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ADAPTIVE DESIGN OF COSTAS RADAR SIGNAL WITH
IMPROVED NARROWBAND AMBIGUITY FUNCTION

Ramez EIZDASHIRE ALI DEEP!, Radwan KASTANTIN?

In this paper we propose to incorporate scattering coefficients of a target
into weighted Costas waveform model and using adaptive technique to find these
optimal weights, and hence to improve the radar’s Narrowband Ambiguity Function
(NAF). We confirm that the proposed formula of NAF is considered as a better
representation of the target echo and results in much better Auto-Correlation
Function (ACF) in the sense of decreasing the sidelobe level without needing to
increase the number of the frequencies in the Costas waveform. We will also show
that the obtained adaptive waveform doesn 't affect the original resolution and yields
less sensitivity to delay-Doppler coupling problem. We suppose that the received
signal depends on scattering coefficients obtained from Swerling models. The
developed optimization problem, to adaptively design the weighted Costas
waveform, adequately describe the features of the target such that the volume under
the corresponding NAF surface best approximates the volume under a desired
ambiguity function (AF) surface. What is more, we demonstrate that the optimal
solution will redistributes the signal energy at scatters of the target such that the
weaker scatter should be assigned with more energy than the stronger one. Finally,
we will prove the effectiveness of our adaptive waveform design through simulation
results.

Keywords: Adaptive Waveform Design, Optimization Problem, Scattering
Coefficients, Swerling models, Costas Chirp Signal, Ambiguity Function

1. Introduction

The art of designing radar waveform depends mostly on both the
experiences and expertise of the designers in catching the suitable waveform.
These experiences are obtained by manipulating signal parameters, using special
building blocks with desirable mathematical properties [1]. One of the main goals
in radar system design is to suitably select the transmit waveform, because the
waveform of the transmitted signal controls the delay-Doppler resolution, the
detection performance in the presence of noise and/or masking clutters
[11[2][3][4]. Numerous modern literature reviews are rich of ideas concentrating
on optimal adaptive waveform design to improve the radar system performance.
Wei Fu, et al propose an adaptive optimal waveform design algorithm that
maximizes the signal-to-interference-plus-noise ratio at the receiver output, and
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their design is based on using a frequency-stepped chirp signal with arbitrary sub-
pulse bandwidths and chirp slopes [5]. Their optimization problem includes three
constraints; the integral sidelobe level of an autocorrelation function, the energy,
and the peak-to-average power ratio. The effectiveness of their designed
waveform when compared with a linear frequency modulation signal, results in a
great improvement in the target detection performance. Peng Chen, et al study the
estimation of target scattering coefficients in an adaptive radar system. They
propose a novel estimation method based on Kalman filter (KF) with waveform
optimization for the temporally correlated with both noise and clutter [6]. The
proposed adaptive waveform design is based on a direct optimization method
subject to the practical constraints including the transmitted energy, the peak-to-
average power ratio, and the target detection performance. The proposed KF-
based method with waveform optimization can obviously improve the estimation
performance [6]. David A. Hague uses Multi-Tone Sinusoidal Frequency
Modulation (MTSFM) to get an optimal waveform design based on adapting the
Fourier Series coefficients of MTSFM waveform's modulation function [7].
Hague 's representation results in a constant amplitude waveform with a
continuous modulation function whose spectrum, Auto-Correlation Function
(ACF), and Ambiguity Function (AF) shapes are modified by adapting the Fourier
Series coefficients. His adaptive MTSFM waveforms proposed possesses a low
Peak-to-Average Power Ratio (PAPR) and high Spectral Efficiency (SE).
Xiongjun Fu, et al propose a waveform synthesis method for adaptive radar based
on using a cascade of the water-filling algorithm and iterative least squares (LS)
approach, and the optimal energy spectrum density (ESD) of the synthesized
waveform is obtained [8]. Their optimal waveform synthesis method can be
considered as competent for adaptive radar. Satyabrata Sen and Arye Nehorai
develop an adaptive waveform design based on a multicarrier OFDM signal. They
compute the corresponding Wideband Ambiguity Function (WAF) at the output
of the Matched Filter (MF) such that the received signal depends on the scattering
coefficients of the target [9]. Their optimization procedure selects the OFDM
waveform such that the volume of the corresponding WAF best approximates the
volume of a desired ambiguity function, and hence the resulting AF along with the
associated ACF is improved in the sense of decreasing peak sidelobe level (PSL).
Practical waveform design problem remains a challenging research
domain despite numerous attempts to solve it. Radar waveform design has been
considered as an important research problem in radar system design since the
elegant work of Woodward [10]. Woodward developed the AF and interpreted its
surface as a measure of the uncertainty of the delay and Doppler of a returning
echo from a target, simultaneously. In fact, the AF surface is usually interpreted as
a matched filter response and can be naturally used as a performance measure in
radar waveform design [1][10]. Historically speaking, Wilcox proposed a
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complete mathematical solution in the LS sense such that the desired AF surface
was defined in analytical form [11], which is not the case in any practical radar
application for two main reasons: (1) in the set of all possible two-dimensional
functions, ambiguity functions are rare, and it is unusual for an arbitrary two-
dimensional function to satisfy the mathematical properties of the AF surface, (2)
it is mostly not necessary to have a certain shape of the AF surface analytically
defined in the entire delay-Doppler plane and to approximate only part of that
surface corresponding to a desired subregion in the plane. Sussman approached
the problem by approximating a desired AF surface in the LS sense too, but his
optimization procedure stretches again over the entire delay-Doppler plane.
Hence, the resultant waveform can produce an "all-purpose™ AF that would be
more or less suitable for any radar applications [12]. |. Gladkova and D.
Chebanov extended Wilcox’s LS approach by restricting the optimization
procedure over some limited subregions in the time-doppler delays plane
particularly surrounding the main-lobe of the ambiguity surface [13][14].

