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ITERATIVE ALGORITHMS FOR FIXED POINT PROBLEMS OF

ASYMPTOTICALLY PSEUDOCONTRACTIVE OPERATORS AND THE

PROXIMAL SPLIT FEASIBILITY PROBLEMS
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In this paper, we investigate iterative algorithms for solving fixed point problems
and the proximal split feasibility problems. With the help of fixed point techniques, we

suggest an iterative algorithm for finding an intersection of fixed point problem of an

L-Lipschitz asymptotically pseudocontractive operator and the proximal split feasibility
problem. Under some mild assumptions, we show that the proposed algorithm has strong

convergence.
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1. Introduction

Let H1 be a real Hilbert space. For a set C ⊂ H1, the indicator function of C is
defined by

δC(x) =

{
0, if x ∈ C,

+∞, if x /∈ C.
Given a function f : H1 → R∞ := R ∪ {+∞}, the domain of f is dom(f) := {u ∈ H1 :
f(u) < +∞}. We say that f is proper if dom(f) 6= ∅. The class of all proper, convex, and
lower semicontinuous functions in H1 is denoted by Γ0(H1).

Let H2 be another real Hilbert space. Let ψ : H2 → R+∞ be a function in Γ0(H2).

For any ζ > 0, the Moreau envelope of ψ of index ζ is the function envζψ : H2 → R defined
by

envζψ(x) = min
y∈H2

{
ψ(y) +

1

2ζ
‖x− y‖2

}
, x ∈ H2. (1)

The Moreau envelope introduction by Moreau ([13]) (also called Moreau regularization) is
ubiquitous in optimization, convex analysis, and variational analysis ([10, 11, 12, 36, 44]). It
appears as a natural way to regularize a convex function through an associated optimization
problem ([1, 7, 8, 16]).

Note that the minimizer of (1) is attained at a unique point which is used to define
the proximal operator:

proxζψ(x) = arg min
y∈H2

{
ψ(y) +

1

2ζ
‖x− y‖2

}
, x ∈ H2. (2)
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Note that proxζψ is characterized by the relation

y = proxζψ(x)⇔ 0 ∈ ∂
(
ψ(y) +

1

2ζ
‖x− y‖2

)
= ∂ψ(y) +

1

ζ
(y − x)

⇔ x ∈ (I + ζ∂)y

⇔ y = (I + ζ∂ψ)−1x.

Namely,

proxζψ(x) = (I + ζ∂ψ)−1x,

where ∂ψ(x) is the subdifferential of ψ at x defined by

∂ψ(x) = {x∗ ∈ H2 : ψ(u†) ≥ ψ(x) + 〈x∗, u† − x〉, ∀u† ∈ H2}. (3)

It is known that proxζψ(x) is everywhere defined and firmly nonexpansive and the Moreau

envelope envζψ is convex and continuously differentiable ([18]). For each x ∈ H2, the gradient

of envζψ is given by

∇envζψ(x) =
x− proxζψ(x)

ζ
,

which is called the Yosida approximation ([41]) of index ζ of the maximal monotone operator
∂ψ.

Let ϕ : H1 → R∞ be a function in Γ0(H1). Let A : H1 → H2 be a bounded linear
operator with its adjoint A∗. Recall that the proximal split feasibility problem is to solve
the following minimization problem

min
x†∈H1

{ϕ(x†) + envζψ(Ax†)}. (4)

Use Γ to denote the solution set of (4).
Let C ⊂ H1 and Q ∈ H2 be two nonempty closed convex sets. Let projQ : H2 → Q

be the orthogonal projection. Taking ϕ = δC and ψ = δQ, the proximal split feasibility
problem (4) reduces to solve

min
x†∈C

{ 1

2ζ
‖(I − projQ)(Ax†)‖2

}
, (5)

which is equivalent to the following split feasibility problem ([2, 5, 28, 34]) of finding x† such
that

x† ∈ C and Ax† ∈ Q.

Thus, the proximal split feasibility problem (1) includes the split feasibility problem as a
special case.

It is well known that the split feasibility problem can be a model for numerous inverse
problems where constraints are imposed on the solutions in the domain of a bounded linear
operator as well as in its range. The prototype of the split feasibility problem proposed by
Censor and Elfving [5] came out of phase retrieval problems and the intensity-modulated
radiation therapy. Now, the split feasibility problem has a large number of specific appli-
cations in real world such as medical care, image reconstruction and signal processing, see
[2, 5, 9, 27, 30, 31, 32] for more details. Since then, the split problems have been studied
extensively by many authors, see, for instance, [33, 39, 40, 45].

