
U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 1, 2024                                                     ISSN 2286-3540 

RESEARCH ON OPTIMAL CONTROL OF MINE-USED 

PERMANENT MAGNET DIRECT-DRIVE VARIABLE 

FREQUENCY INTEGRATED MACHINE BASED ON 

EXTENDED KALMAN FILTER 

Sen WANG1, Nan CHEN2, Chong TANG3, Jianmin DU4, Zhanyang YU5 

The vector control of the motor relies on the motor terminal voltage and stator 

current as important feedback signals. Conventional motor control systems obtain 

them by using mechanical sensors. However, such sensors are not conducive to 

smooth operation of mining motors. We have designed a control strategy based on the 

Extended Kalman Filter. We enhance the observation accuracy by modifying the noise 

matrices Q and R within the EKF. Simulation results demonstrate that the optimized 

EKF exhibits improvements in reducing convergence time and minimizing speed 

impact values. 

Keywords: permanent magnet direct drive machine, extended Kalman filter, 

position-sensorless control, optimal control 

1. Introduction 

As the mining industry moves towards intelligent mining, researchers have 

developed a high-power, high-voltage variable frequency motor integrated drive 

system. This strategy combines the frequency converter and the motor more 

effectively. This fundamentally resolves the issue of poor coordination between the 

motor and the inverter switches. It enhances the safety and automation level of 

mining operations. It holds significant economic value in terms of reducing energy 

consumption by Wang L et al. (2020) and Kakihara M et al. (2020) . 

By Gaolin L et al. (2017) and Gao W et al. (2021), they apply PI control to 

the vector control system. This achieves constant voltage-to-frequency ratio control 

for asynchronous motors without the need for speed sensors. However, due to the 

dependency of vector control on the motor, it has not led to improved control 
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accuracy. Chebaani M et al. (2018) was proposed early on to apply sensorless 

control technology to mining permanent magnet direct-drive variable frequency 

integrated machines. They adopted a high-frequency signal injection control 

strategy and achieved good control results.However, the injection of high-

frequency signals still causes motor vibrations. The issue at hand has not been 

appropriately resolved. Demir et al. (2018) and Noori, O. B.et al. (2020) proposed 

the incorporation of extended Kalman filtering to estimate the position and velocity 

of the rotor.This strategy has demonstrated commendable stability in both motor 

unloaded and loaded conditions. However, they lack comparative simulations and 

have not achieved optimization outcomes. Lingrui L.et al. (2017) and Aleksandr, 

S.et al. (2020) proposed manipulating the rotor resistance of the motor to emulate 

its operating conditions. They utilized this variation to evaluate the stability of the 

EKF-based control strategy. The simulation results indicated that the system was 

not sensitive to variations in motor parameters. Its value still maintained a high level 

of robustness. However, they did not conduct any research on the optimization 

aspects of the EKF. Khadar, S.et al. (2021), Khanesaret al. (2022) and Emrah, Z.et 

al. (2018) established an EKF-based direct torque control system. They obtained 

the speed and flux waveforms at low speeds. However, they did not set up a control 

group for comparison when assigning values to the covariance matrix in the control 

strategy. We will pay particular attention to addressing this issue. 

We adopt an integrated design approach, combining the inverter with a 

permanent magnet synchronous motor. This fact breaks the disadvantages of the 

conventional separate design of motors and frequency converters, followed by 

integration in the later stages. Due to its smaller size and limited space, we have 

higher requirements for the control strategy. We are studying the application of the 

mine-used permanent magnet integrated frequency converter in low-speed direct 

drive scraper conveyors. Its rated speed is 80 r/min. So, the design emphasis of the 

control system should be placed on the low-speed range. Its speed control range is 

within the range of 0-100 r/min. We conducted a study on the selection of 

covariance matrix initial values in the algorithm by establishing a simulation model 

of the EKF. From this study, we obtained the patterns of variation and were able to 

construct an optimized EKF accordingly. 

2. Motor control principle based on Extended Kalman Filter 

Currently, EKF is widely used in motor observation applications. It includes 

observations of parameters such as speed, position, or angle measurements of the 

motor. EKF extends the Kalman filter by Jacobian matrix formulation of the state 

transition matrix and the observation matrix. This allows for local processing of 

nonlinear systems using Taylor expansion, approaching the optimal estimation 

value. It can utilize the observed results to perform system adjustment and tuning. 



Research on optimal control of mine-used permanent magnet direct-drive variable (…)   181 

And it filters out the influence of uncertainties, making the final result tend towards 

linearization. 

