FP-GGN

(middle) and LP L1 (bottom)

K 5 7 9
HA MN F HA MN F HA MN F

p=1.2 0.024 0.024 0.017 0.030 0.029 0.026 0.122 0.112 0.093
0.010 0.010 0.010 0.013 0.013 0.013 0.016 0.015 0.015
0.010 0.010 0.010 0.013 0.013 0.013 0.016 0.016 0.015

p=1.4 0.010 0.010 0.010 0.037 0.037 0.032 0.043 0.040 0.033

0.011 0.011 0.011 0.015 0.014 0.014 0.018 0.017 0.018

0.013 0.011 0.013 0.016 0.015 0.015 0.020 0.020 0.019

p=1.6 0.011 0.011 0.011 0.016 0.016 0.015 0.044 0.044 0.039
0.012 0.014 0.014 0.013 0.013 0.013 0.017 0.044 0.016

0.016 0.012 0.012 0.014 0.014 0.014 0.019 0.017 0.018

p=1.8 0.016 0.016 0.014 0.020 0.020 0.022 0.041 0.047 0.047
0.012 0.012 0.012 0.014 0.014 0.014 0.018 0.047 0.018

0.012 0.013 0.012 0.015 0.015 0.014 0.019 0.018 0.018

For the Half-Norm framework, the mean running time of FP-GGN is
4056s per test, OMP-p takes 74.3s and LP L1 takes 11.8s. The Mean-Norm
framework is faster for the FP-GGN, which needs, in average, 3257s, and for
OMP-p which needs 53.2s. The Mean-Norm framework is slower when the
LP L1 algorithms is used and needs 14.6s.

It can be seen that the Mean-Norm framework improves the running time
by around 20% for the FP-GGN and OMP-p algorithms when compared to
the adapt framework, but at the cost of a small loss of the support recovery
of the algorithms.

3.2. Image Denoising using the shape parameter estimator

For the image denoising tests, Algorithm 1 is used with OMP-p and is
compared with OMP, which optimizes using l2, OMP-p, which knows the value
of ptrue and the Orthogonal Wavelet Thresholding (OWT) algorithm presented
in [19], which uses wavelets for image denoising. The focus is to find out which
algorithm can recover the shape parameter of the noise distribution better and
which one gives a larger peak SNR (PSNR) and a better structural similarity
index (SSIM). The PSNR is computed with the MATLAB command psnr and
the SSIM is evaluated using the MATLAB command ssim.

The dictionary D is trained using 2560 patches from the perturbed image,
using a dictionary learning procedure; we take pd = ptrue in Algorithm 2.
Another larger set of 15876 patches is then extracted and is used for the actual
process of image denoising. The perturbed images used for the test have a
mean PSNR = 25.06.

The dictionary size is 64 × 128. The patches are of size 8 × 8. The
sparsity level is K = 8. The shape parameter values are p ∈ {1.2, 1.4, 1.6, 1.8}.
The value of the SNR is 20. Tests are done on three well known images: Lena,
Barbara and Boat. From each image a large patch of 256×256 is selected from
which the training and learning patches are selected. Each image is perturbed
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Table 4
Mean Estimated Shape Parameters for Mean-Norm and

Half-Adapt

Mean-Norm Half-Adapt

p=1.2 1.498 1.154

p=1.4 1.576 1.177

p=1.6 1.708 1.417

p=1.8 2 2

Table 5
Mean PSNR for OMP, OMP-p, Mean-Norm, Half-Adapt and

OWT

OMP OMP-p Mean-Norm Half-Adapt OWT

p=1.2 29.629 29.882 29.791 29.897 29.76

p=1.4 29.593 29.731 29.703 29.765 29.74

p=1.6 29.620 29.640 29.640 29.687 29.74

p=1.8 29.737 29.733 29.737 29.737 29.67

with Generalized Gaussian noise such as the desired SNR is obtained. For each
combination of image and value of p, 5 tests are done.

Table 4 shows the mean shape parameter estimation for the Mean-Norm
and Half-Adapt versions of Algorithm 2. In bold, the estimation that is closest
to the real value is written. It can be seen that the Half-Adapt version tends
to underestimate the shape parameter, while the Mean-Norm version tends to
overestimate. It can be seen that for p = 1.2, the Half-Adapt estimation of
the parameter is closest to the real value of p, while for p = 1.4 and p = 1.6,
Mean-Norm estimates closer to the real value, in many tests the value being
estimated at 2. For p = 1.8, both versions estimate the shape parameter at 2.

In Table 5, the mean PSNR values are presented for OMP, OMP-p, Mean-
Norm, Half-Adapt and OWT algorithms. For each value of p, the largest PSNR
values are written in bold. Mean-Norm has a better peak SNR than OMP,
while having a smaller value than OMP-p. Half-Adapt has the best value in
all cases, except for p = 1.6. For p = 1.8, Mean-Norm and Half-Adapt have
the same value as OMP, as they estimate the shape parameter is estimated
with the value of 2.

The mean values of the SSIM are presented in Table 6, with the best
value being written in bold. For all cases, it can be seen that OWT gives the
best value of the SSIM; OWT, despite its lower PSNR performance, is more
adequate to images. Mean-Norm is better than OMP, but has a smaller value
than the other algorithms. Half-Adapt proves to have once again the best
result in the class of tested sparse representation algorithms. For p = 1.8, all
algorithms, except OWT, have the same result, as both variants of Algorithm
2 estimate the shape parameter to 2.
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Table 6
Mean Structural Similarity Index for OMP, OMP-p,

Mean-Norm, Half-Adapt and OWT

OMP OMP-p Mean-Norm Half-Adapt OWT

p=1.2 0.794 0.812 0.804 0.814 0.853

p=1.4 0.795 0.804 0.801 0.809 0.856

p=1.6 0.795 0.799 0.798 0.802 0.858

p=1.8 0.800 0.800 0.800 0.800 0.860

In average, for 15876 patches, the running time is 5097 seconds for Half-
Adapt, 3779 seconds for Mean-Norm, 751 seconds for OMP-p with known
norm ,0.002 seconds for OMP and 0.087 seconds for OWT. It can be seen
that Mean-Norm is faster than Half-Adapt. The running time increases as the
decrease of the value of the estimated shape parameter is attenuated.

4. Conclusions

In this paper, an extension for the framework presented in [1] was pre-
sented. It can be used with any FSRA. For this general framework, two version
with different adaptation steps for the shape parameter p have been consid-
ered and implemented, Half-Adapt and Mean-Norm. Both versions can find
shape parameters that are close to the true value of p. Also, the mean rep-
resentation and mean recovery error are similar to the algorithms which use
the real value of p. Mean-Norm is faster than Half-Adapt and it also offers
better support recovery. Results are especially good at small values of K. Al-
gorithm 1 is also extended to the image denoising problem. Both variants of
this algorithm, Half-Adapt and Mean-Norm are tested, using OMP-p as the
FSRA, and compared against OMP and OMP-p with ptrue and OWT. It can
be seen, in this case, that Half-Adapt has the best values for the PSNR and
for the SSIM, excepting the OWT algorithm in the latter case. Mean-Norm
is better than OMP, estimates better the shape parameter p than Half-Adapt
and is faster. So, despite their complexity, which can be improved with a
dedicated implementation, our proposed algorithm can bring clear benefits to
image denoising.
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