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CHARACTERIZATION OF MONITORING DATA OF A
DIESEL HYDRODESULFURIZATION REACTOR WITH
LANGMUIR-HINSHELWOOD MODEL: PART II- REACTOR
MONITORING
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Hydrodesulphurization is a catalytic process that uses H, to stabilize
petroleum product by hydrogenating unsaturated hydrocarbon and hydrogenating
and deeply removing sulfur and nitrogen contaminants. Usually the compounds with
sulfur, the compounds with nitrogen, the alkenes and respectively the aromatics,
which are hydrogenated, are considered to have a unique representation. The using
conditions of a LH kinetic model for an industrial reactor are carefully analyzed.
Simulation of the mathematical model for industrial reactor conditions showed that
the results are consistent with the current operation of the reactor. A two-level
factorial design with temperature, diesel flow rate and gas phase flow rate is used to
show how these factors influence the concentration of sulfur compounds in the
product. The second part of paper uses a large volume of monitoring data, which
highlights the influence of factors on the hydrodesulfurization process on the
performance of a fixed catalyst bed reactor. These data are exploited so that they can
allow the identification of those parameters of an LH model that give specificity to the
process used catalyst and to the reactor operating conditions.

Keywords: Diesel hydrodesulfurization, LH kinetic model, Reactor mathematical
model, Model parameters, Reactor monitoring, Data valorization

1. Introduction

Controlling and monitoring in diesel hydrodesulfurization (HDS) processes
is a very important system for producing ultra-low sulfur diesel and for meeting

increasingly stringent environmental regulations for use of fossil combustibles [1-
2].
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In a given process, whether simple or extremely complex, the monitoring-
control system must be understood as having in the control part the process
modeling and respectively effective control [3].

Consequently, the triplet monitoring-modeling-control is responsible for the
more or less optimal management of an industrial process with or not molecular-
scale transformation of raw materials [4,5]. In this sense the monitoring says what
we have, the process mathematical model decides what needs to be done and control
does what has been decided, so that the process objective remains within the
accepted characteristics. In diesel hydrodesulphurization (HDS) the effective
control request to process model the optimizing of operating conditions based on
monitoring key parameters to ensure efficient sulfur removal while maintaining
product quality.
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Fig.1. Coupling of monitoring (sulphur concentration state) with process model (model predictive
control (MPC)) and heat and flow control in diesel hydrodesulphurization

In the case of diesel hydrodesulphurization, Fig. 1 shows the monitoring-
modelling (predictive control model) and flow control system so that the monitored
property (sulphur concentration in the processed diesel) remains within the set
range [6]. In the scheme from Fig. 1 it considers that the control model, based on
the mathematical model of the hydrodesulphurization process, is a datum in the
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sense that it does not require any adjustments or even reconstructions with its use.
More precisely what is in Fig. 1 Set point remains nailed down.

In the case of diesel hydrodesulphurization, as a rule, predictive control

models are based on simplified mathematical models, which consider that process
rate is determined by the catalytic chemical reactions. In this sense, reactor models
based on the fact that hydrogenation reactions of hydrodesulphurization are of the
power law appear in the construction of predictive control models for this process
[7]. The large number of factors involved in HDS, together with phenomena
difficult to consider in simple models, such as catalyst deactivation and forced plant
shutdown, require the use of monitoring data to identify the kinetic parameters that
characterize the catalyst comportment at the moment.
In the first part of the work, the mathematical model was developed and tested in
relation to an industrial reactor based on the fact that the kinetics of catalytic
hydrogenation reactions within hydrodesulfurization follows the Langmuir-
Hinshelwood model. Now, through the complex monitoring data for an industrial
reactor, we show that: 1) these are supported by the reactor model with LH kinetics,
i1) they can be used to identify the most important parameters in the LH kinetic
model so that the monitoring-modeling-control system can perform the momentary
update of the model (MPC with new setpoint in Fig. 1), iii) they show the coherence
of the process control during the monitoring period