The control system of the permanent magnet direct drive inverter is 

nonlinear in terms of output. Therefore, EKF algorithm will have a good control 

performance. By discretizing the mathematical model of the motor, we obtain: 
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Where iα, iβ are the motor α and β axis current; uα, uβ are the motor α and β 

axis voltage; ωe, θe are rotor electric angular velocity and rotor position angle; R, Ls 

are motor stator phase resistance and phase inductance; ψf is permanent magnet flux 

linkage. 

The control system of the all-in-one machine is nonlinear for the output, so 

the EFK algorithm will have a good control performance. To begin with, we take 

into account formula (2). 
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We can derive the following formula describing the state. 
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Where x is composed of α, β axis current, rotor speed and position; u is 

composed of α, β axis voltage; y is composed of α, β axis current. 
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Where f(x) is composed of the motor stator equation and the rotor position. 

By discretizing the mathematical model of the all-in-one machine, formula 

(7) and (8) are obtained. 
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Where V(k) is system noise; W(k) is measuring noise.  

The noise vectors V and W are not directly involved in the iterative process 

of EKF. The EKF relies primarily on the covariance matrix Q for V and the 

covariance matrix R for W. The noise matrices Q and R are defined as follows: 
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The state estimation of the EKF can be roughly divided into two phases. 

The initial phase corresponds to the prediction stage. The second phase involves the 

correction stage.  

First, the state vector is predicted. The state vector at time step (k+1) is 

predicted based on input u(k) and the previous state estimate x(k). 

( ) ( ) ( )( ) ( ) ( ) kukBkxfTkxkx s ++=+ ~ˆ1~                                            (10) 

In the equation, Ts represents the state sampling period. ‘^’ represents the 

state sampling period. ‘~’ represents the state prediction value.  

To calculate the corresponding output y(k+1) for this prediction, the process 

involves: 

( ) ( )1~1~ +=+ kxCky                                            (11) 

To calculate the error covariance matrix, the process involves: 

( ) ( ) ( ) ( ) ( ) ( )  QkFkpkpkFTkpkp T

s +++=+ ˆˆˆ1~                 (12) 

In the formula, the variables are as follows: 



Research on optimal control of mine-used permanent magnet direct-drive variable (…)   183 

( )
( )

( )kxx
x

xf
kF ˆ=




=                                            (13) 

The final prediction result is given by: 
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To calculate the gain matrix K(k+1) for EKF, the process involves: 
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By performing the feedback correction on the predicted state vector x(k+1), 

we obtain the optimized state estimate x(k+1). The process involves: 

( ) ( ) ( ) ( ) ( ) 1~111~1ˆ +−++++=+ kykykKkxkx                       (16) 

In order to prepare for the next estimation, we need to pre-calculate the 

estimation error covariance matrix. The process involves: 

( ) ( ) ( ) ( )1~11~1ˆ ++=+=+ kpCkKkpkp                               (17) 

Can be seen from the formula (14), the permanent magnet variable 

frequency direct drive integrated machine system is a 4th-order nonlinear system. 

It takes stator flux, motor speed, and position as state variables. It takes the voltage 

in the α-β coordinate system as the system input. It takes the current as the output. 

The entire system is linear with respect to the input, but nonlinear with respect to 

the output. Based on this, it can be seen that EKF is applicable to the field-oriented 

control system of permanent magnet variable frequency direct drive integrated 

machines without position vectors. The control structure of the system is shown in 

Figure 1. 
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Fig. 1. System control structure diagram based on extended Kalman filter 

3. Extended Kalman filter optimization control 

We selected a 400kW mining-grade permanent magnet direct drive variable 

frequency integrated machine as the research object. As shown in Table 1, the 

specific parameters of the permanent magnet direct drive variable frequency 

integrated machine are listed. The system simulation diagram is shown in Figure 2. 

The entire simulation control system mainly consists of the EKF algorithm module, 

PI speed loop, PI current loop, and space vector pulse width modulation 

module.The EKF module is established using the s-function. We set the motor rated 

speed at 80 r/min. And the simulation time is set to 0.5 seconds. 

 
Table 1 

Mining permanent magnet direct drive inverter integrated machine parameters 

Parameter Value 

Rs/Ω 0.06532 

Pn 30 

L/H 0.0085 

Ψf/Wb 0.175 

J/(kg∙m2) 0.0048 

 



Research on optimal control of mine-used permanent magnet direct-drive variable (…)   185 

 
Fig. 2. Vector control system based on EFK 

 

By Yin Z , Gao F , Zhang Y ,et al. (2019), the noise matrices Q and R will 

affect the filtering effect and speed estimation accuracy of EKF. Increasing the Q-

value would intensify the noise in the EKF system. It amplifies the uncertainty of 

the EKF system model. The EKF prediction covariance and filter gain increase. 