Fundamental insights into the proximal split feasibility problem come from the study
of its Moreau-Yosida regularization and the associated proximal operator. The latter is
a fundamental tool in optimization and it was shown that a fixed point iteration on the
proximal operator could be used to develop a simple optimization algorithm, namely, the
proximal point algorithm ([17, 18]).
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Since ψ is subdifferentiable, we have

0 ∈ ∂ψ(x†)⇔ x† = proxζψ(x†). (6)

By using (6), we can translate the proximal split feasibility problem (4) into a fixed point

problem. As a matter of fact, noting that the Moreau envelope envζψ is differentiable, we get

∂
(
envζψ(Ax†)

)
= A∗∇envζψ(Ax†) = A∗

(I − proxζψ
ζ

)
(Ax†).

So,

∂
(
ϕ(x†) + envζψ(Ax†)

)
= ∂ϕ(x†) +A∗

(I − proxζψ
ζ

)
(Ax†). (7)

Note that the optimality condition of (4) is 0 ∈ ∂
(
ϕ(x†) + envζψ(Ax†)

)
, i.e.,

0 ∈ ζ∂ϕ(x†) +A∗(I − proxζψ)(Ax†). (8)

Based on (6) and (8), we deduce

x† solves (4)⇔ x† = proxζϕ
(
x† − ςA∗(I − proxζψ)(Ax†)

)
. (9)

With the help of the equivalent relations (6) and (9), several iterative algorithms for solving
the proximal split feasibility problem (4) have been proposed, see [14, 15, 22].

In the meantime, we focus on iterative approximation of fixed point problems ([20,
21, 29, 42, 48]). It is well known that fixed point theory acts as an important tool for many
branches of mathematical analysis and its applications. Especially, iterative algorithms by
using fixed point techniques come to be useful in numerous mathematical formulations and
theorems ([3, 4, 19, 24, 43]). Often, approximations and solutions to iterative guess strategies
utilized in dynamic engineering problems are sought using this method. Recently, fixed point
algorithms have attracted so much attention, see [6, 23, 25, 35, 37, 38, 46].

The main purpose of this paper is to investigate iterative algorithms for solving fixed
point problems and the proximal split feasibility problem (4). We suggest an iterative
algorithm for finding an intersection of fixed point problem of an L-Lipschitz asymptotically
pseudocontractive operator and the proximal split feasibility problem (4). We show that the
proposed algorithm converges strongly to a common point of the investigated problems.

2. Preliminaries

Throughout this paper, H1 and H2 are two real Hilbert space endowed with the
standard inner product 〈·, ·〉 and the induced norm ‖ · ‖. Weak and strong convergence are
denoted by ⇀ and →, respectively. Let {zn} be a given sequence in H1. We use ωw(zn) to
denote the set of all weak cluster points of {zn}, i.e.,

ωw(zn) = {z‡ : ∃{znk
} ⊂ {zn} such that znk

⇀ z‡ as k →∞}.
For any z, z† ∈ H1 and constant c ∈ R, there hold

‖cz + (1− c)z†‖2 = c‖z‖2 + (1− c)‖z†‖2 − c(1− c)‖z − z†‖2, (10)

and
‖z + z†‖2 ≤ ‖z‖2 + 2〈z†, z + z†〉. (11)

Let T : H1 → H1 be an operator. Use Fix(T ) to denote the fixed point set of T . Recall
that T is said to be

(i) asymptotically pseudocontractive if there exists a real number sequence {kn} ⊂ [1,∞)
with limn→∞ kn = 1 such that

〈Tnz − Tnz†, z − z†〉 ≤ kn‖z − z†‖2, (12)

for all n ≥ 1 and for all z, z† ∈ H1.
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(ii) uniformly L-Lipschitzian if there exists a positive constant L such that

‖Tnz − Tnz†‖ ≤ L‖z − z†‖,
for all n ≥ 1 and for all z, z† ∈ H1.

(iii) demiclosed, if for any given sequence {xn} ⊂ H1, we have

λn ⇀ ũ ∈ H1

Tλn → u†

}
⇒ T ũ = u†.

