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ADAPTIVE DESIGN OF COSTAS RADAR SIGNAL WITH 

IMPROVED NARROWBAND AMBIGUITY FUNCTION 

Ramez EIZDASHIRE ALI DEEP1, Radwan KASTANTIN2 

In this paper we propose to incorporate scattering coefficients of a target 

into weighted Costas waveform model and using adaptive technique to find these 

optimal weights, and hence to improve the radar’s Narrowband Ambiguity Function 

(NAF). We confirm that the proposed formula of NAF is considered as a better 

representation of the target echo and results in much better Auto-Correlation 

Function (ACF) in the sense of decreasing the sidelobe level without needing to 

increase the number of the frequencies in the Costas waveform. We will also show 

that the obtained adaptive waveform doesn’t affect the original resolution and yields 

less sensitivity to delay-Doppler coupling problem. We suppose that the received 

signal depends on scattering coefficients obtained from Swerling models. The 

developed optimization problem, to adaptively design the weighted Costas 

waveform, adequately describe the features of the target such that the volume under 

the corresponding NAF surface best approximates the volume under a desired 

ambiguity function (AF) surface. What is more, we demonstrate that the optimal 

solution will redistributes the signal energy at scatters of the target such that the 

weaker scatter should be assigned with more energy than the stronger one. Finally, 

we will prove the effectiveness of our adaptive waveform design through simulation 

results. 

Keywords: Adaptive Waveform Design, Optimization Problem, Scattering 

Coefficients, Swerling models, Costas Chirp Signal, Ambiguity Function      

1. Introduction 

The art of designing radar waveform depends mostly on both the 

experiences and expertise of the designers in catching the suitable waveform. 

These experiences are obtained by manipulating signal parameters, using special 

building blocks with desirable mathematical properties [1]. One of the main goals 

in radar system design is to suitably select the transmit waveform, because the 

waveform of the transmitted signal controls the delay-Doppler resolution, the 

detection performance in the presence of noise and/or masking clutters 

[1][2][3][4]. Numerous modern literature reviews are rich of ideas concentrating 

on optimal adaptive waveform design to improve the radar system performance. 

Wei Fu, et al propose an adaptive optimal waveform design algorithm that 

maximizes the signal-to-interference-plus-noise ratio at the receiver output, and 

 
1 MSc Student, Department of Communication- Higher Institute of Applied Sciences and 

Technology, Damascus, Syria, email:  ramez.alideep@hiast.edu.sy 
2 Professor - Department of Communication- Higher Institute of Applied Sciences and 

Technology, Damascus, Syria, email: Radwan.Kastantin@hiast.edu.sy 

mailto:%20ramez.alideep@hiast.edu.sy
mailto:Radwan.Kastantin@hiast.edu.sy


128                                     Ramez Eizdashire Ali Deep, Radwan Kastantin 

their design is based on using a frequency-stepped chirp signal with arbitrary sub-

pulse bandwidths and chirp slopes [5]. Their optimization problem includes three 

constraints; the integral sidelobe level of an autocorrelation function, the energy, 

and the peak-to-average power ratio. The effectiveness of their designed 

waveform when compared with a linear frequency modulation signal, results in a 

great improvement in the target detection performance. Peng Chen, et al study the 

estimation of target scattering coefficients in an adaptive radar system. They 

propose a novel estimation method based on Kalman filter (KF) with waveform 

optimization for the temporally correlated with both noise and clutter [6]. The 

proposed adaptive waveform design is based on a direct optimization method 

subject to the practical constraints including the transmitted energy, the peak-to-

average power ratio, and the target detection performance. The proposed KF-

based method with waveform optimization can obviously improve the estimation 

performance [6]. David A. Hague uses Multi-Tone Sinusoidal Frequency 

Modulation (MTSFM) to get an optimal waveform design based on adapting the 

Fourier Series coefficients of MTSFM waveform's modulation function [7]. 

Hague 's representation results in a constant amplitude waveform with a 

continuous modulation function whose spectrum, Auto-Correlation Function 

(ACF), and Ambiguity Function (AF) shapes are modified by adapting the Fourier 

Series coefficients. His adaptive MTSFM waveforms proposed possesses a low 

Peak-to-Average Power Ratio (PAPR) and high Spectral Efficiency (SE). 

Xiongjun Fu, et al propose a waveform synthesis method for adaptive radar based 

on using a cascade of the water-filling algorithm and iterative least squares (LS) 

approach, and the optimal energy spectrum density (ESD) of the synthesized 

waveform is obtained [8]. Their optimal waveform synthesis method can be 

considered as competent for adaptive radar. Satyabrata Sen and Arye Nehorai 

develop an adaptive waveform design based on a multicarrier OFDM signal. They 

compute the corresponding Wideband Ambiguity Function (WAF) at the output 

of the Matched Filter (MF) such that the received signal depends on the scattering 

coefficients of the target [9]. Their optimization procedure selects the OFDM 

waveform such that the volume of the corresponding WAF best approximates the 

volume of a desired ambiguity function, and hence the resulting AF along with the 

associated ACF is improved in the sense of decreasing peak sidelobe level (PSL). 