In this paper, we propose an adaptive waveform design based on Costas
chirp signal [15] for radar application. We compute its Narrowband Ambiguity
Function (NAF) formulas of the proposed waveform taking into consideration the
effects of the target RCS fluctuation on received signal. Actually, the analysis of
detection or recognition of a target has so far assumed that the echo signal has a
constant amplitude, which is not always true since the real targets are made up of
several scatters, and the net echo depends on the way in which the contributions
from these scatters add vectorially, and/or the motion of the target. In our work,
we incorporate the scattering coefficients of the target into the reflected echo
signal model, and weight the transmit waveform. The motivation for incorporating
the target scattering coefficients is that these coefficients can be effectively
estimated as Peng Chen, et al suggest in [6]. In the simulation, we will use
Swerling models [2] to realize scattering coefficients. Moreover, the motivation
for using Costas chirp signal is because of its high delay-Doppler resolution, and
we aim to considerably reduce its PSL, and hence obtaining much better ACF
than that of normal Costas chirp signal. Costas hopping sequence of length N
yields ACF with a maximum height just 1 / N times of the main lobe level height
[15]. We develop an optimization problem that approximates a desired ambiguity
surface in the LS sense in presence of two constraints; one to ensure transmission
over all frequencies of Costas signal and the other to meet the signal energy
normalization requirement. The solution of the optimization problem introduces
an adaptive (optimal) weights with respect to the scattering coefficients of the
target. The adaptive weights will redistribute the signal energy such that the
weaker scatter should be supplied with more energy than the stronger one. As a
result, the adaptive waveform will yield a much better ACF in the sense of PSL
reduction without needing to increase N, and without affecting the original
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resolution. Moreover, the adaptive waveform will yield less sensitivity to delay-
Doppler coupling problem.

2. Signal Model and its corresponding NAF
2.1 Weighted Costas Signal Model

We consider a monostatic radar employing weighted Costas chirp signal
whose hopping sequence is ¢ =[c, .c,,...c,_, ] With N active subcarriers {f,} _
(each of duration ¢, sec and equally spaced by st Hz) such that f, =c, / ; Hz
and sf xz, =1, a bandwidth of B =N sf Hz, and pulse duration of T =N ¢, sec [15],
and hence the Time-Bandwidth product will be TB =Nz, xNof xz, =N?.
of xz, =1 implies orthogonality property in the frequency domain similarly to the

OFDM signal model presented in [9]. Costas stated that the delay resolution of
such a waveform is r,, while the Doppler resolution is 1/T ,[15]. Let

a=[a,a,.,a,,]" contains the complex weights transmitted over different
N =1

subcarriers, satisfying Y |a,|" =1in order to meet the signal energy normalization
1=0

requirement. Then, the complex envelope of a single pulse can be represented as
1 el 0<t<y

