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ITERATIVE ALGORITHMS FOR FIXED POINT PROBLEMS OF
ASYMPTOTICALLY PSEUDOCONTRACTIVE OPERATORS AND THE
PROXIMAL SPLIT FEASIBILITY PROBLEMS

Zhangsong Yao', Hsun-Chih Kuo?, Ching-Feng Wen?

In this paper, we investigate iterative algorithms for solving fixed point problems
and the proximal split feasibility problems. With the help of fized point techniques, we
suggest an iterative algorithm for finding an intersection of fixed point problem of an
L-Lipschitz asymptotically pseudocontractive operator and the proximal split feasibility
problem. Under some mild assumptions, we show that the proposed algorithm has strong
convergence.
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1. Introduction

Let H; be a real Hilbert space. For a set C' C Hi, the indicator function of C' is
defined by

So(x) = 0, ifzeC,
T\ 4o0, ifzé¢C

Given a function f : Hi — Ry := RU {400}, the domain of f is dom(f) := {u € H; :
f(u) < +o00}. We say that f is proper if dom(f) # (. The class of all proper, convex, and
lower semicontinuous functions in H; is denoted by T'o(H7).
Let Hs be another real Hilbert space. Let ¢ : Hy — Ry be a function in I'g(Hj).
For any ¢ > 0, the Moreau envelope of ¥ of index ( is the function envfb : Hy — R defined
by
q

: 1 2
envi () = min {v9) + gz ll7 ~yl* ). € Ho. (1)

The Moreau envelope introduction by Moreau ([13]) (also called Moreau regularization) is
ubiquitous in optimization, convex analysis, and variational analysis ([10, 11, 12, 36, 44]). It
appears as a natural way to regularize a convex function through an associated optimization
problem ([1, 7, 8, 16]).

Note that the minimizer of (1) is attained at a unique point which is used to define
the proximal operator:

1
proacy(r) = arg min {9(y) + 5l —yl}, w € H (2)

1School of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China, e-mail:

yaozhsong@163.com
2Department of Risk Management and Insurance, National Kaohsiung University of Science and Tech-

nology, Kaohsiung, Taiwan, e-mail: seankuo@nkust.edu.tw
3Corresponding author. Center for Fundamental Science, and Research Center for Nonlinear Analysis

and Optimization, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan and Department of Medical
Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan, e-mail: cfwen@kmu.edu.tw

147



148 Zhangsong Yao, Hsun-Chih Kuo, Ching-Feng Wen

Note that proxz¢, is characterized by the relation

= pronc(w) 0 €0(4(w) + 5ella —ul) = 00(w) + £y =)

Saxe(l+¢0)y
Sy =(I+C00) .
Namely,
prozey(w) = (I + (OY) o,
where 9¢(z) is the subdifferential of ¢ at « defined by
o(z) = {a* € Hy : p(ul) > v(z) + (2", uf — z), Vul € Hy}. (3)
It is known that proxcy(z) is everywhere defined and firmly nonexpansive and the Moreau

envelope env,, is convex and continuously differentiable ([18]). For each z € H», the gradient

of envi is given by

x — proxey(x)
C b
which is called the Yosida approximation ([41]) of index ¢ of the maximal monotone operator

oY.

Venvfp (z) =

Let ¢ : Hi — Ry be a function in I'g(H;). Let A : Hy — Hs be a bounded linear
operator with its adjoint A*. Recall that the proximal split feasibility problem is to solve
the following minimization problem

i f ¢ (Azhy}. 4
min {ip(al) + envé, (o) ()
Use I' to denote the solution set of (4).

Let C' C H; and @ € Hy be two nonempty closed convex sets. Let projg : Ha — Q
be the orthogonal projection. Taking ¢ = dc and ¢ = d¢, the proximal split feasibility
problem (4) reduces to solve

1
O TV . 112
min { 52107~ projo)(Ash) |}, (5)
which is equivalent to the following split feasibility problem ([2, 5, 28, 34]) of finding x' such
that

i € C and Az’ € Q.

Thus, the proximal split feasibility problem (1) includes the split feasibility problem as a
special case.