Practical waveform design problem remains a challenging research 

domain despite numerous attempts to solve it. Radar waveform design has been 

considered as an important research problem in radar system design since the 

elegant work of Woodward [10]. Woodward developed the AF and interpreted its 

surface as a measure of the uncertainty of the delay and Doppler of a returning 

echo from a target, simultaneously. In fact, the AF surface is usually interpreted as 

a matched filter response and can be naturally used as a performance measure in 

radar waveform design [1][10]. Historically speaking, Wilcox proposed a 
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complete mathematical solution in the LS sense such that the desired AF surface 

was defined in analytical form [11], which is not the case in any practical radar 

application for two main reasons: (1) in the set of all possible two-dimensional 

functions, ambiguity functions are rare, and it is unusual for an arbitrary two-

dimensional function to satisfy the mathematical properties of the AF surface, (2) 

it is mostly not necessary to have a certain shape of the AF surface analytically 

defined in the entire delay-Doppler plane and to approximate only part of that 

surface corresponding to a desired subregion in the plane. Sussman approached 

the problem by approximating a desired AF surface in the LS sense too, but his 

optimization procedure stretches again over the entire delay-Doppler plane. 

Hence, the resultant waveform can produce an "all-purpose" AF that would be 

more or less suitable for any radar applications [12]. I. Gladkova and D. 

Chebanov extended Wilcox’s LS approach by restricting the optimization 

procedure over some limited subregions in the time-doppler delays plane 

particularly surrounding the main-lobe of the ambiguity surface [13][14]. 

In this paper, we propose an adaptive waveform design based on Costas 

chirp signal [15] for radar application. We compute its Narrowband Ambiguity 

Function (NAF) formulas of the proposed waveform taking into consideration the 

effects of the target RCS fluctuation on received signal. Actually, the analysis of 

detection or recognition of a target has so far assumed that the echo signal has a 

constant amplitude, which is not always true since the real targets are made up of 

several scatters, and the net echo depends on the way in which the contributions 

from these scatters add vectorially, and/or the motion of the target. In our work, 

we incorporate the scattering coefficients of the target into the reflected echo 

signal model, and weight the transmit waveform. The motivation for incorporating 

the target scattering coefficients is that these coefficients can be effectively 

estimated as Peng Chen, et al suggest in [6]. In the simulation, we will use 

Swerling models [2] to realize scattering coefficients. Moreover, the motivation 

for using Costas chirp signal is because of its high delay-Doppler resolution, and 

we aim to considerably reduce its PSL, and hence obtaining much better ACF 

than that of normal Costas chirp signal. Costas hopping sequence of length N 

yields ACF with a maximum height just 1 / N times of the main lobe level height 

[15]. We develop an optimization problem that approximates a desired ambiguity 

surface in the LS sense in presence of two constraints; one to ensure transmission 

over all frequencies of Costas signal and the other to meet the signal energy 

normalization requirement. The solution of the optimization problem introduces 

an adaptive (optimal) weights with respect to the scattering coefficients of the 

target. The adaptive weights will redistribute the signal energy such that the 

weaker scatter should be supplied with more energy than the stronger one. As a 

result, the adaptive waveform will yield a much better ACF in the sense of PSL 

reduction without needing to increase N, and without affecting the original 
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resolution. Moreover, the adaptive waveform will yield less sensitivity to delay-

Doppler coupling problem. 

2. Signal Model and its corresponding NAF 

2.1 Weighted Costas Signal Model 

We consider a monostatic radar employing  weighted Costas chirp signal 

whose hopping sequence is 0 1 N 1c [c ,c ,...,c ]−= with N active subcarriers  l 0 l N 1
f

  −
 

(each of duration 1 sec and equally spaced by f Hz) such that l l 1f c / = Hz 

and 1f 1  = , a bandwidth of B N f= Hz, and pulse duration of 1T N = sec [15], 

and hence the Time-Bandwidth product will be 2

1 1TB N N f N  =   = . 

1f 1  = implies orthogonality property in the frequency domain similarly to the 

OFDM signal model presented in [9]. Costas stated that the delay resolution of 

such a waveform is 1 , while the Doppler resolution is 1 / T  ,[15]. Let 

0 1 N 1[a ,a ,...,a ]−= T
a contains the complex weights transmitted over different 

subcarriers, satisfying 
N 1

2

l

l 0

a 1
−

=

= in order to meet the signal energy normalization 

requirement. Then, the complex envelope of a single pulse can be represented as 

( ) ( )
lj 2 f tN 1

1

l l 1 l

l 01

e 0 t1
s t a s (t l ) : s t

0 elsewhereN

 




−

=

  
= − = 


 . (1) 

Let cf  be the carrier frequency of operation, then the transmitted signal is 

given by 

                      ( ) ( ) cj 2 f t

TXs t Re s t e


= . (2) 

We consider a far-field point target moving at radial velocity v  m/s with 

respect to the radar, and at distance R meters far away from the radar. We suppose 

that the velocity v  is constant during the pulse duration T , and assume that the 

transmitted radar signal follows a narrow-band signal model. Hence, we can 

model the echo signal reflected from the radar target while ignoring noise [11] as 