N -1

t)= —— t—1z):s, (t)= . 1
() IN 7, .;a's'( a)is () {O elsewhere (1)
Let f. be the carrier frequency of operation, then the transmitted signal is

given by

si (t)=Re {s (t)ejz”fct} : @)
We consider a far-field point target moving at radial velocity v m/s with
respect to the radar, and at distance R meters far away from the radar. We suppose
that the velocity v is constant during the pulse duration T , and assume that the
transmitted radar signal follows a narrow-band signal model. Hence, we can

model the echo signal reflected from the radar target while ignoring noise [11] as
y, (t)=s(t-r)e!? ", (3)
where r=2R/c is the time delay of the electromagnetic wave path, cis the
velocity of light in the vacuum, and r=2v/ A is the Doppler shift with 21=c/ f,

being the wavelength of transmitted wave. Substituting (1) into (3), we get
N -1
yl(t)zﬁéalsl(t_f_lTl)ejzmt . (4)
However, note that equation (4) does not include any modeling of the
target scattering coefficients, so let x =[x,,x,,...x,,]" be a complex vector
containing the scattering coefficients of the target at different subcarriers, so we
incorporate scattering coefficients into the expressions of (4), such that we receive
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y(t)= \/_Zx s, (t—r—117)e!?"" . (5)

1=0

2.2 NAF Model of a Weighted Costas Pulse

By analogy with Woodward’s definition of ambiguity function, we define
the corresponding NAF of both the transmitted waveform (equation (1)) and its
received version (equation (5)) as a matched filter (MF) response such that

+o0

ZMF(T’fd!a’X)D J.S(t)y*(t)dt ' (6)

-0

where ()" denotes the complex conjugate operator. Substituting (1) into (6), we
can write

+o0 N l .
e (7.4, {Za, -l }{ZX* a,* TZ T—Izrl)}e"z”fdtdt , (1)
1,=0 1,=0
or
N-1N-1 .
e (7.F4,a,%) ZZX,Za 3, JS —Lz)s, (t—7r—l,z7)e % dt . (8)
Nz, 1,=01,=0
Now, we define a new function
Xs, s'z r.f _[S —lz)s; (t—z—1,7,)e #"dt . 9)
Hence, the NAF of one radar pulse in our model is
N-1IN-1
e (7.f4 .8 szlzalzal Kops, (r.fy) . (10)
1,=01,=0

Equation (9) represents the cross-ambiguity function between two chirps
of Costas signal; s, (t-kz,), s, (t—1,z,). We can simplify the equation (8) such
that the function g, (z.f,,a,x) is equal to a sum of two part as follows (Appendix
A shows the prove)

AvrE (T’fd ,a,x) ZIE/TIL) ( faa, X)+Zl(5lll): (T’fd ,a,x), (11)
such that the main lobe part is

(mi) 15,
Amr (T*fdlaix)=ﬁle

1=0

|2 (Tlr_ll |)smc(;zf ( |r|)) el s |7 <z, (12)

where ;{ﬁ,lmF')(r,fd ,a,x)=0 for |r|>r1 , and K (r,fd)=—fd ((ZI +1)z’1 +Z')+2f|1'.
Again for |z (I, -1,)z|< 7, we get the side lobes part as

e (7.f4.a,x) =

1S O 13
I,=0 ;=0 7,
PEN

i () D
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where ;(,EZ'F)(T,fd,a,X)=O for |r—(|1 —|2)2'1|>z'1,and T, (z’)=z'—(|1—|2)z'1 ,
ao, (nfg)=a(c=(1, -1, -1)5,)+2f, 5, (z)-2f,l7, ,and a=f —f, —f,.

We have just modified Woodward’s definition of ambiguity in line with
our idea that the ambiguity caused by the waveform to the corresponding matched
filter output should be taken into account with the inclusion of radar scattering
coefficients of the target x and weighted coefficients aof the sent waveform.
Hence, being »,. (.) in terms of both x and a emphasizes our idea that we could

deal with x as the “fingerprint” of the target. For this consideration, the problem
of target scattering coefficients estimation must be taken into account, and hence
it is important, if our model is applied, to choose a technique for scattering
coefficients estimation in the radar system like in [6][19]. However, in simulation
we will use Swerling models for estimating the scattering coefficients. The use of
both x and a in radar waveform synthesis can be considered as an improvement
in the representation of the radar target echo signal in a new ambiguity form
defined using Costas encoding in the transmitted waveform. This parametrization
is a realistic representation of the signal transmitted and reflected from the radar
target, which at the same time allows us to perform an adaptive design of the
transmitted Costas waveform. The process begins with assuming a desired AF
surface corresponding to some specifications as we will see in Section 3.