(iv) firmly nonexpansive if

‖Tz − Tz†‖2 ≤ 〈Tz − Tz†, z − z†〉,∀z, z† ∈ H1.

It is obviously that I − T is also firmly nonexpansive.

Remark 2.1. (i) It is easily seen that (12) is equivalent to

‖Tnz − Tnz†‖2 ≤ (2kn − 1)‖z − z†‖2 + ‖(I − Tn)z − (I − Tn)z†‖2. (13)

(ii) The proximal operators proxζψ and proxζϕ are firmly nonexpansive and I−proxζψ
and I − proxζϕ are also firmly nonexpansive.

Let C be a nonempty closed convex subset of H1. For any x ∈ H1, there exists a unique
nearest point projC(x) in C satisfying

‖x− projC(x)‖ ≤ ‖x− y‖,∀y ∈ C.
It is well known that projC is firmly nonexpansive and has the following characterization

〈x− projC(x), y − projC(x)〉 ≤ 0 (14)

for all x ∈ H1 and y ∈ C.

Lemma 2.1 ([47]). Let H1 be a real Hilbert space. Let T : H1 → H1 be a uniformly L-
Lipschtzian and asymptotically pseudocontractive operator. Then, I − T is demiclosed at
zero.

Lemma 2.2 ([26]). Let {σn} ⊂ R+, {αn} ⊂ (0, 1) and {τn} ⊂ R be three real number
sequences. Suppose that

(i) σn+1 ≤ (1− αn)σn + τn,∀n ≥ 0;
(ii)

∑∞
n=1 αn =∞;

(iii) lim supn→∞
τn
αn
≤ 0 or

∑∞
n=1 |τn| <∞.

Then, limn→∞ σn = 0.

3. Main results

In this section, we present our main results.
Let H1 and H2 be two real Hilbert spaces. Let ϕ : H1 → R∞ be a function in Γ0(H1)

and ψ : H2 → R∞ be a function in Γ0(H2). Let A : H1 → H2 be a bounded linear operator
with its adjoint A∗. Let T : H1 → H1 be an L-Lipschitz asymptotically pseudocontractive
operator with L > 1 and {kn}. Let {αn}, {βn} and {ηn} be three real number sequences in
(0, 1). Let {ςn} be a real number sequence in (0,+∞).

Next, we first introduce an algorithm for solving fixed point problem of asymptotically
pseudocontractive operator T and the proximal split feasibility problem (4).

Algorithm 3.1. Let u ∈ H1 be a fixed point. Let x0 ∈ H1 be an initial guess. Let n = 0.
Step 1. For given xn, compute

yn = (1− βn)xn + βnT
n[(1− ηn)xn + ηnT

nxn]. (15)

Step 2. Compute

un = A∗(I − proxζψ)Ayn + (I − proxζϕ)yn. (16)
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Criterion: If un = 0, then set zn = yn and go to Step 3. Otherwise, compute

zn = yn −
ςn(λn + θn)

‖un‖2
un, (17)

where λn = 1
2‖(I − proxζψ)Ayn‖2 and θn = 1

2‖(I − proxζϕ)yn‖2.
Step 3. Compute

xn+1 = αnu+ (1− αn)zn. (18)

Step 4. Set n := n+ 1 and return to Step 1.

Remark 3.1. If un = 0, then yn ∈ Fix(proxζϕ) and Ayn ∈ Fix(proxζψ), i.e., yn ∈ Γ, see
[13].

Theorem 3.1. Suppose that Fix(T ) ∩ Γ 6= ∅. Suppose that the following conditions are
satisfied

(C1): 0 < c1 < βn < c2 < ηn < c3 <
1√

k2n+L2+kn
(∀n ≥ 0);

(C2):
∑∞
n=1(kn − 1) < +∞ and limn→∞

kn−1
αn

= 0;

(C3): 0 < b1 < ςn < b2 < 4(∀n ≥ 0);
(C4): limn→∞ αn = 0 and

∑∞
n=1 αn = +∞.

Then the sequence {xn} generated by Algorithm 3.1 converges strongly to projFix(T )∩Γ(u).

