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CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING

SQUARES OF FIBONOMIAL COEFFICIENTS

Emrah Kılıc1, Helmut Prodinger2

We give a systematic approach to compute certain sums of squares Fibonomial
coefficients with powers of generalized Fibonacci and Lucas numbers as coefficients; the

range of the summation is not the natural one but about half of it. The technique is to
rewrite everything in terms of a variable q, and then to use generating functions and
Rothe’s identity from classical q-calculus.
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1. Introduction

Define the second order linear sequences {Un} and {Vn} for n ≥ 2 by

Un = pUn−1 + Un−2, U0 = 0, U1 = 1,

Vn = pVn−1 + Vn−2, V0 = 2, V1 = p.

These recurrence relations can also be extended in the backward direction. Thus

U−n = U−n+2 − pU−n+1 = (−1)
n+1

Un,

V−n = V−n+2 − pV−n+1 = (−1)
n
Vn.

For n ≥ k ≥ 1 and an integer m, define the generalized Fibonomial coefficient with
indices in an arithmetic progression by{

n

k

}
U ;m

:=
UmU2m . . . Unm

(UmU2m . . . Ukm)(UmU2m . . . U(n−k)m)

with
{
n
0

}
U ;m

=
{
n
n

}
U ;m

= 1 and 0 otherwise. When p = m = 1, we obtain the usual Fibono-

mial coefficients, denoted by
{
n
k

}
F
. When m = 1, we obtain the generalized Fibonomial

coefficients, denoted by
{
n
k

}
U ;1

. We will frequently denote
{
n
k

}
U ;1

by
{
n
k

}
U
.

In this paper, we are interested in sums including the square of Fibonomial coefficients

of the form
{

2n
n+k

}2
U
. An additional challenge is here that the range of summation is not the

full range −n ≤ k ≤ n but only about half of it, namely 0 ≤ k ≤ n. We mainly present
three sets of identities which are expressed in the notion of

{
2n
k

}
U ;m

with m = 1, 2. More

importantly, we describe a general methodology how to evaluate these sums, which will be
applicable to many others as well.

Our approach is as follows. For an integer n, we use the Binet forms

Un =
αn − βn

α− β
= αn−1 1− qn

1− q
and Vn = αn + βn = αn(1 + qn)
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with q = β/α = −α−2, so that α = i/
√
q where α, β = (p±

√
∆)/2 and ∆ = p2 + 4.

Throughout this paper we will use the following notations: the q-Pochhammer symbol
(x; q)n = (1− x)(1− xq) · · · (1− xqn−1) and the Gaussian q-binomial coefficients[

n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
.

The link between the generalized Fibonomial and Gaussian q-binomial coefficients is{
n

k

}
U ;m

= αmk(n−k)

[
n

k

]
qm

with q = −α−2.

We recall that one version of the Cauchy binomial theorem is given by
n∑

k=0

q

(
k+1
2

)[
n

k

]
q

xk =

n∏
k=1

(1 + xqk),

and Rothe’s formula [1] is

n∑
k=0

(−1)kq

(
k
2

)[
n

k

]
q

xk = (x; q)n =

n−1∏
k=0

(1− xqk).

All the identities we will derive hold for general q, and results about generalized
Fibonacci and Lucas numbers come out as corollaries for the special choice of q.

Recently, the authors of [2, 4] computed certain Fibonomial sums with generalized
Fibonacci and Lucas numbers as coefficients. For example, if n and m are both nonnegative
integers, then

2n∑
k=0

{
2n

k

}
U

U(2m−1)k = Pn,m

m∑
k=1

{
2m− 1

2k − 1

}
U

U(4k−2)n,

2n+1∑
k=0

{
2n+ 1

k

}
U

U2mk = Pn,m

m∑
k=0

{
2m

2k

}
U

U(2n+1)2k,

2n∑
k=0

{
2n

k

}
U

V(2m−1)k = Pn,m

m∑
k=1

{
2m− 1

2k − 1

}
U

V(4k−2)n,

2n+1∑
k=0

{
2n+ 1

k

}
U

V2mk = Pn,m

m∑
k=0

{
2m

2k

}
U

V(2n+1)2k,

as well as their alternating analogues were also presented, where

Pn,m =


n−m∏
k=0

V2k if n ≥ m,

m−n−1∏
k=1

V −1
2k if n < m.