In the simulation, we do a normalization procedure for our NAF model by

AVE (r,fd,a,x) AVE (T*fd’a-x) <
Zur (0,0,8,%) v (0,0,8,%) |
is satisfied for the entire (z,f,)-plane. The purpose of this normalization is to
study the volume of the AF surface as unitary quantity.

In the rest of the paper we will consider the magnitude squared |z, (.)|2, as
an expression of the NAF surface of a single pulse, because sometimes this
expression is referred to as the outputs of an optimum detector filter matched to
zero delay (range) and zero Doppler (velocity) according to reference [16], with
only the magnitude term of complex two-dimensional function in corresponding

equations labeled as the NAF, following the same representation concept of the
wideband ambiguity function (WAF) defined in [17].

computing the ratio , and hence the inequality 0<

3. Adaptation Model of Waveform Design

In this section, we propose an adaptation model that adaptively designs the
signal proposed in Section 2. This adaptation procedure makes the volume of the
corresponding NAF of weighted Costas signal best approximates the volume of a
desired AF surface. In fact, there are no theoretical techniques known for finding a
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waveform corresponding to a desired ambiguity surface, nor is a set of
mathematical rules known for ensuring that a desired surface is an AF surface i.e.,
the waveform that gives rise to this desired surface may not exist. Therefore, by
using an optimization approach there might be a waveform with AF surface that is
an acceptable approximation to the desired surface.

In fact, the ideal radar waveform would produce an ideal AF equivalent to
two-dimensional Dirac delta function on the delay-Doppler plane. Such a function
would have ideal range-doppler requirements. However, since no finite energy
signal gives rise to ideal AF [2][4], there is a practical reason not to deal with an
ideal AF surface somehow in order to get realizable waveforms with some
optimal properties. Instead, we can assume that the desired ambiguity function
Zow (7.F ) satisfies the following definition

_ )% (z.f4)=(0.0)
|Zom (=, )| - {O, elsewhere - (14)

By following the optimization approach proposed in [9][13][14], we
restrict the optimization procedure over some limited subregions in (z.f, ) -plane,

particularly surrounding the main lobe of the NAF surface. Our goal is to find a
waveform that satisfying equation (1) and whose AF surface has desired
properties in a certain given subregion of (z,f,)-plane. Since the subregions

where the volume under AF surface is desired to be small depend on the particular
radar application, and in order to give the designer the degree of freedom he
desires, the approximation of the AF surface could be developed in any subregion
of interest. Hence, our goal is to find a weighted Costas waveform satisfying

N-1
> la[ =1, such that the LS error between the volume under the resulting NAF
1=0

surface |z, ()| and the volume under desired AF surface |y, (z.f,)[ is minimum.
Let N ? denotes the subregion of interest such that

N:{(r,fd)eﬂz:qSTSwafod Sf+}. (15)
Therefore, finding such an adaptive weights for the Costas waveform is
equivalent to find the optimum complex weights a,, corresponding to the

“fingerprint” of the target x such that

. Ty f+
CH (x):arggnln{_[L J.f, | Zow (7.5, )|2 | e (7.1 ,a,x)|2
N -1

subject to (Z|a, i =1j/\(V| €{01..,N -1};3¢>0:a |’ 25), (P1)

drdfd}

where ¢ is a small positive quantity relatively close to zero ensuring transmission
over all N frequency channels of Costas signal, and P1 represents the
optimization problem. The reader could note, via P1 formulation, the
compatibility of the finding process with the philosophy of “adaptive” design
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since a,, clearly depends on the scattering coefficients of the target x. The
optimization algorithm is initialized with fixed weights (I, a, =Const ) as an input,

then it gives the optimal solution as an output. Performance is measured by
comparing the level of side lobes of the matched filter response corresponding to
fixed (constant) weights of Costas waveform with the level of side lobes of the