2. LH Kinetics and Reactor Model

In the first paper part it was shown that among the kinetic models for
hydrogenations in hydrodesulfurization process, the LH model has the greatest
specificity because it takes into account the elementary processes of catalysis
through MoS: catalyst sites [8,9]. The result of this kinetic model is expressed by
relations (1), which give the species reaction rate. In this relation i =S (1), N (2),
A (3) respectively O (4) define the mentioned species (sulfur compounds, nitrogen
compounds, aromatics and olefins), k,, is the constant of i species reaction rate
(h''), K, express the equilibrium constant for reaction of i species, K 1,5 represent
the catalyst adsorption constant for hydrogen sulfide, P, gives the partial pressure
of hydrogen in gas phase (at), ¢, dons the i species concentration in liquid phase
(kg/m?), K 1, shows the catalyst adsorption constant for hydrogen (kg/(at m?), b
gives the ratio between partial pressure of hydrogen sulfide and those concentration
in liquid.

_ de _ ky KKy 5Py €
" dr 1+Kce+K, P, +K, b,

(1)
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The coupling of this kinetics to the structure of the phase flow through the
reactor as being co-current plug type, suggested in Fig. 1, leads, as established in
the first paper part, to the reactor mathematical model. It is expressed by the system
of differential equations (2) -(4) with the initial conditions (5) and it shows the
evolution, along the catalytic bed, of the species concentration in liquid and gaseous
phase.

, k, Al—g, —¢ K.K, (P, ¢
de, __knA(=¢, =) LS M Li=1,2..4 ()
dx G, 1+ Kic,+ K, By + K, sbc,
dcgi _ ak, A(l - &, —-&) KK, P, c =12 3)
dx G, 1+Kc,+K, P, +K, bc,
dCHZG _ _24[1:1 ﬂlkhlA(l - gg - gl) KiKHzSPHch i=12..4 (4)
dx G, 1+ K, + K, B, +K, b,
X = O’ci = Cl»o,i = 1,2...4,Cgi = CgiO = OQZ = 1'2acH2g = cHng (5)

Here we identify by A4 the reactor surface area, by ¢,,&, the volumetric
fractions two phases in the bed, by a, the conversion coefficients of transferred
sulphur and nitrogen compounds from liquid to gas phase and respectively by £,

the hydrogen consumption coefficients respect to hydrogenation reactions. The
model use (checking) is conditioned by specifications, as expressions, as values or
as a computing procedure, of all its quantities, which in the case of LH kinetics are
not few and specific to the type of catalyst. In the first paper part this problem was
detailed. We bring here the relations expressing the temperature dependence for K,

,» Ky s ((6)- (10)) as well as data (table 1) regarding the pre-exponential factor and

the activation energy expressing the reaction rate constant of i hydrogenation
reaction (11). Table 1

K, (T)=557.138 —1.827T +1.501 *10°T* (6)
K,(T)="71.708 =0.269T +2.503 *10~* T (7)
K,(T)=-75.293 +0.2017 —1.25*10*T" (8)
K, (T)=99.465+0.279T —1.875 *107*T" 9)
K, «(T)=887.098—1.589T +6.25T" (10)
k, (T) =k, exp{%?}, i=12.4 (11

Table 1 also contains recommendations, as numerical values, for the model
variables, which have not been referred to in the previous sections. Thus, all that is
needed to simulate a hydrodesulfurization reactor is available. This can be done by
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numerically integrating of model system of differential equations, with its
placement in the vector Z, synthetically expressed by relation (12)

Table 1
Arrhenius constants (koni) and activation energies (Ei) of LH Kinetic for some HDS catalysts
and others HDS specific reactor model parameters

Oil Parameter HDS HDN HDA HDO
koni h! 6.504-7.897 10* | 5.078-6.678 10* | 2.663-4.552 10* | 2.243-3.987 10*
Ei J/Kmol 5.749 -6.981 107 | 5.397-6.667 107 | 5.734-6.887 107 | 5.731-6.897 107
B, 0.04 0.02 0.05 0.06
D a, 1.068 1.252 - -
Cio kg/m? 5.04 3.36 210 117
P,,,P MPa 33 3.5
b 04-1.9
. €%) 1.5 -2.5