More recently, Kilic and Prodinger [3] give a systematic approach for computing the
sums of the form:

n∑
k=0

{
n

k

}2

U

Uλ1k+r1 . . . Uλsk+rs

in closed form, where ri and λi ≥ 1 are integers.
In this paper we investigate sums containing the square of Fibonomial coefficients with

the powers of generalized Fibonacci and Lucas numbers, over half the natural summation
range. The approach works for Fibonacci and Lucas (-type) numbers as factors likewise.

We discuss both, the Fibonacci and Lucas instances, where the range of summations is
over all non-negative integers (i. e., about half of the possible number of terms). For instances
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with the full range of summations, we refine ourselves to present a few representative formulæ
without presenting their derivations.

2. A systematic approach

We are now interested to evaluate the following two kinds of sums

i)

n∑
k=0

{
2n

n− k

}2

U

(−1)
km1 V m2

km3
and ii)

n∑
k=0

{
2n

n− k

}2

U

(−1)
km1 Um2

km3

as well as

iii)
n∑

k=−n

{
2n

n− k

}2

U

(−1)
km1 V m2

km3
and iv)

n∑
k=−n

{
2n

n− k

}2

U

(−1)
km1 Um2

km3

in closed form where mi are integers.
The sums of the type (i) will be translated into q-notation:

n∑
k=0

[
2n

n− k

]2
q

qk
2−n2

(−1)
km1+n+k

ikm3m2q−
1
2km3m2

(
1 + qkm3

)m2
.

For our method to work, firstly the factor (−1)k must appear and secondly the term for “k”
must coincide with the term for “−k”. That means that we have two possibilities for the
first condition:

• m2 is even,
• m3 is even

such that 2m1 = m2m3.
Then we are able to evaluate the sums

n∑
k=0

{
2n

n− k

}2

U

(−1)
krs

V 2s
kr and

n∑
k=0

{
2n

n− k

}2

U

(−1)
krs

V s
2kr

in closed form. Their q-forms are

(−1)
n
q−n2

n∑
k=0

[
2n

n− k

]2
q

(−1)
k
qk

2−krs
(
1 + qkr

)2s
and

(−1) nq−n2
n∑

k=0

[
2n

n− k

]2
q

(−1)
k
qk

2−krs
(
1 + q2kr

)s
, (1)

respectively.
Now we will examine whether the second condition is satisfied. We consider the term

for −k and ignore constant factors,[
2n

n− (−k)

]2
q

(−1)(−k)q(−k)2−(−k)rs
(
1 + q(−k)r

)2s
=

[
2n

n− k

]2
q

(−1)kqk
2+krs

(
1 + q−kr

)2s
=

[
2n

n− k

]2
q

(−1)kqk
2−krs

(
qkr + 1

)2s
,

which is the term for k. Thus we have that
n∑

k=0

[
2n

n− k

]2
q

(−1)
k
qk

2−krs
(
1 + qkr

)2s
=

[
2n

n

]2
q

22s−1 +
1

2

n∑
k=−n

[
2n

n− k

]2
q

(−1)
k
qk

2−krs
(
1 + qkr

)2s
.
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Now we compute the sum over the full range:
n∑

k=−n

[
2n

n− k

]2
q

(−1)
k
qk

2−krs
(
1 + qkr

)2s
=

2n∑
k=0

[
2n

k

]2
q

(−1)
k−n

q(k−n)2−(k−n)rs
(
1 + q(k−n)r

)2s
= (−1)

n
qn

2+nrs
2n∑
k=0

[
2n

k

]2
q

(−1)
k
qk

2−2kn−krs
2s∑
t=0

(
2s

t

)
q(k−n)rt

= (−1)
n
qn

2+nrs
2s∑
t=0

(
2s

t

)
q−nrt

2n∑
k=0

[
2n

k

]2
q

(−1)
k
qk

2−2kn−krs+krt

= (−1)
n
qn

2+nrs
2s∑
t=0

(
2s

t

)
q−nrt

2n∑
k=0

[
2n

k

]2
q

(−1)
k
qk

2−k(2n+r(s−t)).

Thus, concentrating on the inner sums, we have to evaluate a finite number of terms
of the form

2n∑
k=0

[
2n

k

]2
q

(−1)
k
qk

2−k(2n+µ),

where µ = r (s− t) is an integer. Now we will explain how this can be done. Consider

2n∑
k=0

[
2n

k

]2
q

(−1)kqk
2−k(2n+µ)

= q−2n2+n
[
z2n
]( 2n∑

k=0

[
2n

k

]
q

q(
k
2)zk

)
·
( 2n∑

k=0

[
2n

2n− k

]
q

(−1)kq(
2n−k

2 )−µkzk
)

= q−2n2+n
[
z2n
]( 2n∑

k=0

[
2n

k

]
q

q(
k
2)zk

)
·
( 2n∑

k=0

[
2n

k

]
q

(−1)kq(
k
2)−µkzk

)
= q−2n2+n

[
z2n
]
(−z; q)2n

(
zq−µ; q

)
2n

.