Proof. Let x∗ ∈ Fix(T )∩Γ. Hence, x∗ = proxζϕ(x∗), Ax∗ = proxζψ(Ax∗) and x∗ = Tx∗ =
Tnx∗(∀n ≥ 1). Since T is asymptotically pseudocontractive, we have from (13) that

‖Tn[(1− ηn)xn + ηnT
nxn]− x∗‖2 ≤ (2kn − 1)‖(1− ηn)(xn − x∗) + ηn(Tnxn − x∗)‖2

+ ‖(1− ηn)xn + ηnT
nxn − Tn[(1− ηn)xn + ηnT

nxn]‖2,
(19)

and

‖Tnxn − x∗‖2 ≤ (2kn − 1)‖xn − x∗‖2 + ‖Tnxn − xn‖2. (20)

Noting that T is uniformly L-Lipschitzian, we have

‖Tnxn − Tn[(1− ηn)xn + ηnT
nxn]‖ ≤ ηnL‖xn − Tnxn‖. (21)

Using (10) and (20), we have

‖(1− ηn)(xn − x∗) + ηn(Tnxn − x∗)‖2

= (1− ηn)‖xn − x∗‖2 + ηn‖Tnxn − x∗‖2 − ηn(1− ηn)‖xn − Tnxn‖2

≤ (1− ηn)‖xn − x∗‖2 + ηn((2kn − 1)‖xn − x∗‖2 + ‖Tnxn − xn‖2)

− ηn(1− ηn)‖xn − Tnxn‖2

= [1 + 2(kn − 1)ηn]‖xn − x∗‖2 + η2
n‖Tnxn − xn‖2.

(22)

In view of (10) and (21), we get

‖(1− ηn)xn + ηnT
nxn − Tn[(1− ηn)xn + ηnT

nxn]‖2

= ‖(1− ηn)
(
xn − Tn[(1− ηn)xn + ηTnxn]

)
+ ηn

(
Tnxn − Tn[(1− ηn)xn + ηnT

nxn]
)
‖2

= (1− ηn)‖xn − Tn[(1− η)xn + ηnT
nxn]‖2

+ ηn‖Tnxn − Tn[(1− η)xn + ηnT
nxn]‖2

− ηn(1− ηn)‖xn − Tnxn‖2

≤ (1− ηn)‖xn − Tn[(1− ηn)xn + ηnT
nxn]‖2

− ηn(1− ηn − L2η2
n)‖xn − Tnxn‖2.

(23)
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By (19), (22) and (23), we obtain

‖Tn[(1− ηn)xn + ηnT
nxn]− x∗‖2

≤ (2kn − 1)[1 + 2(kn − 1)ηn]‖xn − x∗‖2 + (2kn − 1)η2
n‖xn − Tnxn‖2

+ (1− ηn)‖xn − Tn[(1− η)xn + ηnT
nxn]‖2

− ηn(1− ηn − L2η2
n)‖xn − Tnxn‖2

= (2kn − 1)[1 + 2(kn − 1)ηn]‖xn − x∗‖2

+ (1− ηn)‖xn − Tn[(1− ηn)xn + ηnT
nxn‖2

− ηn(1− 2knηn − L2η2
n)‖xn − Tnxn‖2.

(24)

Since ηn <
1√

k2n+L2+kn
, we deduce that 1− 2knηn− η2

nL
2 > 0. According to (24), we obtain

‖Tn[(1− η)xn + ηnT
nxn]− x∗‖2 ≤ (2kn − 1)[1 + 2(kn − 1)ηn]‖xn − x∗‖2

+ (1− ηn)‖xn − Tn[(1− ηn)xn + ηnT
nxn]‖2.

(25)

Combine (10) and (25) to get

‖yn − x∗‖2 = ‖(1− βn)xn + βnT
n[(1− ηn)xn + ηnT

nxn]− x∗‖2

= ‖(1− βn)(xn − x∗) + βn
(
Tn[(1− ηn)xn + ηnT

nxn]− x∗
)
‖2

= (1− βn)‖xn − x∗‖2 + βn‖Tn[(1− ηn)xn + ηnT
nxn]− x∗‖2

− βn(1− βn)‖Tn[(1− ηn)xn + ηnT
nxn]− xn‖2

≤ β(2kn − 1)[1 + 2(kn − 1)ηn]‖xn − x∗‖2 + (1− βn)‖xn − x∗‖2

+ βn(1− ηn)‖xn − Tn[(1− ηn)xn + ηnT
nxn]‖2

− βn(1− βn)‖Tn[(1− ηn)xn + ηnT
nxn]− xn‖2

= [1 + 2(kn − 1)βn + 2(kn − 1)(2kn − 1)ηnβn]‖xn − x∗‖2

+ βn(βn − ηn)‖Tn[(1− ηn)xn + ηnT
nxn]− xn‖2.