It is well known that the split feasibility problem can be a model for numerous inverse
problems where constraints are imposed on the solutions in the domain of a bounded linear
operator as well as in its range. The prototype of the split feasibility problem proposed by
Censor and Elfving [5] came out of phase retrieval problems and the intensity-modulated
radiation therapy. Now, the split feasibility problem has a large number of specific appli-
cations in real world such as medical care, image reconstruction and signal processing, see
[2, 5, 9, 27, 30, 31, 32] for more details. Since then, the split problems have been studied
extensively by many authors, see, for instance, [33, 39, 40, 45].

Fundamental insights into the proximal split feasibility problem come from the study
of its Moreau-Yosida regularization and the associated proximal operator. The latter is
a fundamental tool in optimization and it was shown that a fixed point iteration on the
proximal operator could be used to develop a simple optimization algorithm, namely, the
proximal point algorithm ([17, 18]).
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Since 1 is subdifferentiable, we have
0 € Op(at) &zt = proxey (2h). (6)

By using (6), we can translate the proximal split feasibility problem (4) into a fixed point

problem. As a matter of fact, noting that the Moreau envelope envfb is differentiable, we get

. (I —prox
5‘(envfb(AmT)) =A Venvfp(A:cT) =A (TM})(A’ET)
So,
(I —proz
O((plat) + envy,(Ax")) = Dp(a’) + 47 (T ) (Aa). (7)
Note that the optimality condition of (4) is 0 € d(¢p(zT) + envi (Az1)), ie.,
0 € (op(z') + A*(I — proxcy)(Az'). (8)
Based on (6) and (8), we deduce
' solves (4)& 2t = proze, (27 — ¢A*(I — prowey)(Az')). (9)

With the help of the equivalent relations (6) and (9), several iterative algorithms for solving
the proximal split feasibility problem (4) have been proposed, see [14, 15, 22].

In the meantime, we focus on iterative approximation of fixed point problems ([20,
21, 29, 42, 48]). It is well known that fixed point theory acts as an important tool for many
branches of mathematical analysis and its applications. Especially, iterative algorithms by
using fixed point techniques come to be useful in numerous mathematical formulations and
theorems ([3, 4, 19, 24, 43]). Often, approximations and solutions to iterative guess strategies
utilized in dynamic engineering problems are sought using this method. Recently, fixed point
algorithms have attracted so much attention, see [6, 23, 25, 35, 37, 38, 46].

The main purpose of this paper is to investigate iterative algorithms for solving fixed
point problems and the proximal split feasibility problem (4). We suggest an iterative
algorithm for finding an intersection of fixed point problem of an L-Lipschitz asymptotically
pseudocontractive operator and the proximal split feasibility problem (4). We show that the
proposed algorithm converges strongly to a common point of the investigated problems.

2. Preliminaries

Throughout this paper, H; and H, are two real Hilbert space endowed with the
standard inner product (-,-) and the induced norm | - ||. Weak and strong convergence are
denoted by — and —, respectively. Let {z,} be a given sequence in Hy. We use w,,(z,) to
denote the set of all weak cluster points of {z,}, i.e.,

ww(2n) = {2* : {20, } C {2n} such that z,, — 2% ask — oo}
For any z, 2t € H; and constant ¢ € R, there hold
llez + (1 = e)2"[1* = cll2)® + (1 = | 21* = e(1 = o) |2 = =TI, (10)
and
Iz 4+ 2H12 < ||2)1% + 2(=T, 2 + 2T). (11)
Let T : Hi — H; be an operator. Use Fiz(T) to denote the fixed point set of T. Recall
that T is said to be

(i) asymptotically pseudocontractive if there exists a real number sequence {k,} C [1,c0)
with lim,,_, o k, = 1 such that

(T2 — T2, 2 — 21) < k|2 — 212, (12)
for all n > 1 and for all z, 2t € H;.
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(ii) uniformly L-Lipschitzian if there exists a positive constant L such that
1Tz = T2 < L||z - 27,
for all n > 1 and for all z,zT € Hy.
(iii) demiclosed, if for any given sequence {x,} C Hj, we have
A%)\n u_iﬁ[l} =Ta=ul.
(iv) firmly nonexpansive if
Tz —T2"||? < (Tz — T2, 2 — 27),Vz, 2" € Hy.
It is obviously that I — T is also firmly nonexpansive.