Thus enhancing the observation error and responsiveness of the EKF. If the 

measurement noise R-value increases, this results in a reduction of the filter gain. 

The transient characteristics of the filter slow down, even to the extent of causing 

the filtering process to become unstable or divergent. In related EKF control 

systems, they often employ the following combinations: 
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The performance of EKF mainly includes observation accuracy and 

response speed. It is imperative for us to investigate the relationship between the 

noise matrix QR and the performance of EKF. We necessitate delving into the 

correlation between the noise matrices Q and R, and the performance of EKF. 

Sequentially altering the values of the noise matrices Q and R, we juxtapose the 

observational errors and response times of the system under varying conditions. In 

light of the values assigned to matrices Q and R, we configure ten distinct 

simulations for each. With regard to the values assigned to Q, we incrementally 

raise them from 0.02 to 0.2. With regard to the values assigned to R, we 

incrementally raise them from 0.002 to 0.02. 
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According to Figure 3, it is evident that as the value of Q increases, the 

overall observational error of the EKF exhibits an upward trend. Due to the fact that 

the noise matrix Q is a fourth-order matrix, the increase in observational error of 

the EKF is not linear. If we aim to enhance the observational accuracy of EKF, it is 

necessary to reduce the value of Q. The range of its increase is from 0.3985r/min to 

0.6856r/min. Due to the significant improvement in optimization results with such 

a large range, it holds certain research value.  
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Fig. 3. The relationship between the value of Q and the observation error of EKF 

 

According to Figure 4, it can be discerned that the augmentation of Q values 

induces a diminution in the response time of the EKF system. It shall elevate the 

responsiveness of the control system. By recalibrating the Q value, the response 

time was reduced from 0.1095s to 0.0742s. Such optimization proves advantageous 

for the motor control system. Hence, the adjustment of the Q value concurrently 

impacts the observational accuracy and responsiveness of the EKF. 
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Fig. 4. The relationship between the value of Q and the response time of EKF 

 

According to Figure 5, increasing the R value results in a reduction of 

observation error in the EKF, thereby enhancing its observational accuracy. By 

increasing the R value, the observation error decreased from 0.6654r/min to 
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0.5012r/min. Since R is a second-order matrix, we observe a pronounced decrease 

in the observation error trend. 
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Fig. 5. The relationship between the value of R and the observation error of EKF 
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Fig. 6. The relationship between the value of R and the response time of EKF 

 

According to Figure 6, with an increase in the R value, the response time of 

the EKF system also increases. By increasing the R value, the response time 

increased from 0.0756s to 0.0996s. This leads to a decrease in the system's response 

velocity, which hampers the stability of the control system. Consequently, adjusting 

the R value concurrently affects both the observation precision of EKF and the 

velocity influence. Moreover, the impact of the R value is contrary to that of the Q 

value. 

Through the aforementioned analysis, we achieve a harmonious 

enhancement in both the observation precision and response velocity of EKF. The 

ultimate values for the selection of the noise matrices Q and R are as follows: 
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Subsequently, we incorporate this value into the control system of EKF. We 

validate the optimization effectiveness of EKF through the simulated model 

illustrated in Figure 2. The electric motor is initiated under no-load conditions, and 
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at 0.25 seconds, we apply a torque of 3 N·m to the motor. This procedure allows 

for the assessment of the control performance of EKF under various states. Figure 

7 and Figure 8 represent the optimization effect of the observation accuracy in the 

EKF system. From Figure 7, it can be observed that the improved EKF significantly 

enhances its own speed observation accuracy in both the no-load and loaded states 

of the motor. From Figure 8, it can be concluded that in the loaded state of the 

motor, the improved EKF exhibits some improvement in the observed accuracy of 

the rotor position. Therefore, it can be inferred that the observation accuracy of the 

EKF is effectively improved. 
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Fig. 7. Improving the speed observation error curve of EKF 
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Fig. 8. Improving the rotor position observation error curve of EKF 

 

Figure 9 and Figure 10 represent the optimization effect of the response 

speed in the EKF system. From Figure 9 and Figure 10, it can be observed that the 

improved EKF effectively reduces torque, speed overshoot, and improves the 

convergence speed of the curve when state transitions occur. Therefore, it can be 

concluded that the response speed of the EKF is effectively improved. 
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Fig. 9. Improving the torque response curve of EKF 
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Fig. 10. Improving the speed response curve of EKF 