Note that limn→∞
kn−1
αn

= 0. We assume, without loss of generality, that kn−1
αn
≤ 1 for all

n ≥ 0. This together with 0 < βn < ηn < 1 implies that

‖yn − x∗‖2 ≤ [1 + 8(kn − 1)]‖xn − x∗‖2

+ βn(βn − ηn)‖Tn[(1− ηn)xn + ηnT
nxn]− xn‖2

≤ [1 + 8(kn − 1)]‖xn − x∗‖2.
(26)

By (17), we have

‖zn − x∗‖2 = ‖yn − x∗ −
ςn(λn + θn)

‖un‖2
un‖

= ‖yn − x∗‖2 − 2
ςn(λn + θn)

‖un‖2
〈un, yn − x∗〉+

ς2n(λn + θn)2

‖un‖2
.

(27)

Since I − proxζψ and I − proxζϕ are firmly-nonexpansive, we have

〈(I − proxζϕ)yn, yn − x∗〉 = 〈(I − proxζϕ)yn − (I − proxζϕ)x∗, yn − x∗〉
≥ ‖(I − proxζϕ)yn‖2,

(28)

and

〈(I − proxζψ)Ayn, Ayn −Ax∗〉 = 〈(I − proxζψ)Ayn − (I − proxζψ)Ax∗, Ayn −Ax∗〉
≥ ‖(I − proxζψ)Ayn‖2.

(29)
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From (16), we have

〈un, yn − x∗〉 = 〈A∗(I − proxζψ)Ayn + (I − proxζϕ)yn, yn − x∗〉
= 〈A∗(I − proxζψ)Ayn, yn − x∗〉+ 〈(I − proxζϕ)yn, yn − x∗〉
= 〈(I − proxζψ)Ayn, Ayn −Ax∗〉+ 〈(I − proxζϕ)yn, yn − x∗〉.

(30)

It follows from (28)-(30) that

‖(I − proxζϕ)yn‖2 + ‖(I − proxζψ)Ayn‖2 ≤ 〈un, yn − x∗〉,

which implies that

2(λn + θn) ≤ 〈un, yn − x∗〉. (31)

Combining (27) and (31) to get

‖zn − x∗‖2 ≤ ‖yn − x∗‖2 −
4ςn(λn + θn)2

‖un‖2
+
ς2n(λn + θn)2

‖un‖2

= ‖yn − x∗‖2 − ςn(4− ςn)
(λn + θn)2

‖un‖2

≤ ‖yn − x∗‖2.

(32)

Thus, from (18), (26) and (32), we obtain

‖xn+1 − x∗‖ = ‖αn(u− x∗) + (1− αn)(zn − x∗)‖
≤ αn‖u− x∗‖+ (1− αn)‖yn − x∗‖
≤ αn‖u− x∗‖+ (1− αn)[1 + 4(kn − 1)]‖xn − x∗‖
≤ [1 + 4(kn − 1)] max{‖u− x∗‖, ‖xn − x∗‖}

≤
n∏
i=1

[1 + 4(ki − 1)] max{‖x0 − x∗‖, ‖u− x∗‖}.

This implies that the sequence {xn} is bounded because of
∑∞
n=1(kn − 1) < +∞. Subse-

quently, {yn}, {zn}, {Ayn} and {un} are all bounded.
According to (26) and (32), we have

‖zn − x∗‖2 ≤ [1 + 8(kn − 1)]‖xn − x∗‖2 − ςn(4− ςn)
(λn + θn)2

‖un‖2

+ βn(βn − ηn)‖Tn[(1− ηn)xn + ηnT
nxn]− xn‖2.