Remark 2.1. (i) It is easily seen that (12) is equivalent to
1Tz = T"21? < (2kn = )|z = 212 + (1 = T™)z — (I = T™)21||2. (13)

(i) The proximal operators proxcy, and prox¢, are firmly nonexpansive and I—prox ¢y,
and I — prox¢, are also firmly nonexpansive.

Let C' be a nonempty closed convex subset of H;. For any = € Hj, there exists a unique
nearest point projc(z) in C satisfying
|z = projo(z)|| < |lz —yll,Vy € C.
It is well known that projc is firmly nonexpansive and has the following characterization
(z —projc(z),y — projc(z)) <0 (14)
forall x € Hy and y € C.

Lemma 2.1 ([47]). Let Hy be a real Hilbert space. Let T: Hy — Hi be a uniformly L-
Lipschtzian and asymptotically pseudocontractive operator. Then, I — T s demiclosed at
zero.

Lemma 2.2 ([26]). Let {o,} C R, {a,} C (0,1) and {r,} C R be three real number
sequences. Suppose that
(1) ont1 < (I —apn)on +71,Vn > 0;
(i) o5 an = oo;
(iil) limsup, o 2= <0 or Y o7 || < 0.
Then, lim, o oy, 0.

3. Main results

In this section, we present our main results.

Let H; and Hs be two real Hilbert spaces. Let ¢ : H; — Ry be a function in I'g(H;)
and ¢ : Hy — Ry, be a function in T'g(Hs). Let A : Hi — Hs be a bounded linear operator
with its adjoint A*. Let T : H; — H; be an L-Lipschitz asymptotically pseudocontractive
operator with L > 1 and {k,}. Let {a,}, {Bn} and {n,} be three real number sequences in
(0,1). Let {s,} be a real number sequence in (0, +00).

Next, we first introduce an algorithm for solving fixed point problem of asymptotically
pseudocontractive operator 7' and the proximal split feasibility problem (4).

Algorithm 3.1. Let u € Hy be a fized point. Let xg € H1 be an initial guess. Let n = 0.
Step 1. For given x,, compute

Yn = (1 = Bn)xn + 6nTn[(1 - nn)xn + %T"»’Un]- (15)
Step 2. Compute
Up = A*(I — prozey)Ayn + (I — prozcy)yn. (16)
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Criterion: If u, = 0, then set z, = y, and go to Step 3. Otherwise, compute

u’ﬂv ].7
Tun]? (17)

Zn = Yn —

where \,, = %H(I proxey)Ays||? and 6, 2H (I — proxcip)ynﬂ
Step 3. Compute

Tnt1 = @ptt + (1 — ap)zn. (18)
Step 4. Set n:=n+ 1 and return to Step 1.

Remark 3.1. Ifu, =0, then y, € Fiz(prozc,) and Ay, € Fix(prozcy), i.e., yn € T, see
[13].

Theorem 3.1. Suppose that Fix(T) NT # 0. Suppose that the following conditions are
satisfied

1 .
Cl: 0<cr<PBp<ca<n,<cg< k%+L2+kn(Vn > 0);

(
(C2): 307 (kn — 1) < 400 and lim,,_, kgzl =0;
(C
(C

3): 0<b1<§n<b2<4(Vn>0)

4): limy o0 oy = 0 and Y07 | a, = +00.
Then the sequence {x,} generated by Algorithm 3.1 converges strongly to projpizrynr(u).
Proof. Let o* € Fiz(T)NT. Hence, 2* = prox¢,(z*), Az* = proxcy(Az*) and 2* = Tz* =
T"z*(¥Vn > 1). Since T is asymptotically pseudocontractive, we have from (13) that

1T [(1 = nn)zn + 0T 20] — x*H2 < (2kn = DA = n0) (2 — 27) + (T 2y, — x*)Hz

I = )+ 1T =~ (1= o)+ Tl
and
1Tz — 2*[* < (2kn — Dz — 2" [* + 1T 20 — zal*. (20)
Noting that T is uniformly L-Lipschitzian, we have
[T 2 — T"[(1 = ) @n + 9T ] || < nLflan — T xn. (21)