N -1
response corresponding to the optimal weights. >'|a|°=1 and v, |a|° > ¢ denote

1=0
nonlinear constraints needed to have both equality and inequality constraints
defined in problem (P1).
In a particular case, when the following inequality holds true at the
initialization run time of the optimization algorithm

jj|;(om (.f,)[ ddf, U Ijlzw (r.f,.a,x) drdf, , (16)

we can further simplify P1 to the following another one such that

N-IN-IN-IN-1

By (X) = arg;nin{z > Z;)alla,*za,*sahxlth If ij s, (0f0) 105, (784 )d odlf, }

1,=01,=01,=01,=
N -1

subject to [Z|a, I =1JA(V| e{0.1.,N ~1};36>0:[a [ > £}, (P2)
1=0

where both # . (z.f,)and z, . (v.f,) satisfies the equation (9). In Appendix A, we
show that the general formula of y, . (.f,) is proposed by the following
Case 1: when I, =1, =1 and |7]<7,, we get

Zslsl (T,fd ) = NiwsinC(ﬂ'fd (7,'1 _|T|))e jrr(r.fg) ’ (17)
1

T
with K (T,fd )=—fd ((2| +1)7.'1+T)+2f|‘[.
Case 2: when 1, =1, and |z (1, -1,)7,|<7,, we get

(71 ~ "y, (T)|)

. iméy, (r.fq
- smc(;zoc(r1 —|77,1|2 (r)|))e (rfa) (18)
with 7, (7)= z'—(l1 -1, )f1 - (z.f4)= a(r—(ll -1, —1)2’1)+ 2f, n,, (z)-2f,l7,, and
a=f, —f —f,.

Problems (P1) and (P2) correspond to the NAF of a single weighted Costas
pulse; zye ()

We notice that (P2) leads to a minimization procedure having fourth order
form of sums, similar to that presented in [9], where when I, =1,=1,=1,=1, we

have the term |[a |, vl which implies nonlinear minimization problem. However,
from mathematical point of view, our method can be categorized like [9] as an £:-

1
)(s,ls|2 (T’fd ) = W
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minimization [18] which corresponds to ¢1-norm in Hilbert space, while that of
[14] as an £2-minimization which corresponds to £2-norm in Hilbert space.
However, the convergence time of (P1) , (P2) strongly depends on the

area of subregion N, and the shape of the desired AF surface; |y, (7., )|2. If we
have a priori knowledge of the radar target “fingerprint” x , we can use an offline
computation of (P1) , (P2) extending over a larger area of x, and considering a
desired impulse-shaped of the ambiguity surface; |;(opt (z’,fd)r. However, in the
situation of an online computation (in real-time processing) of (P1) , (P2) when
we need to compute a,, based on the estimated value of x from the previous
radar dwell, it would be practical to restrict 8 to a smaller region (e.g.,
{(r.f4)e0 =T <z <4T, -1/(27 )<f, <+1/(2T )}) and not to choose an “idealistic”
shape of the desired ambiguity surface [13][14].

4. Simulation Results and Discussion

Simulation results of the proposed adaptive waveform design are
presented in this section. The simulation results verify the effectiveness of the
adaptive waveform design in the form of an improved NAF surface corresponding
to the optimal weights obtained from the optimization procedure. We assumed
that the pulse width of the Costas waveform T =7.s , and the hopping sequence of

Costas code c=[4312];N =4.

We evaluated the optimal solution a,, by using the subregion
N={(r.fy)e0?:-T <z<4T, -1/(21 )<f, <+1/(27)}) and the desired AF surface
Zom (7.f4) matching the inequality (16). We realized the components of x from a

Rayleigh distribution with average RCS; & =1m? corresponding to the Swerling I,
I models and here we get a realization; x =[2.18301.0896 2.3444 0.8487] from
MATLAB® random generator. The results a,, are obtained using a Constrained

Nonlinear Problem Solver of MATLAB®. We initialized the problem (P1) with
vl,a =0.5000, and ¢=0.1. We demonstrate the advantage of the optimal solution

a,, by comparing adaptively the designed NAF with that obtained from a fixed

waveform that employs the initialization considerations of the optimization
algorithm (P1). Fig. 1 represents contours plot of normalized main lobe part »{?