Summarizing, the sum of interest is evaluated as
n∑

k=0

[
2n

n− k

]2
q

(−1)
k
qk

2−krs
(
1 + qkr

)2s
= 22s−1

[
2n

n

]2
q

+ (−1)
n 1

2
q−n2+n(rs+1)

2s∑
t=0

(
2s

t

)
q−nrt

[
z2n
]
(−z; q)2n

(
zq−µ; q

)
2n

,

where µ is defined as before.
In order to evaluate

[
z2n
]
(−z; q)2n (zq

−µ; q)2n, we observe that there are factors

(1−zqi) and (1+zqi) that can be combined to (1−z2q2i). (That is the reason that we need
the factor (−1)k in our sums, as mentioned before.) In fact, there are 2n − |µ| such pairs,
and only 2|µ| separate factors. They mess up the final result, but since µ is a constant (not
depending on n), we still get a closed from evaluation. We have to evaluate a finite number
of terms of the form

[z2n]zaqb(z2qc; q2)2n−|µ| = qb[z2n−a](z2qc; q2)2n−|µ|.

This is either 0 for 2n− a odd or

qb+
c(2n−a)

2

[
2n− |µ|

2n−a
2

]
q2

(−1)n−
a
2 q(n−a/2)(n−a/2−1)
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otherwise.
Eventually we end up with a (finite) linear combination of terms of the form[

2n− |µ|
n− a/2

]
q2

for some integers µ and a. The final step is to translate such a result back to expressions in

terms of
[
2n−|µ|
n−a/2

]
U ;2

and simplify according to the Binet formula related to the recursion of

second order for Un.
For (1), the second part of (i), we can check in the same way that our two conditions

are satisfied. Thus we may write

n∑
k=0

[
2n

n− k

]2
q

(−1)
k
qk

2−krs
(
1 + q2kr

)s
=

[
2n

n

]2
q

2s−1 +
1

2

n∑
k=−n

[
2n

n− k

]2
q

(−1)
k
qk

2−krs
(
1 + q2kr

)s
.

Now, similar to the previous case, we write

n∑
k=−n

[
2n

n+ k

]2
q

(−1)
k
qk(k−rs)

(
1 + q2kr

)s
= qn

2+nrs (−1)
n

s∑
t=0

(
s

t

)
q−2nrt

2n∑
k=0

[
2n

k

]2
q

(−1)
k
qk

2−k(2n+r(s−2t)),

which, by using our previous result, equals

= q−n2+n(rs+1) (−1)
n

s∑
t=0

(
s

t

)
q−2nrt

[
z2n
]
(−z; q)2n

(
zq−µ; q

)
2n

,

where µ = r (s− 2t) .
Therefore we have
n∑

k=0

[
2n

n− k

]2
q

(−1)
k
qk

2−krs
(
1 + q2kr

)s
=

[
2n

n

]2
q

2s−1 +
1

2
q−n2+n(rs+1) (−1)

n
s∑

t=0

(
s

t

)
q−2nrt

[
z2n
]
(−z; q)2n

(
zq−µ; q

)
2n

,

where µ = r (s− 2t).

Now we move to sums of type (ii) and translate them into q-notation:

(1− q)
−m2

n∑
k=0

[
2n

n− k

]2
q

qk
2−n2

(−1)
km1+n−k

im2(km3−1)q−
1
2m2(km3−1)

(
1− qkm3

)m2
.

For our method to work, we require that m2 is even such that 2m1 = m2m3.
Then we are able to evaluate the sums

n∑
k=0

{
2n

n− k

}2

U

(−1)
krs

U2s
kr

in closed form. In q-notation, we have to evaluate

(1− q)
−2s

(−1)
n−s

qs−n2
n∑

k=0

[
2n

n− k

]2
q

(−1)
k
qk(k−rs)

(
1− qkr

)2s
.
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Since the term for k = 0 evaluates to 0 and we have again symmetry between −k and k we
can write

n∑
k=0

[
2n

n− k

]2
q

(−1)
k
qk(k−rs)

(
1− qkr

)2s
=

1

2

n∑
k=−n

[
2n

n− k

]2
q

(−1)
k
qk(k−rs)

(
1− qkr

)2s
.