3. Industrial Reactor Monitoring and LH Kinetic Models

As it can be seen from relations (6)-(12) the hydrodesulfurization reactions
temperature is one of the very highly sensitive factors of the discussed models and
therefore of the reactor control. Controlling of this factor is necessary to comply
with the requirements of the technical process regulations. It is known cases when
if this factor is out, with 2-5 °K, from technical prescription, then there is a decrease
of over 5% in production. For a reactor which processes around 90 m*h it can
compute that the Diesel losses of the hydrodesulfurization device goes over one
million dollars per month. Many aspects with economic reference regarding the
influence of factors on the productivity of diesel hydrogenation reactors are
presented in the literature [10-12]. It is thus shown that near temperature the input
and output data of gas and liquid the flow rate, the reactor mean internal pressure,
the hydrogen purity and the Diesel quality are other process factors which must be
considered by technical process regulations [13-18], so in the current monitoring
procedures of HDS plants. Fig. 2 shows the HDS reactor diagram with the
specification of the important geometric dimension of catalytic bed and of process
variables, which were monitored for a period, namely from day 67 to day 117. As
can be seen from the figure, the following independent respectively dependent
variables were measured during the monitoring: 1) independent variables: Diesel
flow rate (Gw), Diesel density ( p,, ), Diesel ASTM curve, Sulphur diesel content

(cs1 or crp in (5)), Nitrogen crude diesel content (cs2 or ¢z in (5)), Input pressure
(p+Ap), Recycled gas flow rate ( Gvgr), Total gas flow rate (Gye), H2 content in gas
(ctzg0 1n (5)), Input temperature (), Temperature distribution around ring 1,
Temperature distribution around ring 2, Temperature distribution around ring 3,
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Temperature distribution around ring 4; i1) dependent variables: Treated Diesel
flow rate (Gvi), Treated Diesel density ( p,,, ), Treated Diesel ASTM curve, Sulphur

diesel content (¢, or csrin 15) ), Nitrogen diesel content (cs2ror cyrin (16)), Total
gas flow rate( Gvg), H2 content in gas (cuzer ), Exit temperature ( z.). Before the
beginning of presentation concerning monitoring data on diesel desulfurization
industrial reactor, extremely interesting at first glance in terms of content and
analytical point of view, it must be specified how these data are to be interpreted in
the sense of explaining them in terms of LH kinetic model. Thus, it was considered
of interest to identify the most important LH kinetic model parameters that
characterize the removal of sulfur compounds (koz, E7, b) and nitrogen compounds,
respectively (konz, E2).
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Fig. 2. Presentation of the monitored variables for an industrial hydrodesulfurization reactor (left
dimensions and variables list, right —-image generated with MPC for rings level temperature
registration)

This is because the concentration status of these compounds in the product
is monitored daily. In this sense: 1) the reactor numerical model was put in a form
that shows a) the concentration of sulfur compounds (13) and nitrogen compounds
(14) at the reactor outlet as a function of all process factors involved in the model,
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i1) the kinetic parameters kox;, £7 and respectively b were identified by minimizing
the mean square deviations [7,19] between the computed and measured
concentrations values of sulfur compounds in reactor outlet (15), iii) the kinetic
parameters kon2, E> were identified by proceeding as above(16), with reference to
the reactor outlet concentrations of nitrogen compounds
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Fig. 3. State of catalyst bed temperature (°C) at 12 measurement points respect to ring 1, ring 2,
ring 3 and respectively ring 4.
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G(ky,, E,) = Z(CN (kos» Ey Tmcz’GUlz’GUgt’cNOi)_cMi)z (16)
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Fig. 5. Daily dynamics of temperature in the catalyst bed (left) and daily dynamics of diesel flow
rate through the industrial HT reactor (right).