of NAF of the adaptive waveform (Fig. 1a) comparing with the initial one (Fig.
1Db), where the resultant optimal (adaptive) solution IS
a,, =[0.3236 0.5776 0.3163 0.6794] . Both parts of Fig. 1 cover the normalized delay

axis from -0.8T to 0.8T , and the normalized Doppler axis from —2/T to 2/ T ,
and the contour lines begin at the level of 0.1 and the spacing between the lines is
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also 0.1. It is clear from Fig. 1 that the contours 0.1 to 0.5 of the color-bar are
obviously improved. Precisely, the contours 0.4 and 0.5 referring to relatively
high sidelobe level and being closer to the main lobe disappeared indicating a
considerable reduction in sidelobe levels in the main lobe area of NAF.

(a) Adaptive waveform for |X,, ™ (zf )| (b) Initial waveform for [X, ™(zf )|
2 2F Contours0.4,05 ]
15 0.9 1.5- | M0.9
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Fig. 1. Contours plot of z3 (.) for (a) Adaptive waveform, and (b) Initial waveform.

In addition, we note, from the diagonal dotted line seen in Fig. 1, that the
adaptive waveform vyields less sensitivity to delay-Doppler coupling problem,
which means that for small Doppler shift; f, the measured delay location of the

improved NAF peak response is shifted from true delay by %" smaller than
et of the initial NAF. Numerically, the diagonal dotted line slope of the
adaptive waveform is about 112° while that of the initial waveform is about 130° ,
and since the slope is equivalent by analogy to the delay-Doppler coupling
coefficient k [1], i.e., k oc|tan(slope)|, and from the equation (4.12) of CH 4. in
[1] we have t, ., =f, /k , so we get i =" /2.1 for same small Doppler shift.

Fig. 2. shows the zero-Doppler cut plot of NAF (i.e., ACF). According to
Fig. 2.a, we could emphasize that the adaptive waveform results in a very much
better ACF, where the first sidelobe level of the normalized NAF corresponding
to the adaptive waveform is less than the one of the fixed waveform by 36.3 times
(linear scale), which means that it is attenuated by 15.6 dB as Fig. 2.b shows.
These results confirm the validity of our adaptive waveform design, where we
achieved about 15.6 dB in reducing the PSL of ACF (i.e., the PSL of the AF at
zero Doppler cut).




Adaptive design of Costas radar signal with improved Narrowband Ambiguity Function 137
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Fig. 2. Zero-Doppler cuts (ACF) of the NAF corresponding to the adaptive and fixed waveforms,
(a) linear scale, (b) in dB.

Fig. 2. also suggests that there is no important change in the nominal delay
resolution, and hence we conclude that our model yields very good reduction in
PSL of ACF without any important change in the delay resolution.

2 2
Delay cut |XMF(0,fd)| Delay cut 1O*Iog(|XMF(O,fd)| ) dB
1 0 .
—Fixed —Fixed
—adaptive —adaptive
0.8 1 -20 1
<<
o~ ::U
:’U 0.6 S -40
Y T8
) =
i X
x> 0.4 o -60f
*
o
—
0.2r 1 -80f
c -1 c
95 0 5 OEJ5 0 5
--(a)-- Normalized Doppler fd *T --(b)-- Normalized Doppler fd *T

Fig. 3. Zero-delay cuts of the NAF corresponding to the adaptive and fixed waveforms, (a) linear
scale, (b) in dB.

Fig. 3. shows the zero-delay cut plot of the NAF obtained in the
simulation. As we expect, there is no important change neither in the PSL value
nor in the Doppler resolution as Fig. 3 indicates. Precisely, the reduction in PSL is
attenuated by about just 3 dB. We checked our model over 25 independent
realizations of scatters coefficients, and always we got similar results.
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We interpret our results by looking into the energy distributions of the
adaptive waveform and the target response over the four different subcarriers
{f1},.-. - Since the variance of |a.x|obtained in our simulation is reduced from

var ja, -x[) =0.1432 10 var (|, x|) = 0.0055 meaning that the amplitude of the target