Now we deal with the full range summation
n∑

k=−n

[
2n

n− k

]2
q

(−1)
k
qk(k−rs)

(
1− qkr

)2s
=

n∑
k=−n

[
2n

n− k

]2
q

(−1)
k
qk(k−rs)

2s∑
t=0

(
2s

t

)
(−1)

t
qkrt

=

2s∑
t=0

(
2s

t

)
(−1)

t
n∑

k=−n

[
2n

n− k

]2
q

(−1)
k
qk(k−r(s−t))

which, by taking k − n instead of k, equals

= (−1)
n
qn

2
2s∑
t=0

(
2s

t

)
(−1)

t
qnr(s−t)

2n∑
k=0

[
2n

k

]2
q

(−1)
k
qk

2−k(2n+r(s−t)).

Thus, we again encounter terms of the form
n∑

k=0

[
2n

k

]2
q

(−1)
k
qk

2−k(2n+µ),

where µ = r (s− t) is an integer. The treatment of these terms is covered by the previous
discussion.

Summarizing, our evaluation takes the form
n∑

k=0

[
2n

n− k

]2
q

qk
2−krs (−1)

k (
1− qkr

)2s
=

1

2
(−1)

n
q−n2+n

2s∑
t=0

(
2s

t

)
(−1)

t
qnµ

[
z2n
]
(−z; q)2n

(
zq−µ; q

)
2n

,

where µ is defined as before.

In the remaining sections, this general program will be illustrated in more detail on
four examples. Further, we will list several attractive formulæ that were obtained using the
procedure just described. Finally we present results on the sums with full summation range.

3. Illustrative Examples

Now we work out four examples that fall into the general scheme mentioned above in
more detail. Also we will present some additional examples without proof.

Theorem 3.1. For n > 1,
n∑

k=0

{
2n

n− k

}2

U ;1

V 2
2k = 2

{
2n

n

}2

U ;1

+ 2

{
2n− 2

n

}
U ;2

+

{
2n

n

}
U ;2

+
(
∆U2

2n + V2

){2n− 2

n− 1

}
U ;2

,
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where ∆ is defined as before.

Proof. First we convert the left-hand side of the claim in q-notation:

n∑
k=0

{
2n

n− k

}2

U

V 2
2k =

n∑
k=0

[
2n

n− k

]2
q

α2(n2−k2)α4k(1 + q2k)2

= α2n2
n∑

k=0

[
2n

n− k

]2
q

α−2k2+4k(1 + q2k)2

= α2n2
n∑

k=0

[
2n

n− k

]2
q

(−1)
k
qk(k−2)(1 + q2k)2.

Second we convert the right-hand side of the claim in q-notation, skipping details:

2

{
2n

n

}2

U ;1

+ 2

{
2n− 2

n

}
U ;2

+

{
2n

n

}
U ;2

+
(
∆2U2

2n + V2

){2n− 2

n− 1

}
U ;2

= α2n2

(
2

[
2n

n

]2
q

+ 2q2n
[
2n− 2

n

]
q2

+

[
2n

n

]
q2

− q−1
((

1− q2n
)2 − q2n−1

(
1 + q2

)) [2n− 2

n− 1

]
q2

)
.

So we need to prove that

n∑
k=0

[
2n

n− k

]2
q

(−1)
k
qk

2−2k
(
1 + q2k

)2
= 2

[
2n

n

]2
q

+ 2q2n
[
2n− 2

n

]
q2

+

[
2n

n

]
q2

− q−1
((

1− q2n
)2 − q2n−1

(
1 + q2

)) [2n− 2

n− 1

]
q2
.

Thus, according to our approach, we write

n∑
k=0

[
2n

n− k

]2
q

(−1)
k
qk

2−2k
(
1 + q2k

)2
= 2

[
2n

n

]2
q

+ (−1) n
1

2
q−n2+3n

2∑
t=0

(
2

t

)
q−2nt

[
z2n
]
(−z; q)2n

(
zq−2(1−t); q

)
2n

= 2

[
2n

n

]2
q

+ (−1)
n 1

2
q−n2+3n

( [
z2n
]
(−z; q)2n

(
zq−2; q

)
2n

+ 2q−2n
[
z2n
]
(−z; q)2n (z; q)2n + q−4n

[
z2n
]
(−z; q)2n

(
zq2; q

)
2n

)
= 2

[
2n

n

]2
q

+ (−1) n
1

2
q−n2+3n

( [
z2n
] (

z2; q2
)
2n−2

(
1 + zq2n−1

) (
1 + zq2n−2

)
×
(
1− z/q2

)
(1− z/q) + 2q−2n

[
z2n
] (

z2; q2
)
2n

+ q−4n
[
z2n
]
(1 + z) (1 + zq)