4. Conclusion 

Based on the findings, we propose the adoption of EKF for controlling 

mining permanent magnet variable frequency integrated machines. We have 

designed a vector control system based on EKF and conducted optimization 

research on it. We investigated the relationship between the initial values of the 

noise matrices Q and R within EKF and the performance of the EKF itself. By 

conducting comparative simulations, we obtained insights into the relationship 

between the noise matrices Q and R and the observation accuracy as well as 

response speed of the EKF. Based on the observed variations, we selected the 

optimal values for the noise matrices and applied them to the control system, 

resulting in an improved EKF control system. Through comparative simulations of 

parameters such as rotational speed and torque, we have demonstrated that the 

improved EKF exhibits higher observation accuracy and faster response speed. This 

finding holds significant reference value for the control research of mining 

permanent magnet variable frequency integrated machines. 

Acknowledgment 

The project is funded by Youth Project of Education Department of 

Liaoning Province.Funds:LJKQZ2021084.  



190                         Sen Wang, Nan Chen, Chong Tang, Jianmin Du, Zhanyang Yu 

The project is funded by Liaoning Provincial Department of Science and 

Technology - State Key Laboratory of Coal Mine Safety Technology Joint Opening 

Fund.Funds:2021-KF-13-02. 

R E F E R E N C E S 

[1]. L. Wang L, J. Liu, X. Wang, “Design and Implementation of Ansys-based Scraper Conveyor 

Permanent Magnet Frequency Conversion Integrated Machine.” 2020 IEEE International 

Conference on Mechatronics and Automation, 2020. 

[2]. M. Kakihara, M. Takaki, M. Ohto, “An Investigation of Servo Motor Structure for Sensorless 

Control Based on High-Frequency Injection Method.” 2020 23rd International Conference 

on Electrical Machines and Systems, 2020. 

[3]. G. L. Wang, L. Yang, “Comparative Investigation of Pseudorandom High-Frequency Signal 

Injection Schemes for Sensorless IPMSM Drives.” IEEE Transactions on Power 

Electronics, 2017, pp. 2123-2129. 

[4]. W. Gao, G. Zhang, M. Hang, “Sensorless Control Strategy of a Permanent Magnet Synchronous 

Motor Based on an Improved Sliding Mode Observer.” World Electric Vehicle Journal, 2021, 

pp. 74-78. 

[5]. M. Chebaani, A Golea, M. T. Benchouia, “Sensorless finite-state predictive torque control of 

induction motor fed by four-switch inverter using extended Kalman filter.” Compel: 

International journal for computation and mathematics in electrical and electronic 

engineering, 2018, pp. 2006-2014. 

[6]. D. Ridvan, B. Murat, “Novel hybrid estimator based on model reference adaptive system and 

extended Kalman filter for speed-sensorless induction motor control.”Transactions of the 

Institute of Measurement and Control, 2018, pp. 3884-3888. 

[7]. O. B. Noori, M. O. Mustafa, “Compressed Extended Kalman Filter for Sensorless Control of 

Asynchronous Motor.” International Journal on Energy Conversion, 2020, pp. 200-204. 

[8]. L. R. Li, M. Z. Xu, X. D. Gao, “Current Predictive Control Based on Extended Kalman 

Filter.” Electric Machines & Control Application, 2017. 

[9]. S. Aleksandr, E. L. Kang, “Sensorless Control of Hydrogen Pump Using Adaptive Unscented 

Kalman Filter.” Journal of Harbin University of Science and Technology, 2020. 

[10]. S. Khadar, H. A. Abu-Rub, K. Abdellah, “Sensorless Sliding Mode Control of Open-End Dual-

Stator Induction Motor using Extended Kalman Filter.” 18th IEEE International Multi-

Conference on Systems, Signals & Devices, 2021. 

[11]. M. A. Khanesar, D. Branson, “Robust Sliding Mode Fuzzy Control of Industrial Robots Using 

an Extended Kalman Filter Inverse Kinematic Solver.” Energies, 2022. 

[12]. Z. Emrah, “Adaptive Extended Kalman Filter for Speed-Sensorless Control of Induction 

Motors.” IEEE Transactions on Energy Conversion, 2018, pp. 1-5. 

[13]. Z. Yin, F. Gao, Y. Zhang, “A Review of Nonlinear Kalman Filter Appling to Sensorless Control 

for AC Motor Drives.”Journal of Electrical Machinery and Systems of China Electrotechnical 

Society, 2019, pp. 12-16. 

 