echo is approximately constant, we could say that the signal energy redistributes
its ell such that more signal energy must be supplied to a particular subcarrier in
which the target response is weaker, where the chirp ,in this case, is f, and this
subcarrier corresponds to the weakest scatter x,=0.8487, and hence the radar
system needs to make the weight a, =0.6794 be the largest one as obtained in our
minimization procedure. On the other hand, less signal energy should be supplied
to the subcarriers over which the target response is already stronger, where the
chirps ,in this case, are f,, f, that correspond to two strongest scatters
X, =2.1830, x, =2.3444, and hence the radar system needs to make the weights
a, =0.3236,a,=0.3163 be the smallest ones in a,, which was achieved.
Furthermore, the scatter x,=1.0896 corresponding to the subcarrier f, s
approximately equal to unity, so the weight of the corresponding chirp in Costas
signal should not be much different from the original fixed one in the fixed
waveform (no actual change in supplied energy is required), and for this reason
the minimization procedure resulted in the value a =0.5776 in a,, such that it is

approximately equal to 0.5000 as it was in the vector a,, . Finally, it is clear for
the reader that the adaptive waveform obtained in our simulation does not satisfy
the common requirement of constant amplitude in radar signal in which
transmitting tubes operate most under constant-amplitude conditions [3], but since
the variance of the optimal solution var(a,, )=0.0335 is relatively small, we could

accept these relatively small variations in amplitude of the resultant Costas chirps.
As a future work, we could add a linear constraint and a nonlinear constraint to
the optimization procedures (P1) , (P2) presented in this paper so that the

N -1 N -1
average of a ; azNiZ|al|, and the variance of a ; cr,j=’\|i2(|a,|—a‘)2 are
1=0 1=0

statistically acceptable values under transmitting tubes operation requirements.
However, the resultant adaptive waveform in this study exhibits very good
ambiguity behavior in subregion surrounding the main lobe in the sense of PSL,
and does not really influence the Delay-Doppler resolution, and without needing
to increase N.

5. Conclusions

We developed a new Costas waveform including adaptive weights
corresponding to scattering coefficients of the target fluctuating according to one
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of the Swerling models, with acceptable variations in amplitude of the resulting
Costas chirp signal. We computed the NAF formula of this waveform. We
formulated the radar waveform optimization problem to result in those adaptive
weights such that its solution minimizes the volume under the corresponding NAF
surface in comparison with the volume under desired NAF surface in the LS
sense. We emphasized that the adaptive waveform results in much ACF where the
PSL of ACF of the improved NAF corresponding to the adaptive waveform is
attenuated by 15.6 dB with respect to the PSL of ACF corresponding to the fixed
waveform. Our model yields very good PSL reduction without change in delay
resolution, so much better detection performance. There also was no important
change neither in the PSL of the NAF delay cut, nor in Doppler resolution.
Moreover, the adaptive waveform vyields less sensitivity to delay-Doppler
coupling problem. We interpreted our results in the sense of energy redistribution
at the scatters of the target, where the weaker scatter should be supplied with more
energy than the stronger one. We are currently preparing a paper to formulate and
calculate the NAF model of a coherent pulse train of weighted Costas pulses and
show if the same results could be obtained and even improved. In future work, we
aim to generalize our model by applying variable time spacing between the
subcarriers of Costas array such that the time spacing between sub-pulses of
Costas signal changes over all N weighted frequency channels. In addition, we
aim to test the proposed adaptive design model through field experiments to make
measurements on a real possible target in a reverberation chamber.

Appendix A
We could rewrite the equation (8) such that
e (7.F4,2,X) :—Zx i j —lz)s/ (t—7—lz)e 1#"dt
NN , , (A1)
2 OIZZx,za, a, js l7y)s, (t—7—l,z,)e " dt
and define o
j (t—1z)s, (t—c—17)e 1 # " dt , (A2)
@, ( - = j s, (t=1z)s, (t—z—l,z)e 12 dt 1, =1, . (A3)
We notice that
= j —Iz)s; (t—z—lz,)e " dt =}, (z,f,), (A4)

—js —lz,)s, (t—7—l,0)e 7 Mdt =@, (7.f,):1, #1,. (A5)
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By changing the variable in (A.4) such that o =t —17, we get

(Tf ) +]2/rf Irlijsr(g)sl(G_z_)e+j27rfdo'do_:e+j2/rfd|rl¢” (T,fd), (A6)

(2R
where ¢, (z.f,)== I s ) do (A7)
In fact, equatlon (A7) represents the autocorrelation function of s, (t) (one

of the Costas chirps), and is simplified directly by using the Costas calculation
corresponding to equation (21) of his original paper [15], so we get