×
(
1− zq2n+1

) (
1− zq2n

) (
−zq2; q

)
2n−2

(
zq2; q

)
2n−2

)
= 2

[
2n

n

]2
q

+ (−1)
n 1

2
q−n2+3n

(
2q−2n

[
z2n
] (

z2; q2
)
2n

+
[
z2n
] (

z2; q2
)
2n−2

× (1 + q−3
(
1− q2n−1 − 2q2n − q2n+1 + q4n

)
z2 + q4n−6z4) + q−4n

[
z2n
]
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which, by Rothe’s formula and after some rearrangements, equals

= 2

[
2n

n

]2
q

+ (−1)
n 1

2
q−n2+3n

(
2q−2n

[
2n

n

]
q2
(−1)

n
q2
(
n
2

)
×
(
(−1)

n
q2
(
n
2

)[
2n− 2

n

]
q2

+ q4n−6

[
2n− 2

n− 2

]
q2
(−1)

n
q2
(
n−2
2

)
− q−3

(
1− q2n−1 − 2q2n − q2n+1 + q4n

) [2n− 2

n− 1

]
q2
(−1)

n
q2
(
n−1
2

)
+ q−4n(−1)nq2

(
n
2

)
+4n

[
2n− 2

n

]
q2

+ q4n+2(−1)nq2
(
n−2
2

)
+4n−8

[
2n− 2

n− 2

]
q2

− q
(
1− q2n−1 − 2q2n − q2n+1 + q4n

)
(−1)nq2

(
n−1
2

)
+4n−4

[
2n− 2

n− 1

]
q2

))
= 2

[
2n

n

]2
q

+ 2q2n
[
2n− 2

n

]
q2

+

[
2n

n

]
q2

− q−1
( (

1− q2n
)2 − q2n−1

(
1 + q2

) )[2n− 2

n− 1

]
q2
,

as claimed. �

Theorem 3.2. For n > 1,

n∑
k=0

{
2n

n− k

}2

U ;1

(−1)
k
V2k =

{
2n

n

}2

U ;1

+ 2 (−1)
n

{
2n− 1

n

}
U ;2

.

Proof. First we convert the left-hand side of the claim in q-notation:

n∑
k=0

{
2n

n− k

}2

U ;1

(−1)
k
V2k = (−1) nq−n2

n∑
k=0

[
2n

n− k

]2
q

(−1)
k
qk

2−k
(
1 + q2k

)
.

Second we convert the right-hand side of the claim in q-notation:{
2n

n

}2

U ;1

+ 2 (−1)
n

{
2n− 1

n

}
U ;2

= (−1) nq−n2

([
2n

n

]2
q

+ 2qn
[
2n− 1

n

]
q2

)
.

Thus we need to prove that

n∑
k=0

[
2n

n− k

]2
q

(−1)
k
qk

2−k
(
1 + q2k

)
=

[
2n

n

]2
q

+ 2qn
[
2n− 1

n

]
q2
.

Thus, according to our approach, we write

n∑
k=0

[
2n

n− k

]2
q

(−1)
k
qk

2−k
(
1 + q2k

)
=

[
2n

n

]2
q

+
1

2
q−n2+2n (−1)

n

×
( [

z2n
]
(−z; q)2n

(
zq−1; q

)
2n

+ q−2n
[
z2n
]
(−z; q)2n (zq; q)2n

)
=

[
2n

n

]2
q

+
1

2
q−n2+2n (−1)

n
( [

z2n
] (

z2; q2
)
2n−1

(1− z/q)
(
1 + zq2n−1

)
+ q−2n

[
z2n
]
(−zq; q)2n−1 (zq; q)2n−1 (1 + z)

(
1− zq2n

) )
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=

[
2n

n

]2
q

+
1

2
qn

(
2

[
2n− 1

n

]
q2

+ 2

[
2n− 1

n− 1

]
q2

)

=

[
2n

n

]2
q

+ 2qn
[
2n− 1

n

]
q2
,

as desired; we skipped a few simple intermediate steps for brevity. �

Theorem 3.3. For nonnegative n,
n∑

k=0

{
2n

n+ k

}2

U

U2
k (−1)

k
= −U2

n

{
2n− 1

n− 1

}
U ;2

.