From what is shown, it can be deduced that for the dependencies Ki(7) and
Ki2s(T) the relationships presented above were accepted. The index 99 in numerical
model integration function Z shows that 100 integration steps are used for the 14 m
of catalytic bed length (Fig. 2). Also, it observes that from the monitoring data, 49
days were considered, not 50 as it results from monitoring data Figs.. Taking into
account that reaction temperature is the most important HDS kinetic factor, we
begin the presentation of the monitoring data with Fig. 3. Here it shows the catalyst
bed temperature dynamics of at 12 measurement points in the area of ring 1, ring 2,
ring 3 and respectively ring 4. The mean temperature at the level of each ring and
the ring temperature variance, given by Fig. 4, is the intermediary step in



Characterization of monitoring data of a diesel hydrodesulfurization reactor with Langmuir-... 233

establishing of daily temperature characterizing the reactor operation, which is
given with Fig. 5 left. So, this figure contains the values 7. requested in (15) and
(16) respectively. The right part of Fig. 5 contains the daily values of volumetric
liquid flow rate through catalytic bed (G, =1,2...49 in (15) and (16)).
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Fig. 6. Mean flow rate of recirculated gas through the catalyst bed (left) and the hydrogen gas
content in reactor entrance (right) for monitoring days

With Fig. 6 left we bring through the daily state of the recycled gas flow rate, as a
measure for the gas flow, which is the hydrogen support in the bed G,,,; =1,2...49

in (15) and (16)). The other side of Fig. 6 shows the particular importance of the
hydrogen content in the gas; the hydrogen concentration at gas entrance to the
catalytic bed is an initial condition in the reactor model (5). The daily state of sulfur
compounds and nitrogen compounds concentration in the diesel fuel entering and
leaving the HDS reactor, expressing for relations (15) and (16) by the daily values
Cy0i>Cspio Cnvo; and respectively ¢, is presented in Figs. 7 and 8 respectively.
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Fig. 7. Sulfur compounds concentration at HDS reactor inlet (left) respectively outlet (right) of
diesel fuel for monitored days
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Fig. 8. Nitrogen compounds concentration at HDS reactor inlet (left) respectively outlet (right) of
diesel fuel for monitored days
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Fig. 9. Diesel density at HDS reactor inlet (red) respectively outlet (blue) and ASTM tso diesel
temperature at HDS reactor inlet (red) respectively outlet (blue) for monitored days

Many other monitoring data, showing dynamics of other independent and
dependent variables, may be of interest for models closer to the more complex
phenomenology of hydrodesulfurization. In this sense, we supplement the
monitoring data with daily dynamics of 1) the diesel density for reactor fed and
processed diesel, respectively (Fig. 9 left) and i1) the ASTM 50% distillation
temperature for the fed and processed diesel fuel (Fig. 9 right).

Before proceeding to presentation of the announced models parameter
identifications, some observations are required on the monitoring data presented
with Figs. (3) -(9). Here are some of these observations: 1) all data presented in the
aforementioned figures show that the HDS reactor operates in a stable regime; this
is sustained by the fact that the daily values of the monitored variables are in line
with the average or its trend, ii) there is a temperature gradient along the catalytic
bed consisting of an average increase of 12 degrees between the diesel entry and
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exit in/from the catalytic bed (Fig. 5) and with extreme gradient of 20 °C (Fig. 5
left, day 77), iii) at the liquid and gaseous phases catalytic bed entrance occurs an
arrangement of the two-phase flow structure, which is sustained by the fact that the
temperature of the catalytic bed at the level of the first ring shows a much greater
dispersion than those reffering to rings 2-4 (Fig. 4 right), iv) the increase in the
feed diesel flow noted starting from day 103 (Fig. 5 right, day 103) is a productivity
boost for reactor and in order to maintain csy and cnrwithin technological limits,
the increase is accompanied by an increase in temperature (Fig. 5 left, day 103) and
gas flow through the bed (Fig. 6 left, day 87), v) the high gas flow rate through the
catalytic bed is also strongly related to its hydrogen content; that is shown in Fig.
6 when on day 77 the hydrogen concentration in the gas drops from 95 to 87% so
that the gas flow rate begin to increase consistently, vi) the trend of bed temperature
increasing (Fig. 5 right ), explained by some aspects such as the increase in reactor
productivity, can also be associated with the slow deactivation of the catalyst, vii)
the reactor response to nitrogen compounds hydrogenation (Fig. 8 left) , in
conjunction with these compounds concentration in the diesel feed (Fig. 8 right),
show that after day 87 it observes the efect of hidrogen concentrtion in gas (87%)
and especially of decreasing of catalyst activity for this hydrogenation
Returning now to the problem of identifying the kinetic constants k,, E,,b