() et 117,
2}

" (T’fd ) = (A8)
0, elsewhere
Substituting (A8) into (A6), we get
(71_|T|) : [infg((21+1)7+7)-j27f ]
, (T’fd ): —71 SInC(ﬂ'fd (rl —|T|))e , |z'| <t (A9)
0, elsewhere

We put « (z.f,)=—f, ((20 +1)7, +7)+2f 7, then substituting (A9) into (A4),
we get

—J (t=Iz)s, (t-r—lz)e ' dt =
z-]. —0

_ _ ) Al0
(Tl |T|) sinc(m‘d (Tl —|7|))e Jza(nle) |T| <7, ( )

= 7,

0, elsewhere
Then, substituting (A10) into the first term of (Al) with || <z,, we get the
main lobe ambiguity function

(ml) 18 -
AmrF (r,fd,a,x):WZX,

a’ (= _|T|)sinc(7rfd (Tl—|r|)) el 0 (ALL)
Tl

and %P (z,f,,a,x)=0 elsewhere. Hence, this is corresponding to equation (12).
By changing the variable in (A3) such that & =t -1,z remembering in this
case that 1, =1, , we get

D, (7.f4) g ti2rtalm IS o) S, O'+ I)Tl—f)eﬂz”fd”da (A12)

By changing the varlable in (A.12) such that 7 =z—(I,-1,)z,, we get
! +j 27f g7 1%0 * ! +j2nfyo +j 2xfy !
D, (r +(1-1,)z, fd) et f"I“T—ISh(O')SIZ (a—r)e 12l o =gt 2llang (r,fd)(A13)

—o0

where we put
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¢,1,2 Tf =—IS o)s, G z' e”z”f"“da. (Al14)
In fact, the equation (A14) represents the cross-correlation function
between two Costas chirps s, (t),s, (t)and is simplified directly by using the

Costas calculation corresponding to equation (18) of his original paper in [15], so
we get

oL 4 . . ~jra(n+7)-j2at,,r .
¢|1|z (Ti!fd ): ( T1| |) SIﬂC(ﬁO{(z'1 —|2' |))e[ (s+5) ], |r | <7 , (A15)

0, elsewhere
where o=f, —f —f, is corresponding to equation (20) in [15]. Substituting (A15)
into (A13) and returning to the variable 7, we get for |r|<7,

A, (Tllfd ):¢|1|2 (7_(|1_|2)71*fd ):

o, —|lc—(l,=-1,)z et Vi 26 (el 1o }]? (AlG)
6] (T: ! 1|)5inC(7T0l(T1_|7_(|1—|2)T1|))e[ (e (h-ly-a)-i 2t (-t
¢, (7.f, ) =0elsewhere. If we put my, (1) =7=(,-1,)7, and

S, (nfy)=a(r—(,-1,-1)z,)+2f n, (7)-2f,l7, and substituting (A16) into
(A13), we get

“(z'f ) +127rf|111¢”(z_f )

(-

_ e 1) (T)D Sinc(mx(r1 —|77,llz (r)|))efj”4'1'z(r’fd), |‘r| <7t (A17)

= 7

0, elsewhere
Substituting (A17) into (A5), we get

Sjenfgt gy _
—J'S —lz)s, (t—z—l,z,)e " *"dt =

—(Tl AT T)|) Sinc(imc(z'1 —|77|1,2 (r)|))e+j”§'1'2(r’f“ ), |z’| <7

2]

(A18)

0, elsewhere

Then, substituting (A.18) into the second term of (A.1l) with
|r—(1,-1,)z,|< 7, we get the side lobe ambiguity function

Z,E;::)(T,fd ,a,x)=

1 N-1N-1 (

= —Ilz_:o |ZZ_;> X|2 |ZaI1 1_f(‘rn)sinc(m}l(‘lﬁ —|77|1|2 (T)|)) eifrﬁ.l.z(r,fd) y (A19)

and 45 (z.,f,,a,x)=0 elsewhere. Hence, this is corresponding to equation (13).
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We get the formula of equation (11) by substituting (A11) and (A19) in
(Al). Finally, the case 1 (equation (17)) in Section 3 is corresponding to equation
(A10), while the case 2 (equation (18)) is corresponding to equation (A18).
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