                           ( ) ( ) dj 2 f t

1y t s t e
= − , (3) 

where 2R / c =  is the time delay of the electromagnetic wave path, c is the 

velocity of light in the vacuum, and 2v / =  is the Doppler shift with cc / f =  

being the wavelength of transmitted wave. Substituting (1) into (3), we get  

               ( ) d

N 1
j 2 f t

1 l l 1

l 01

1
y t a s (t l )e

N

 


−

=

= − − . (4) 

However, note that equation (4) does not include any modeling of the 

target scattering coefficients, so let 0 1 N 1[x , x ,..., x ]−= T
x  be a complex vector 

containing the scattering coefficients of the target at different subcarriers, so we 

incorporate scattering coefficients into the expressions of (4), such that we receive 
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              ( ) d

N 1
j 2 f t

l l l 1

l 01

1
y t x a s (t l )e

N

 


−

=

= − − . (5) 

2.2 NAF Model of a Weighted Costas Pulse 

By analogy with Woodward’s definition of ambiguity function, we define 

the corresponding NAF of both the transmitted waveform (equation (1)) and its 

received version (equation (5)) as a matched filter (MF) response such that  

                   ( ) ( ) ( )MF d
f s t y t dt 

+

−


*

, ,a, x , (6) 

where *
(.)  denotes the complex conjugate operator. Substituting (1) into (6), we 

can write 

            ( ) ( ) ( )
1 1 2 2 2

1 2

1 1
2

1 1 2 1

0 01

1
d

N N
j f t

MF d l l l l l

l l

f a s t l x a s t l e dt
N
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

+ − −
−

= =−

   
= − − −   

   
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* * *
, ,a, x , (7) 

or 

              ( ) ( ) ( )
2 2 1 1 2

1 2

1 1
2

1 1 2 1

0 01

1
d

N N
j f t

MF d l l l l l

l l

f x a a s t l s t l e dt
N
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

+− −
−

= = −

= − − − 
* * *

, ,a, x . (8) 

Now, we define a new function  

                                ( ) ( ) ( )
1 21 2

2

1 1 2 1

1

1
d

l l

j f t

s s d l l
f s t l s t l e dt

N
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

+

−

−

= − − −
*

, . (9) 

Hence, the NAF of one radar pulse in our model is 

                                      ( ) ( )
2 2 1 1 2

1 2

1 1

0 0
l l

N N

MF d l l l s s d

l l

f x a a f   
− −

= =

= * *
, ,a, x , . (10) 

Equation (9) represents the cross-ambiguity function between two chirps 

of Costas signal; ( )
1 1 1l

s t l− , ( )
2 2 1l

s t l − . We can simplify the equation (8) such 

that the function ( )MF d
f  , ,a,x  is equal to a sum of two part as follows (Appendix 

A shows the prove) 

                             ( ) ( ) ( )(ml) (sl)

MF d MF d MF d, f , , , f , , , f , ,     = +a x a x a x , (11) 

such that the main lobe part is 

         ( )
( )
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1
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
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−

=

−
= −  , (12) 

where ( )( ) , , ,ml

MF df 0  a x =  for 
1  , and  ( ) ( )( ),l d d 1 lf f 2 l 1 2 f    = − + + + . 

Again for ( )1 2 1 1l l  − −  , we get the side lobes part as 

                  

( )
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where ( )( ) , , ,sl

MF df 0  a x =  for ( )1 2 1 1l l  − −  , and ( ) ( )
1 2l l 1 2 1l l   = − −  , 

( ) ( )( ) ( ),
1 2 2 1 2l l d 1 2 1 l l l d 1 1f l l 1 2 f 2 f l       = − − − + −  , and  

1 2l l df f f = − − .  

 

We have just modified Woodward’s definition of ambiguity in line with 

our idea that the ambiguity caused by the waveform to the corresponding matched 

filter output should be taken into account with the inclusion of radar scattering 

coefficients of the target x  and weighted coefficients a of the sent waveform. 

Hence, being  ( )MF .  in terms of both x  and a  emphasizes our idea that we could 

deal with x  as the “fingerprint” of the target. For this consideration, the problem 

of target scattering coefficients estimation must be taken into account, and hence 

it is important, if our model is applied, to choose a technique for scattering 

coefficients estimation in the radar system like in [6][19]. However, in simulation 

we will use Swerling models for estimating the scattering coefficients. The use of 

both x  and a  in radar waveform synthesis can be considered as an improvement 

in the representation of the radar target echo signal in a new ambiguity form 

defined using Costas encoding in the transmitted waveform. This parametrization 

is a realistic representation of the signal transmitted and reflected from the radar 

target, which at the same time allows us to perform an adaptive design of the 

transmitted Costas waveform. The process begins with assuming a desired AF 

surface corresponding to some specifications as we will see in Section 3. 

In the simulation, we do a normalization procedure for our NAF model by 

computing the ratio 
( )

( )

, , ,

0,0, ,

MF d

MF

f 



a x

a x
, and hence the inequality 

( )

( )

, , ,
0 1

0,0, ,

MF d

MF

f 


 

a x

a x
 

is satisfied for the entire ( ), df -plane. The purpose of this normalization is to 

study the volume of the AF surface as unitary quantity. 