(33)

From (11) and (18), we have

‖xn+1 − x∗‖ = ‖αn(u− x∗) + (1− αn)(zn − x∗)‖2

≤ (1− αn)‖zn − x∗‖2 + 2αn〈u− x∗, xn+1 − x∗〉
(34)
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On account of (33) and (34), we obtain

‖xn+1 − x∗‖2 ≤ (1− αn)[1 + 8(kn − 1)]‖xn − x∗‖2

+ (1− αn)βn(βn − ηn)‖Tn[(1− ηn)xn + ηnT
nxn]− xn‖2

− (1− αn)ςn(4− ςn)
(λn + θn)2

‖un‖2
+ 2αn〈u− x∗, xn+1 − x∗〉

≤ (1− αn)‖xn − x∗‖2 + αn

{
M(kn − 1)

αn
+ (1− αn)βn(βn − ηn)

× ‖T
n[(1− ηn)xn + ηnT

nxn]− xn‖2

αn

− (1− αn)ςn(4− ςn)
(λn + θn)2

‖un‖2αn
+ 2〈u− x∗, xn+1 − x∗〉

}
,

(35)

where M is a constant such that M ≥ supn 8(1− αn)‖xn − x∗‖2.
Set σn = ‖xn − x∗‖2 and

τn =
M(kn − 1)

αn
+ (1− αn)βn(βn − ηn)

‖Tn[(1− ηn)xn + ηnT
nxn]− xn‖2

αn

− (1− αn)ςn(4− ςn)
(λn + θn)2

‖un‖2αn
+ 2〈u− x∗, xn+1 − x∗〉,

(36)

for all n ≥ 1.
By virtue of (35) and (36), we obtain

σn+1 ≤ (1− αn)σn + αnτn, n ≥ 1. (37)

Taking into account (36), we get

τn ≤M + 2‖u− x∗‖‖xn+1 − x∗‖.

By the boundedness of {xn} and the last inequality, we deduce that lim supn→∞ τn < +∞.
Next we prove lim supn→∞ τn ≥ −1. Assume that lim supn→∞ τn < −1. There exists a
positive integer N0 such that τn ≤ −1 when n ≥ N0. Based on (37), we get

σn+1 ≤ σn − αn,∀n ≥ N0.

It results in that

σn+1 ≤ σN0
−

n∑
k=N0

αk. (38)

Taking the superior limit in (38), we have

lim sup
n→∞

σn+1 ≤ σN0
− lim
n→∞

n∑
k=N0

αk = −∞,

which yields a contradiction. Then,

−1 ≤ lim sup
n→∞

τn < +∞.
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Hence, lim supn→∞ τn exists. Meanwhile, noting that {xn+1} is bounded, so there exists a
subsequence {ni} of {n} such that xni+1 ⇀ z†(i→∞) and

lim sup
n→∞

τn = lim
i→∞

τni

= lim
i→∞

[
M(kni − 1)

αni

+ (1− αni
)βni

(βni
− ηni

)
‖Tni [(1− ηni)xni + ηniT

nixni ]− xni‖2

αni

− (1− αni)ςni(4− ςni)
(λni + θni)

2

‖uni
‖2αni

+ 2〈u− x∗, xni+1 − x∗〉
]

= lim
i→∞

[
βni(βni − ηni)

‖Tni [(1− ηni
)xni

+ ηni
Tnixni

]− xni
‖2

αni

− ςni(4− ςni)
(λni

+ θni
)2

‖uni‖2αni

+ 2〈u− x∗, z† − x∗〉
]
,

(39)
which implies that

lim
i→∞

βni
(βni

− ηni
)
‖Tni [(1− ηni)xni + ηniT

nixni ]− xni‖2

αni

exists (40)

and

lim
i→∞

(λni + θni)
2

‖uni
‖2αni

exists. (41)

By conditions (C1) and (C3), from (40) and (41), we have

lim
i→∞

‖Tni [(1− ηni)xni + ηniT
nixni ]− xni‖ = 0 (42)

and

lim
i→∞

λni + θni

‖uni
‖

= 0. (43)

Since uni is bounded, by (43), we obtain limi→∞(λni + θni) = 0. Therefore,

lim
i→∞

‖(I − proxζψ)Ayni
‖ = lim

i→∞
‖(I − proxζϕ)yni

‖ = 0. (44)

According to (15) and (42), we deduce

lim
i→∞

‖yni
− xni

‖ = 0. (45)

By (17) and (43), we deduce
lim
i→∞

‖yni
− zni

‖ = 0. (46)

It follows from (18), (45) and (46) that

lim
i→∞

‖xni+1 − xni‖ = 0, (47)

which together with xni+1 ⇀ z†(i→∞) imply that xni
⇀ z†(i→∞) and yni

⇀ z†(i→∞).
The weak lower semicontinuity of the norm gives

0 ≤ ‖(I − proxζϕ)z†‖ ≤ lim inf
i→∞

‖(I − proxζϕ)yni
‖ = 0,

and

0 ≤ ‖(I − proxζψ)Az†‖ ≤ lim inf
i→∞

‖(I − proxζψ)Ayni
‖ = 0.