Using (10) and (20), we have
(1 =) (0 — &) + 1 (T, — )|
= (L =ma)llzn = 22 + 0| T 20 — 2% = 00 (1 = na) 27 — T, |
< (L =na)llzn — 2| + 00 ((2kn — 1)l — 2|2 + | T 2y — 20]%) (22)
— (1 =) [z — T
= (L4 2(ky — Dnalllen — |2 + 02| T2 — 20
In view of (10) and (21), we get
(1 = )20 + a0 = T[(1 = 00)n + 02T ]|
=11 = 1) (20 = T"[(1 = 1)z + 0T "))
+ M (T”xn =T —np)zn + nnT”xn]) II?
= (1= na)llen = T[(1 = n)ay + T x,] ||
[T s — T[(1 = m)an + 0, T ]|
= (L= 1) |0 — T
< (1 =m)l|zn = T"[(1 = np)zn +na T a,]|?
— (L =1 — L) [ — T ||,
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By (19), (22) and (23), we obtain
IT™[(1 = n)n + 9T @] — 2|

< (2kn = D1+ 2(kn — Dna]lln — [ + (2kn — D 20 — T |
+ (=)@ — TP = p)an + nu T 2]
= (1 =1 = L2020 — T || (24)

= (2kn — D)[1 4 2(kn — D)) |20 — 2*|?
+ (1= m)l[zn = T"[(1 = np)2n + 1T 20
— (1 = 2k — L2 |0 — T .

Since 7, < ﬁ, we deduce that 1 — 2k, n, —n2L? > 0. According to (24), we obtain

1T [(1 = m)x + 0T w] — &*[* < (2kn — DL+ 2(ky — D] 2 — 2|2 (25)
+ (1 =na)llzn = T (1 = nn)zn + 0T 2] )12
Combine (10) and (25) to get
[yn — 21> = |1 = Bn)an + BaT"[(1 = np)zn + 0T a,] — ||
= (1 = Ba)(@n — 2) + Bu(T"[(1 = 1)z + 1T as] — z7) |2
= (1= Bo)llzn — 2™ + BallT"[(1 = pn)arn + 0u T as] — 2|2
= Ba(L = BT (1 = 1) @0 + 0T @] — x|
< B2k — D1+ 2(kp = Ul lzn — %% + (1 = Bp) |20 — 2"
+ Bn(l = nn)llzn — T"[(1 = 0n)an + 02T ]|
= Bu(1 = BT (1 = )y + 10T wn] — @ |
= [L+2(ky — 1)B + 2(kn — 1)(2kn — DBl — ||
+ Bn(Br = )T [(1 = n) 2 + 0T 5] — x>,

Note that lim,,_ o kg_l = 0. We assume, without loss of generality, that % < 1 for all
n > 0. This together with 0 < 3,, < n, < 1 implies that

lyn — 2*|1> < [1 4 8(kn — D][l2n — 2*||
+ Bn(Bn — 77n)||Tn[(1 = Nn)Tp + ﬁnT"%] - xn”2 (26)
<1+ 8(ky — D]z, — 2|~

By (17), we have

lz0 = 2*[1* = lyn — 2" — 5 Unl
] o
n(An + 6n) sa(An 4 6,)*
= |lyn — @*||* = 27 (U, Y — &) + ST
[[un 2 [[n 2
Since I — prox¢y and I — prox¢, are firmly-nonexpansive, we have
(I = prox¢y)yn, yn — %) = ((I — proxey)yn — (I — proz¢, )™, yn — =) (28)
> ||(I = prozeg ynll?,
and
((I —proxey)Ayn, Ayn — Az™) = ((I — prozcy) Ay, — (I — prozcy)Ax™, Ay, — Ax™) (29)
> ||(1 = prozcy) Aya*.
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From (16), we have

(Un, Yn — ™) = (A"(I — prozcy) Ayn + (I — proxey)yn, Yyn — ™)
= <A*(I - proxClb)Aymyn - x*> + <(I _pTosza)yn>yn - -r*> (30)
= (I — proxcy)Ayn, Ayn — Az™) + (I — proxcy)yYn, Yn — 7).