In the rest of the paper we will consider the magnitude squared ( )
2

.MF , as 

an expression of the NAF surface of  a single  pulse, because sometimes this 

expression is referred to as the outputs of an optimum detector filter matched to 

zero delay (range) and zero Doppler (velocity) according to reference [16], with 

only the magnitude term of complex two-dimensional function in corresponding 

equations labeled as the NAF, following the same representation concept of the 

wideband ambiguity function (WAF) defined in [17]. 

3. Adaptation Model of Waveform Design 

In this section, we propose an adaptation model that adaptively designs the 

signal proposed in Section 2. This adaptation procedure makes the volume of the 

corresponding NAF of weighted Costas signal best approximates the volume of a 

desired AF surface. In fact, there are no theoretical techniques known for finding a 
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waveform corresponding to a desired ambiguity surface, nor is a set of 

mathematical rules known for ensuring that a desired surface is an AF surface i.e., 

the waveform that gives rise to this desired surface may not exist. Therefore, by 

using an optimization approach there might be a waveform with AF surface that is 

an acceptable approximation to the desired surface. 

In fact, the ideal radar waveform would produce an ideal AF equivalent to 

two-dimensional Dirac delta function on the delay-Doppler plane. Such a function 

would have ideal range-doppler requirements. However, since no finite energy 

signal gives rise to ideal AF [2][4], there is a practical reason not to deal with an 

ideal AF surface somehow in order to get realizable waveforms with some 

optimal properties. Instead, we can assume that the desired ambiguity function 

( ),Opt df   satisfies the following definition  

                                           ( )
( ) ( )1, , 0,0

,
0,

d

Opt d

f
f

elsewhere


 

=
= 


. (14) 

By following the optimization approach proposed in [9][13][14], we 

restrict the optimization procedure over some limited subregions in ( ), df -plane, 

particularly surrounding the main lobe of the NAF surface. Our goal is to find a 

waveform that satisfying equation (1) and whose AF surface has desired 

properties in a certain given subregion of ( ), df -plane. Since the subregions 

where the volume under AF surface is desired to be small depend on the particular 

radar application, and in order to give the designer the degree of freedom he 

desires, the approximation of the AF surface could be developed in any subregion 

of interest. Hence, our goal is to find a weighted Costas waveform satisfying 
1

2

0

1
N

l

l

a
−

=

= , such that the LS error between the volume under the resulting NAF 

surface ( )
2

.MF and the volume under desired AF surface ( )
2

,Opt df   is minimum. 

Let 2  denotes the subregion of interest such that 

                                      ( ) 2, : ,d df f f f   − + − +=      . (15) 

Therefore, finding such an adaptive weights for the Costas waveform is 

equivalent to find the optimum complex weights Opta corresponding to the 

“fingerprint” of the target  x  such that   

( ) ( ) ( ) 2 2

argmin , , , ,
f

Opt Opt d MF d d
f

f f d df



    

+ +

− −

= − 
a

a x a x  

                          subject to  ( )
1

2 2

0

1 0,1,..., 1 ; 0 :
N

l l

l

a l N a 
−

=

 
=    −    

 
 ,   (P1) 

where   is a small positive quantity relatively close to zero ensuring transmission 

over all N frequency channels of Costas signal, and P1 represents the 

optimization problem. The reader could note, via P1 formulation, the 

compatibility of the finding process with the philosophy of “adaptive” design 
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since Opta  clearly depends on the scattering coefficients of the target x . The 

optimization algorithm is initialized with fixed weights ( , ll a Const = ) as an input, 

then it gives the optimal solution as an output.  Performance is measured by 

comparing the level of side lobes of the matched filter response corresponding to 

fixed (constant) weights of Costas waveform with the level of side lobes of the 

response corresponding to the optimal weights.  
1

2

0

1
N

l

l

a
−

=

=  and 
2

, ll a    denote 

nonlinear constraints needed to have both equality and inequality constraints 

defined in problem (P1). 

In a particular case, when the following inequality holds true at the 

initialization run time of the optimization algorithm 

                              ( ) ( )
2 2

, , , ,Opt d d MF d df d df f d df
 

      a x , (16) 

we can further simplify P1 to the following another one such that 

( ) ( ) ( )
1 2 3 4 2 4 1 2 3 4

1 2 3 4

1 1 1 1
* * * *

0 0 0 0

argmin , ,
l l l l

N N N N f

Opt l l l l l l s s d s s d d
f

l l l l

a a a a x x f f d df



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+ +

− −

− − − −

= = = =

  
=  

  
  

a

a x  

                       subject to  ( )
1

2 2

0

1 0,1,..., 1 ; 0 :
N

l l

l

a l N a 
−

=

 
=    −    

 
 ,   (P2) 

where both ( )
1 2

,
l ls s df  and ( )

3 4

,
l ls s df   satisfies the equation (9). In Appendix A, we 

show that the general formula of  ( )
1 2

,
l ls s df   is proposed by the following 

Case 1: when 1 2l l l= =  and 
1  , we get 

                                ( )
( )

( )( ) ( )1 ,

1

1

1
, sinc l d

l l

j f

s s d df f e
N

  
 

    


−
= − , (17) 

with  ( ) ( )( )1, 2 1 2l d d lf f l f    = − + + + . 