Thus, we conclude that z† ∈ Fix(proxζϕ) and Az† ∈ Fix(proxζψ), i.e., z† ∈ Γ.
Since T is uniformly L-Lipschitzian, we derive

‖Tnixni
− xni

‖ ≤ ‖Tnixni
− Tni [(1− ηni

)xni
+ ηni

Tnixni
]‖

+ ‖Tni [(1− ηni
)xni

+ ηni
Tnixni

]− xni
‖

≤ Lηni‖Tnixni − xni‖+ ‖Tni [(1− ηni
)xni

+ ηni
Tnixni

]− xni
‖
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which leads to

‖Tnixni
− xni

‖ ≤ 1

1− Lηni

‖Tni [(1− ηni
)xni

+ ηni
Tnixni

]− xni
‖.

This together with (42) implies

lim
i→∞

‖Tnixni − xni‖ = 0. (48)

Again, by using uniformly L-Lipschitzian continuity of T , we have

‖xni+1 − Txni+1‖ ≤ ‖xni+1 − Tni+1xni+1‖+ ‖Tni+1xni+1 − Tni+1xni
‖

+ ‖Tni+1xni
− Txni+1‖

≤ ‖xni+1 − Tni+1xni+1‖+ L‖xni+1 − xni
‖+ L‖Tnixni

− xni+1‖
≤ ‖xni+1 − Tni+1xni+1‖+ 2L‖xni+1 − xni

‖+ L‖Tnixni
− xni

‖.

(49)

By (47)-(49), we have immediately that

lim
i→∞

‖xni − Txni‖ = 0. (50)

By Lemma 2.1 and (50), we deduce that z† ∈ Fix(T ). Therefore, z† ∈ Fix(T ) ∩ Γ. So,
ωw(xn) ⊂ Fix(T ) ∩ Γ.

With the help of (39), we have

lim sup
n→∞

τn = lim
i→∞

τni
≤ 2〈u− projFix(T )∩Γ(u), z† − projFix(T )∩Γ(u)〉 ≤ 0. (51)

From (35), we obtain

‖xn+1 − projFix(T )∩Γ(u)‖2 ≤ (1− αn)‖xn − projFix(T )∩Γ(u)‖2

+ αn

{
M(kn − 1)

αn
+ 2〈u− projFix(T )∩Γ(u), xn+1 − projFix(T )∩Γ(u)〉

}
.

(52)

By Lemma 2.2, (51) and (52), we conclude that xn → projFix(T )∩Γ(u). This completes the
proof. �

Algorithm 3.2. Let u ∈ H1 be a fixed point. Let x0 ∈ H1 be an initial guess. Let n = 0.
Step 1. For given xn, compute

un = A∗(I − proxζψ)Axn + (I − proxζϕ)xn.

Criterion: If un = 0, then set zn = xn and go to Step 2. Otherwise, compute

zn = xn −
ςn(λn + θn)

‖un‖2
un,

where λn = 1
2‖(I − proxζψ)Axn‖2 and θn = 1

2‖(I − proxζϕ)xn‖2.
Step 2. Compute

xn+1 = αnu+ (1− αn)zn.

Step 3. Set n := n+ 1 and return to Step 1.

Corollary 3.1. Suppose that Γ 6= ∅. Suppose that the following conditions are satisfied
(C3): 0 < b1 < ςn < b2 < 4(∀n ≥ 0);
(C4): limn→∞ αn = 0 and

∑∞
n=1 αn = +∞.

Then the sequence {xn} generated by Algorithm 3.2 converges strongly to projΓ(u).
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4. Concluding remarks

An iterative algorithm (Algorithm 3.1) has been introduced for finding an intersection
of fixed point problem of an L-Lipschitz asymptotically pseudocontractive operator T and
the proximal split feasibility problem (4). The basic iteration used in this paper is to apply
the Moreau regularization method and the fixed point method with a self-adaptive technique.
The strong convergence of the iterates has been obtained under some mild conditions.
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