Proof. Following the program outlined before, we need to prove that
n∑

k=0

[
2n

n+ k

]2
q

(−1)
k
qk(k−1)(1− qk)2 = −

[
2n− 1

n− 1

]
q2
(1− qn)2.

Thus, according to our approach, we evaluate the sum as follows, only giving some key steps:
n∑

k=0

[
2n

n− k

]2
q

qk
2−k (−1)

k (
1− qk

)2
=

1

2
(−1)

n
q−n2+n

(
qn
[
z2n
]
(−z; q)2n (z/q; q)2n − 2

[
z2n
]
(−z; q)2n (z; q)2n

+ q−n
[
z2n
]
(−z; q)2n (zq; q)2n

)
=

1

2
(−1)

n
q−n2+n

(
qn
[
z2n
]
(1− z/q) (z; q)2n−1 (−z; q)2n−1

(
1 + zq2n−1

)
− 2

[
z2n
] (

z2; q2
)
2n

+ q−n
[
z2n
]
(1 + z) (−zq; q)2n−1 (zq; q)2n−1

(
1− zq2n

) )
=

1

2
(−1)

n
q−n2+n

(
2 (−1)

n
qn(n+1)

[
2n− 1

n

]
q2

− 2 (−1)
n
qn

2

[
2n

n

]
q2

)
which, by some simple rearrangements, equals

= − (1− qn)
2

[
2n− 1

n

]
q2
,

as claimed. �

Theorem 3.4. For nonnegative n,
n∑

k=0

{
2n

n+ k

}2

U

U2
2k = U2U2n−1U2n

{
2n− 2

n− 1

}
U ;2

.

Proof. The identity in q-form is
n∑

k=0

[
2n

n+ k

]2
q

(−1)
k
qk(k−2)

(
1− q2k

)2
= −q−1 (1 + q)

(
1− q2n−1

) (
1− q2n

) [2n− 2

n− 1

]
q2
.

Thus we write
n∑

k=0

[
2n

n− k

]2
q

qk
2−2k (−1)

k (
1− q2k

)2
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=
1

2
(−1)

n
q−n2+n

(
q2n

[
z2n
] (

1− z/q2
)
(1− z/q)

(
1 + zq2n−1

)
×
(
1 + zq2n−2

)
(−z; q)2n−2 (z; q)2n−2 − 2

[
z2n
] (

z2; q2
)
2n

+ q−2n
[
z2n
]

× (1 + z) (1 + zq)
(
1− zq2n

) (
1− zq2n+1

) (
−zq2; q

)
2n−2

(
zq2; q

)
2n−2

)
=

1

2
(−1)

n
q−n2+n(q2n

[
z2n
] (

z2; q2
)
2n−2

×
(
1 + q−3

(
1− q2n+1 − q2n−1 − 2q2n + q4n

)
z2 + q4n−6z4

)
− 2

[
z2n
] (

z2; q2
)
2n

+ q−2n
[
z2n
] (

z2q4; q2
)
2n−2

which, by Rothe’s formula, equals

= 2q2n
[
2n− 2

n

]
q2

−
[
2n

n

]
q2

− q−1
(
1− q2n−1 − 2q2n − q2n+1 + q4n

) [2n− 2

n− 1

]
q2

= − (1 + q) q−1
(
1− q2n−1

) (
1− q2n

) [2n− 2

n− 1

]
q2
,

as claimed. �
Now we will present a few additional results without explicit proofs; they can be done

in exactly the same way as the previous examples:

Theorem 3.5. (1) For n > 1,
n∑

k=0

{
2n

n+ k

}2

U

U4
2k =

2U2n−2 + 3U2n−4 + U2n

U2n−2
V 2
1 U2n−1U2n−3U

2
2n

{
2n− 4

n− 2

}
U ;2

.

(2) For nonnegative n,
n∑

k=0

{
2n

n+ k

}2

U

U4
k =

U3
n (Un+1 + 3Un−1)

V2n−1V2n

{
2n

n

}
U ;2

.

To finish, we present two examples where the sums are over the full summation range.

Theorem 3.6. (1) For nonnegative n,
n∑

k=−n

{
2n

n+ k

}2

U

V2k (−1)
k
=

4 (−1)
n

V2n

{
2n

n

}
U ;2

.

(2) For n > 0,
n∑

k=−n

{
2n

n+ k

}2

U

V 2
k (−1)

k
=

2VnU4n−2

Un

{
2n− 2

n− 1

}
U ;2

.
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