Case 2: when 1 2l l  and ( )1 2 1 1l l  − −  , we get 

                                ( )
( )( )

( )( )( ) ( )1 2
1 2

1 21 2

1 ,

1

1

1
, sinc l l d

l l

l l j f

s s d l lf e
N

  
  

     


−
= − , (18) 

with ( ) ( )
1 2l l 1 2 1l l   = − − , ( ) ( )( ) ( ),

1 2 2 1 2l l d 1 2 1 l l l d 1 1f l l 1 2 f 2 f l       = − − − + − , and  

1 2l l df f f = − − . 

Problems (P1) and (P2) correspond to the NAF of a single weighted Costas 

pulse; ( ).MF .  

We notice that (P2) leads to a minimization procedure having fourth order 

form of sums, similar to that presented in [9], where when 1 2 3 4l l l l l= = = = , we 

have the term  
4

,la l  which implies nonlinear minimization problem. However, 

from mathematical point of view, our method can be categorized like [9] as an ℓ1-
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minimization [18] which corresponds to ℓ1-norm in Hilbert space, while that of 

[14] as an ℓ2-minimization which corresponds to ℓ2-norm in Hilbert space. 

However, the convergence time of (P1) , (P2)  strongly depends on the 

area of subregion  , and the shape of the desired AF surface; ( )
2

,Opt df  . If we 

have a priori knowledge of the radar target “fingerprint” x , we can use an offline 

computation of (P1)  , (P2)  extending over a larger area of  , and considering a 

desired impulse-shaped of the ambiguity surface; ( )
2

,Opt df  . However, in the 

situation of an online computation (in real-time processing) of (P1)  , (P2)  when 

we need to compute Opta  based on the estimated value of x  from the previous 

radar dwell, it would be practical to restrict   to a smaller region (e.g., 

( ) ( ) ( ) 2, : , 1/ 2 1/ 2d df T T T f T −   + −   +  ) and not to choose an “idealistic” 

shape of  the desired ambiguity surface [13][14]. 

4. Simulation Results and Discussion 

Simulation results of the proposed adaptive waveform design are 

presented in this section. The simulation results verify the effectiveness of the 

adaptive waveform design in the form of an improved NAF surface corresponding 

to the optimal weights obtained from the optimization procedure. We assumed 

that the pulse width of the Costas waveform 7T s= , and the hopping sequence of 

Costas code   4 3 1 ; 4 2c N= = .  

We evaluated the optimal solution Opta  by using the subregion 

( ) ( ) ( ) 2, : , 1/ 2 1/ 2d df T T T f T=  −   + −   +  ) and the desired AF surface 

( ),Opt df   matching the inequality (16). We realized the components of x  from a 

Rayleigh distribution with average RCS; 21m =  corresponding to the Swerling I, 

II models and here we get a realization; [2.1830 1.0896 2.3444 0.8487]=x from 

MATLAB© random generator. The results Opta  are obtained using a Constrained 

Nonlinear Problem Solver of MATLAB©. We initialized the problem (P1) with 

, 0.5000ll a = , and 0.1 = . We demonstrate the advantage of the optimal solution 

Opta  by comparing adaptively the designed NAF with that obtained from a fixed 

waveform that employs the initialization considerations of the optimization 

algorithm (P1). Fig. 1 represents contours plot of normalized main lobe part (ml)

MF  

of NAF of the adaptive waveform (Fig. 1a) comparing with the initial one (Fig. 

1b), where the resultant optimal (adaptive) solution is 
[0.3236 0.5776 0.3163 0.6794]Opt =a . Both parts of Fig. 1 cover the normalized delay 

axis from 0.8T−  to 0.8T , and the normalized Doppler axis from 2 / T− to 2 / T , 

and the contour lines begin at the level of 0.1 and the spacing between the lines is 
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also 0.1. It is clear from Fig. 1 that the contours 0.1 to 0.5 of the color-bar are 

obviously improved. Precisely, the contours 0.4 and 0.5 referring to relatively 

high sidelobe level and being closer to the main lobe disappeared indicating a 

considerable reduction in sidelobe levels in the main lobe area of NAF.  
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Fig. 1. Contours plot of ( )(ml)

MF .  for (a) Adaptive waveform, and (b) Initial waveform. 
 

In addition, we note, from the diagonal dotted line seen in Fig. 1, that the 

adaptive waveform yields less sensitivity to delay-Doppler coupling problem, 

which means that for small Doppler shift; df  the measured delay location of the 

improved NAF peak response is shifted from true delay by adaptive

shift  smaller than 
initial

shift  of the initial NAF. Numerically, the diagonal dotted line slope of the 

adaptive waveform is about 112o while that of the initial waveform is about 130o , 

and since the slope is equivalent by analogy to the delay-Doppler coupling 

coefficient k  [1], i.e., ( )tank slope , and from the equation (4.12) of CH 4. in 

[1] we have shift /df k = , so we get adaptive initial

shift shift / 2.1 =  for same small Doppler shift. 