It follows from (28)-(30) that
I( = prowco)ynll? + I(I — prowey) Aynl® < (un, yn — *),
which implies that
2(An 4 0n) < (upn,yn —z*). (31)

Combining (27) and (31) to get

[ o L g Y

y An + 0,)? 32
= |lyn —x ||2—<n(4_<")(Hun|2) (32

< llyn — 2*[|*.
Thus, from (18), (26) and (32), we obtain

st — 2"l = an(u —2*) + (1 = an)(z0 — )]
< allu— a*] 4+ (1 — )y — 2|
< anllu— 2| + (1 — an)[L + 4(kn — D]llzn — 2*]|
< [1+ 4k — D] max{l|u— 2*, |, — 2"}

H1+4k — )] max{||xzg — =", ||u— ™|}

This implies that the sequence {x,} is bounded because of > 7 (k, — 1) < 4o00. Subse-
quently, {yn}, {zn}, {Ayn} and {u, } are all bounded.
According to (26) and (32), we have

(An +0,)?
[ |2 (33)
+ B (Bn = ) IT™ [(L = ) wn + 0 T"w0] — anQ

ll2n — x*HQ < [1+8(kn — D]f|lzn — x*HQ — (4 —cn)

From (11) and (18), we have

lnr1 = 2% = flaw (u — 27) + (1 — o) (20 — 27| (34)
< (1= an)|lzn — 2*||? + 2000 (u — 2, 21 — %)
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On account of (33) and (34), we obtain

|Zn+1 — x*HQ < (1—an)[l +8(kp — D]llzn — x*||2

+ (1= an)Bn(Bn = ) IT"[(1 = nn)zn + 00T 20] — fEn“2

(A + 0n)?
l[wn ||

M(k, —1)

n

— (1= ap)sn(d—g,) + 2 (u — 2", Tpgp1 — x¥)

ga—ammm—xw2+%{ (= 0)BaBa =) (39

T = )+ 0] — @l
ap

An +0,)°

- (1 _an)gn(4_§n)( )

N — x* o
||un||2an + <U’ T Tn+1 T >}a

where M is a constant such that M > sup,, 8(1 — ay,) |z, — 2*||2.

Set o, = ||z, — 2*||? and
Mk, —1 T(1 = n)xn + T xn] — 20 ||?
T, = (kn ) +(1_an)/8n(ﬂn_77n)” [( M )Tn + N n] |l
Qp Qp
(An 4 0n)? (36)
— (1= an)on(d —gp) =+ 2(u — 2%, 21 — %),
[unll2an "
for all n > 1.
By virtue of (35) and (36), we obtain
Ont1 < (1 —an)on + apmp,n > 1. (37)

Taking into account (36), we get
Tn < M +2|lu = 2" |[[|[zng1 — 27

By the boundedness of {z,} and the last inequality, we deduce that limsup,,_, ., 7 < +00.
Next we prove limsup,,_,., 7, > —1. Assume that limsup,_,. 7, < —1. There exists a
positive integer Ny such that 7, < —1 when n > Ny. Based on (37), we get

Ont1 < On — Qp, VN > No.

It results in that

Ont1 S ONy — Z Q- (38)
k=No

Taking the superior limit in (38), we have
n
limsupo,4+1 <on, — lim Z ap = —00,

n—00 n—00
k=No

which yields a contradiction. Then,

—1 <limsup 7, < 4o0.

n—oo
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Hence, limsup,, . 7, exists. Meanwhile, noting that {x,,11} is bounded, so there exists a
subsequence {n;} of {n} such that z,, 41 — 27(i = o) and

limsup 7, = lim 7,,
i—»00 )

n—oo
. Mk, — 1 T ((1 — 0, )T, + N, T 20, ] — 20, ||2
= Zgrgo |:(a) + (1 _ O‘m)ﬁm(ﬁm _ nni) ” [( Ui ) - n ] ”

(An, +6n,)°

- ]-_ani Sny 4_§ni
(L= an)sn (4= ) T 2,

+2{u— 2", Ty, 41 — x*}}
HTnZ[(l - 77’%)37% + anannz] — Tn, §

Qnp,;

11— 00
(An, + 0n,)?