and respectively k,,E,, we show that in this sense a complex numerical program

was used. It was developped, as shown above, on the basis of the numerical model
of the reactor with selection to express, as a function of the process factors, the
sulfur (13) respectively nitrogen (14) concentration compounds, in the HDS reactor
outlet stream. In the construction of the mentioned program was taken into account,
the following: 1) import for program use of the file with the monitored data, here
given by Figs. 5 - 8; 11) the choice based on literature data [7,10,17,18,20,21, 22] of
the ranges of values of Arrhenius equations parameters namely k,,E, , for sulfur
compounds removing kinetic, and respectively k,,E,, for nitrogen compounds
case (table 2); iii) putting in program of functions F(k,,,E,,b) and G(k,,E,),
which minimize the mean square deviations for sulfur and nitrogen compounds
respectively, and testing the F(k,,, E,,b) behavior respect to parameter b (table 3);
iv) applying the sensitivity procedure [23, 24] by analysis of partly derivates
OF (kyy, E,b)  OF (kyy» Ey,b)  0G(kyy, Ey)  0G(kyy, E,)
OF, © ok,  OE, = 0Ok,
respectively k,,,E, (Figs. 10 and 11) in order to establish start points in
F(ky,,E,,b) and G(k,,,E,) minimization procedure [25], V) Use of Minimize(f,
varl, var2, ...) Mathcad procedure to obtains the best values of k,,E,,b, ky,,E,

,evolution versus k,, E,

(table 4) and the computed concentration of sulfur and nitrogen compounds in HDS
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reactor exit; vi) for monitoring time express graphically the daily state of computed
and measured concentration for sulfur and nitrogen compounds in diesel leaving

the HDS reactor (Fig. 12).
Table 2

The range of selected values for E|, E, respectively k,,,k,
E E 5.0107 | 53107 | 5.6107 | 59107 | 6.2107 | 6.510" | 6.8 107 | 7.1 107
£

,J/kmol
kyp,kyy, ! 4510* | 4.810* | 5.110* | 5.410* | 5.710* | 6.0 10* | 6.3 10* | 6.6 10*

In the sense of the above, we show that the data from table 2 were sequenced
from numerical calculation requirements associated with the sensitivity of the
functions F(k,,,E,,b) and G(ky,,E,) to the parameters k,,, E,,b,k,,, E, . Likewise
k, =k, exp( %?), i =1,2 notes changes for the second and third decimal places of
the factor that multiplies 10%. The calculations in table 3, conditioned by the fact
that F must be as small as possible, allowed the value of this parameter to be limited
to subunit values in its identification together with £; and ky;.

Table 3
State of function F'(k,,,E,,b) after b values for two sets of values k,,, £,

b 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
F(2.402 %10 5.851 *107,5) 0.005 | 0.007 [0.02 [0.09 [ 036 |1.10 277 |6.04

8 3 1 4 6 8 4 5
F(3.402 *104,6.151 *107,b 0.012 | 0.062 | 0.31 | 1.09 |357 |872 |179 |319

2 1 2 6 7
Acceptability positive negative
OF (ko Ey, b)
1210 0E, OF (koy, Ey b)

ko
0014+

9104

kg® kmol

mé |

6104

63 g
ko 69

x 104

Fig. 10. Sensitivity analysis for F'(k,,,E,,b) respectto k,,, E, parameters and with b= 0.8
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The sensitivity analyses in Figs. 10 and 11 started from the general case that shows
where the derivative of the function to be analyzed is active with respect to the
parameter considered, then this parameter values area of the is important [24, 26].
Thus we find that in F'(k,,, E,,b) minimizing one must search for E,in 5.95 - 6.75

107 J/Kmol ( Fig. 10 left) respectively fork,, between 4.5 and 6.3 10*h™! (Fig. 10
right), with FE, in the previously specified range

¢o2: E> 3G (kg E,
2107 86 (koz E2) ipivs) et
JE, 9koy
15107 143104
z kg*
kg” kmol iy

mé

110 mé ] 9510
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Fig. 11. Sensitivity analysis for G(k,,, E,) respect to k,, E, parameters
In the case of sensitivity analysis for G(ky,,E,) it obtains that the range of
interest for E, is 6.2 - 7.1 107 J/Kmol, whereas for k,, no clear range is identified