 Fig. 2. shows the zero-Doppler cut plot of NAF (i.e., ACF). According to 

Fig. 2.a, we could emphasize that the adaptive waveform results in a very much 

better ACF, where the first sidelobe level of the normalized NAF corresponding 

to the adaptive waveform is less than the one of the fixed waveform by 36.3 times 

(linear scale), which means that it is attenuated by 15.6 dB as Fig. 2.b shows. 

These results confirm the validity of our adaptive waveform design, where we 

achieved about 15.6 dB in reducing the PSL of ACF (i.e., the PSL of the AF at 

zero Doppler cut). 
 

Contours 0.4, 0.5 
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Fig. 2. Zero-Doppler cuts (ACF) of the NAF corresponding to the adaptive and fixed waveforms, 

(a) linear scale, (b) in dB. 

Fig. 2. also suggests that there is no important change in the nominal delay 

resolution, and hence we conclude that our model yields very good reduction in 

PSL of ACF without any important change in the delay resolution. 
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Fig. 3. Zero-delay cuts of the NAF corresponding to the adaptive and fixed waveforms, (a) linear 

scale, (b) in dB. 
 

Fig. 3. shows the zero-delay cut plot of the NAF obtained in the 

simulation. As we expect, there is no important change neither in the PSL value 

nor in the Doppler resolution as Fig. 3 indicates. Precisely, the reduction in PSL is 

attenuated by about just 3 dB. We checked our model over 25 independent 

realizations of scatters coefficients, and always we got similar results. 
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We interpret our results by looking into the energy distributions of the 

adaptive waveform and the target response over the four different subcarriers 

 
0 4l l

f
 

. Since the variance of a.x obtained in our simulation is reduced from 

( )var 0.1432Fix =a .x  to ( )var 0.0055Opt =a .x meaning that the amplitude of the target 

echo is approximately constant, we could say that the signal energy redistributes 

its ell such that more signal energy must be supplied to a particular subcarrier in 

which the target response is weaker, where the chirp ,in this case, is 3f  and this 

subcarrier corresponds to the weakest scatter  3 0.8487x = , and hence the radar 

system needs to make the weight 3 0.6794a =  be the largest one as obtained in our 

minimization procedure. On the other hand, less signal energy should be supplied 

to the subcarriers over which the target response is already stronger, where the 

chirps ,in this case, are 0 2,  f f  that correspond to two strongest scatters 

0 22.1830, 2.3444x x= = , and hence the radar system needs to make the weights 

0 20.3236, 0.3163a a= =  be the smallest ones in Opta  which was achieved. 

Furthermore, the scatter 1 1.0896x = corresponding to the subcarrier 1f  is 

approximately equal to unity, so the weight of the corresponding chirp in Costas 

signal should not be much different from the original fixed one in the fixed 

waveform (no actual change in supplied energy is required), and for this reason 

the minimization procedure resulted in the value 1 0.5776a =  in Opta  such that it is 

approximately equal to 0.5000  as it was in the vector Fixa . Finally, it is clear for 

the reader that the adaptive waveform obtained in our simulation does not satisfy 

the common requirement of constant amplitude in radar signal in which 

transmitting tubes operate most under constant-amplitude conditions [3], but since 

the variance of the optimal solution ( )var 0.0335Opt =a  is relatively small, we could 

accept these relatively small variations in amplitude of the resultant Costas chirps. 

As a future work, we could add a linear constraint and a nonlinear constraint to 

the optimization procedures (P1)  , (P2)  presented in this paper so that the 

average of a  ; 
1

0

1 N

l

l

a
N

−

=

a = , and the variance of a  ; ( )
1

22

0

1 N

l

l

a
N


−

=

= −a
a  are 

statistically acceptable values under transmitting tubes operation requirements. 

However, the resultant adaptive waveform in this study exhibits very good 

ambiguity behavior in subregion surrounding the main lobe in the sense of PSL, 

and does not really influence the Delay-Doppler resolution, and without needing 

to increase N. 

5. Conclusions 

We developed a new Costas waveform including adaptive weights 

corresponding to scattering coefficients of the target fluctuating according to one 
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of the Swerling models, with acceptable variations in amplitude of the resulting 

Costas chirp signal. We computed the NAF formula of this waveform. We 

formulated the radar waveform optimization problem to result in those adaptive 

weights such that its solution minimizes the volume under the corresponding NAF 

surface in comparison with the volume under desired NAF surface in the LS 

sense. We emphasized that the adaptive waveform results in much ACF where the 

PSL of ACF of the improved NAF corresponding to the adaptive waveform is 

attenuated by 15.6 dB with respect to the PSL of ACF corresponding to the fixed 

waveform. Our model yields very good PSL reduction without change in delay 

resolution, so much better detection performance. There also was no important 

change neither in the PSL of the NAF delay cut, nor in Doppler resolution. 

Moreover, the adaptive waveform yields less sensitivity to delay-Doppler 

coupling problem. We interpreted our results in the sense of energy redistribution 

at the scatters of the target, where the weaker scatter should be supplied with more 

energy than the stronger one. We are currently preparing a paper to formulate and 

calculate the NAF model of a coherent pulse train of weighted Costas pulses and 

show if the same results could be obtained and even improved. In future work, we 

aim to generalize our model by applying variable time spacing between the 

subcarriers of Costas array such that the time spacing between sub-pulses of 

Costas signal changes over all N weighted frequency channels. In addition, we 

aim to test the proposed adaptive design model through field experiments to make 

measurements on a real possible target in a reverberation chamber. 