* _f *
~omld ) Ty g, AT e >] ’
(39)
which implies that
Tl = np )T, + 0. T 0 | — a0 |2
lim By, (Bn, — nn)H [0 = M )@ns & 10 T ] = exists (40)
11— 00 Qp,
and o2
An, n .
lim Oy +6n,)7 exists. (41)
A% um o,
By conditions (C1) and (C3), from (40) and (41), we have
1— 00
and ) P
lim 2 g (43)
Since uy,; is bounded, by (43), we obtain lim;_, o (An; + 65;) = 0. Therefore,
Jim [[(1 = procy) Ayn, || = lim [[(I = prozcy)yn. [l = 0. (44)
According to (15) and (42), we deduce
lim ||yn, — zn,| = 0. (45)
hade el
By (17) and (43), we deduce
lm |y, — zn, || = 0. (46)
1— 00
It follows from (18), (45) and (46) that
1—> 00

which together with x,,, 1 — 27(i = oo) imply that z,,, — 27(i = o0) and y,,, — 27(i — 00).
The weak lower semicontinuity of the norm gives

0<||(I —proa:@,)zTH <liminf ||(I — prox¢y)yn,|| = 0,
11— 00
and
0 < ||(I — proxzey)Azt|| < liminf ||(I — prozey) Ay, || = 0.
1— 00

Thus, we conclude that z' € Fiz(proze,) and Az € Fiz(proxzcy), ie., 21 € T\
Since T is uniformly L-Lipschitzian, we derive

< Lnﬂz‘ ”meﬂz — Tn; + HTW[(I - nni)‘rni + nnimeni] — Tn;




156 Zhangsong Yao, Hsun-Chih Kuo, Ching-Feng Wen

which leads to

1
< T = )T, + 0, T 0] — T ||
*1—an” (1 =00 )zn, + 00, T 2p,] — 20,

This together with (42) implies

Again, by using uniformly L-Lipschitzian continuity of T', we have

||$m+l - TmerlH < Hxnﬁrl - Tm+1xm+1” + “Tni+1xni+l - Tm—Hxn

i

+ HanHan‘, - T‘rnﬁ-l”

- . (19)
< H‘rnﬂrl - xni+1” + L”merl = T, || + L”T ‘Tn, — mm«kl”
< ||-Tn7~,+1 - TniJrlan-l” + QLHan-l = Tn, || + L”Tnlan = T, |-
By (47)-(49), we have immediately that
lim ||z, — Tx,,|| = 0. (50)
71— 00

By Lemma 2.1 and (50), we deduce that z' € Fiz(T). Therefore, 2! € Fix(T)NT. So,
ww(zy) C Fiz(T)NT.
With the help of (39), we have

limsup 7, = lim Tn, < 2<u _pTOjFix(T)ﬂF(u)v 2t — prOjFi:c(T)ﬁF(u» <0. (51)

n—o0 1—00

From (35), we obtain

[@ns1 — Projricrynr (W)|1? < (1 — an)l|lzn — projrizrar (w)|?
Mk, —1
o M=

70

. . (52)
+2(u — pTOJFim(T)mF(u)v Tn4+1 — pTOJFm(T)nF(U»}

By Lemma 2.2, (51) and (52), we conclude that x, — projp;.rynr(w). This completes the
proof. O

Algorithm 3.2. Let u € Hy be a fixed point. Let xq € Hy be an initial guess. Let n = 0.
Step 1. For given x,, compute

Up = A*(I — provey)Azy + (I — provey)ay.

Criterion: If u, = 0, then set z, = x,, and go to Step 2. Otherwise, compute

Zn = Tn
where A, = 3|/(I — proxzcy) Az, ||* and 0, = 1||(I — proz¢y)an ||?.
Step 2. Compute
Tnt1 = aptt + (1 — ap)zy.
Step 3. Set n:=n+ 1 and return to Step 1.

Corollary 3.1. Suppose that T # (). Suppose that the following conditions are satisfied
(C3): 0 < by < g < by <4(¥n >0);
(C4): limy o0, =0 and >0 | a, = +00.

Then the sequence {x,} generated by Algorithm 3.2 converges strongly to projr(u).
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4. Concluding remarks

An iterative algorithm (Algorithm 3.1) has been introduced for finding an intersection
of fixed point problem of an L-Lipschitz asymptotically pseudocontractive operator 7" and
the proximal split feasibility problem (4). The basic iteration used in this paper is to apply
the Moreau regularization method and the fixed point method with a self-adaptive technique.
The strong convergence of the iterates has been obtained under some mild conditions.
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