(Fig. 11). Taking into account the above, the Mathcad Minimize procedure led to
the identification of the parameters centralized in table 4. The activation energies
and pre-exponential factors in this table are characteristics of the hydrogenation of
sulfur compounds (HDS) respectively nitrogen compounds (HDN) with the catalyst

used in the monitored industrial reactor.
Table 4
Identified values for the activation of energies and pre-exponential factors for sulfur and
nitrogen compounds hydrogenation with the catalyst used in monitored industrial reactor

Case Sulfur compounds hydrogenation Nitrogen compounds hydrogenation
Parameter E, JKmol | k,, h' [b a*m | E jKmol ky, h!

kg
Value 6.255107 | 4.40210* | 0.675 6.905 107 3.993 10*

The values obtained for the kinetic parameters regarding the hydrogenation
of sulfur and nitrogen compounds are in the range of those in the literature regarding
CoMoS catalysts, range that was taken by processing program of reactor monitoring
data.

With reference to the sulfur and nitrogen content in the processed diesel, in
Fig. 12, a comparison is made between the monitored (experimental) values and
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those calculated according to the reactor model based on LH kinetics with data from
Table 4.

67 72 7 82 87 92 g7 102 107 112 117
T days

67 72 77 82 87 ] 97 102 107 12 17
T days

Fig. 12. Monitored (red) and model computed (blue) for sulfur concentration (left) and nitrogen
(right) compounds in diesel leaving HDS reactor

From Fig. 12 it is observed that the calculated values of the concentration
of sulfur and nitrogen compounds in the processed diesel adequately cover the
values obtained by monitoring. In the case of nitrogen compounds concentration
(Fig. 12 right) it is seen that monitoring data have small individual values (5 steps,
in increase) and this fact had consequence on E, and k,, identification. The

increase of this concentration, in stages (monitoring) or in overall (calculation
according to the LH reactor model) may indicate the beginning of catalyst activity
reduction, respect to nitrogen compounds hydrogenation.

In the case of sulfur compounds concentration in the processed diesel (Fig.
12 left) the model computed values for days 92 -107 are determined by the fact that
two main model factors, namely the temperature and the flow rate of diesel, together
supported low sulfur compounds concentrations. Thus, for this period, as shown in
Fig. 5, the temperature was quite high (on average 360 *+ 2 °C and the flow rate of
processed diesel was the lowest values (90 + 3 m?/h). It is interesting to note that
after day 107 the strong increase in diesel flow rate caused the increase of sulfur
content in the product and only the important increase of temperature on day 112
limits this increase. Not noticing any increase or decrease trends in both calculated
and monitored sulfur concentrations, it can be considered that the activity of the
catalyst for the hydrogenation of sulfur compounds remains stable for this
monitoring period. The computing of mean and of standard deviation of the
monitored or LH model calculated sulfur concentrations allows the expression of
those from Fig. 12 right by ¢, =11.09 £2.12 ppm respectively ¢z =8.91+£3.54
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4. Conclusions

The papers is focused on the use HDS reactor model based on LH catalytic
kinetics for exploitation of monitoring data from an industrial diesel HDS reactor.
It was thus shown that it is necessary to express the reactor model numerically so
that they highlight the influence of all the factors that can be monitored. Then, a
consistent number of monitoring data on industrial reactor exploitation were
brought and were systematized for graphic representations respectively for their
import as exploitable files in computing program, which estimate the sensitivity of
identification problem respect to the most important LH kinetics parameters of
the catalyst used in HDS reactor. Activation energy of hydrogenation reactions for
sulfur and nitrogen compounds, respectively the pre-exponential factors associated
with these hydrogenations was considered as basic parameters of LH kinetics.

Many comments have been made on the monitoring of the industrial reactor
and especially on the way of processing the monitoring data so that they allow the
best identification of above-mentioned kinetic parameters of the LH kinetic models,
which characterize the comportment of catalyst used in the HDS reactor.
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