Appendix A 

We could rewrite the equation (8) such that 

( ) ( ) ( )

( ) ( )
2 2 1 1 2

1 2

2 1

1
2 2* *

1 1

01

1 1
2* * *

1 1 2 1

0 01

1
, , ,

1

d

d

l l

N
j f t

MF d l l l l

l

N N
j f t

l l l l l

l l

f x a s t l s t l e dt
N

x a a s t l s t l e dt
N





    


  




+−
−

= −

+− −
−

= = −

= − − −

+ − − −

 

 

a x

, (A1) 

and define 

                          ( ) ( ) ( ) 2*

1 1

1

1
, dj f t

ll d l lf s t l s t l e dt
   



+

+

−

 = − − − , (A2) 

                          ( ) ( ) ( )
1 2 1 2

2*

1 1 2 1 1 2

1

1
, :dj f t

l l d l lf s t l s t l e dt l l
   



+

+

−

 = − − −  . (A3) 

We notice that 

                           ( ) ( ) ( )2* *

1 1

1

1
,dj f t

l l ll ds t l s t l e dt f
   



+

−

−

− − − =  , (A4) 

                           ( ) ( ) ( )
1 2 1 2

2* *

1 1 2 1 1 2

1

1
, :dj f t

l l l l ds t l s t l e dt f l l
   



+

−

−

− − − =   . (A5) 



140                                     Ramez Eizdashire Ali Deep, Radwan Kastantin 

By changing the variable in (A.4) such that 1t l = −  we get 

                ( ) ( ) ( ) ( )1 12 2 2*

1

1
, ,d d dj f l j f j f l

ll d l l ll df e s s e d e f
           



+

+ + +

−

 = − = , (A6) 

where  ( ) ( ) ( ) 2*

1

1
, dj f

ll d l lf s s e d
      



+

+

−

= − . (A7) 

In fact, equation (A7) represents the autocorrelation function of ( )ls t  (one 

of the Costas chirps), and is simplified directly by using the Costas calculation 

corresponding to equation (21) of his original paper [15], so we get 

                      ( )
( )

( )( ) ( )11 2

1 1

1

sinc ,
,

0,

d lj f j f

d
ll d

f e
f

elsewhere

     
    

  

+ −  
 −

− 
= 



 (A8) 

Substituting (A8) into (A6), we get 

                      ( )
( )

( )( ) ( )( )12 1 21

1 1

1

sinc ,
,

0,

d lj f l j f

d
ll d

f e
f

elsewhere

     
    

 

 + + − 
 −

− 
 = 




 (A9) 

We put ( ) ( )( )1, 2 1 2l d d lf f l f    = − + + + , then substituting (A9) into (A4), 

we get 

                          

( ) ( )

( )
( )( ) ( )

2*

1 1

1

1 ,

1 1

1

1

sinc ,

0,

d

l d

j f t

l l

j f

d

s t l s t l e dt

f e

elsewhere


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

 
    



+

−

−

− − − =

 −
− 

= 





. (A10) 

Then, substituting (A10) into the first term of (A1) with 
1  , we get the 

main lobe ambiguity function 

                      ( )
( )

( )( ) ( )
1

2 1 ,(ml) *

1

0 1

1
, , , sinc l d

N
j f

MF d l l d

l

f x a f e
N

 
 
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

−

=

−
= −a x , (A11) 

and ( )(ml) , , , 0MF df  =a x  elsewhere. Hence, this is corresponding to equation (12). 

By changing the variable in (A3) such that 1 1t l = − remembering in this 

case that 1 2l l , we get 

                   ( ) ( ) ( )( )1 1

1 2 1 2

2 2*

1 2 1

1

1
, d dj f l j f

l l d l lf e s s l l e d
        



+

+ +

−

 = + − − . (A12) 

By changing the variable in (A.12) such that ( )'

1 2 1l l  = − − , we get 

( )( ) ( ) ( ) ( )1 1 1 1

1 2 1 2 1 2

2 2 2' * ' '

1 2 1

1

1
, ,d d dj f l j f j f l

l l d l l l l dl l f e s s e d e f
            



+

+ + +

−

 + − = − = (A13) 

where we put 
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                                 ( ) ( ) ( )
1 2 1 2

2' * '

1

1
, dj f

l l d l lf s s e d
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

+

+

−

= − . (A14) 

In fact, the equation (A 41 ) represents the cross-correlation function 

between two Costas chirps ( ) ( )
1 2

,l ls t s t and is simplified directly by using the 

Costas calculation corresponding to equation (18) of his original paper in [15], so 

we get 

               ( )
( )

( )( ) ( )' '
1 2

1 2

'

1 2' '
' 1 1

1

sinc ,
,

0,

lj j f

l l d

e
f

elsewhere

     
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  

 − + −
 

 −
 − 

= 



, (A15) 

where 
1 2l l df f f = − −  is corresponding to equation (20) in [15]. Substituting (A15) 

into (A13) and returning to the variable  , we get for '

1   

      

( ) ( )( )

( )( )
( )( )( ) ( )( ) ( )( )

1 2 1 2

1 2 1 1 2 12
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, (A16) 

( )
1 2

' , 0l l df  = elsewhere. If we put ( ) ( )
1 2 1 2 1l l l l   = − − , and  

( ) ( )( ) ( )
1 2 2 1 21 2 1 1 1, 1 2 2l l d l l l df l l f f l       = − − − + − , and substituting (A16) into 

(A13), we get 
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Substituting (A17) into (A5), we get 
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

   .         (A18) 

Then, substituting (A.18) into the second term of (A.1) with 

( )1 2 1 1l l  − −   we get the side lobe ambiguity function  

                   

( )

( )( )
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a x

 , (A19) 

and  ( )(sl) , , , 0MF df  =a x  elsewhere. Hence, this is corresponding to equation (13). 
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We get the formula of equation (11) by substituting (A11) and (A19) in 

(A1). Finally, the case 1 (equation (17)) in Section 3 is corresponding to equation 

(A10), while the case 2 (equation (18)) is corresponding to equation (A18). 

R E F E R E N C E S 

[1]. Levanon, Nadav, and Eli Mozeson. Radar Signals. Wiley, 2004 

[2]. M. I. Skolnik, Introduction to Radar Systems, 2nd ed. New York: McGraw-Hill, 1980 

[3]. A. W. Rihaczek, Principles of High-Resolution Radar. New York: McGraw-Hill, 1969 

[4]. N. Levanon, Radar Principles. New York: Wiley-Interscience, 1988 

[5]. Wei Fu, Defu Jiang, Yiyue Gao, Na Li, Adaptive optimal waveform design algorithm based on 

frequency-stepped chirp signal, IET Radar Sonar Navig, vol. 13, no. 6, 2019, pp. 892-899 

[6]. Peng Chen, Chenhao Qi, Lenan Wu, Xianbin Wang, Waveform Design for Kalman Filter-Based 

Target Scattering Coefficient Estimation in Adaptive Radar System, IEEE Transactions on 

Vehicular Technology, vol. 67, no. 12, 2018, pp. 11805-11817 

[7]. D. A. Hague, Optimal waveform design using Multi-Tone Sinusoidal Frequency Modulation, 

OCEANS 2017 - Anchorage, Anchorage, AK, USA, 2017, pp. 1-6 

[8]. Xiongjun Fu, Shuilian Peng, Chengyan Zhang, Min Xie and L. P. Ligthart, Optimal waveform 

synthesis for adaptive radar, 2016 IEEE International Conference on Signal Processing, 

Communications and Computing (ICSPCC), Hong Kong, 2016, pp. 1-6 

[9]. S. Sen and A. Nehorai, Adaptive design of OFDM radar signal with improved wideband   ambiguity 

function, IEEE Transactions on Signal Processing, vol. 58, no. 2, 2010, pp. 928-933 

[10]. P. M. Woodward, Probability and Information Theory, With Applications to Radar. New York: 

McGraw-Hill, 1953 

[11]. Calvin H. Wilcox, The synthesis problem for radar ambiguity functions. In: Richard E. Blahut, 

Willard Miller, Jr., Calvin H. Wilcox, editors. Radar and Sonar Part I, Springer-Verlag New 

York, Inc. The IMA Volumes in Mathematics and its Applications, vol. 32, 1991, pp. 229–260 

[12]. S. Sussman, Least-square synthesis of radar ambiguity functions, IRE Trans. Inf. Theory, vol. 8, 

no. 3, Apr. 1962, pp. 246–254 

[13]. I. Gladkova, D. Chebanov, “On a new extension of Wilcox ’s method,” in Proc. 5th WSEAS, Int. 

Conf. Appl. Math.; Miami, FL, 2004, pp.1-6 

[14]. I. Gladkova and D. Chebanov, On the synthesis problem for a waveform having a nearly ideal 

ambiguity surface, presented at the 2004 Int. Radar Conf., Toulouse, France, Oct. 18–22, 2004 

[15]. Costas, J.P., A study of a class of detection waveforms having nearly ideal range; doppler 

ambiguity properties, Proceedings of the IEEE, vol. 72, no. 8, Aug.1984, pp. 996–1009 

[16]. J.-C. Guey, M. R. Bell, Diversity waveform sets for delay-Doppler imaging, IEEE Trans. Inf. 

Theory, vol. 44, no. 4, Jul. 1998, pp. 1504–1522 

[17]. Cristina Soviany, Embedding Data and Task Parallelism in Image Processing Applications, PhD 

Thesis, Technische Universiteit Delft, 2003 

[18]. Holger Rauhut, Rachel Ward, Interpolation via weighted ℓ1 minimization, Applied and 

Computational Harmonic Analysis, vol. 40, no. 2, 2016, pp. 321-351 

[19]. Chen Peng, and Lenan Wu. Target Scattering Coefficients Estimation in Cognitive Radar under 

Temporally Correlated Target and Multiple Receive Antennas Scenario. IEICE Transactions on 

Communications, vol. E98.B, no. 9, 2015, pp. 1914–1923  


