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COMPUTATIONAL AND EXPERIMENTAL 

MICROSTRUCTURE CHARACTERIZATION OF 

SELECTIVE LASER MELTED IN 625 

Mihaela Raluca CONDRUZ1, Gheorghe MATACHE2, Alexandru PARASCHIV3 

Microstructural and phase development investigations were done on IN 625 

superalloy manufactured by selective laser melting. The process parameters used 

generated a level of 99.18% measured relative density as a result of internal defects 

presence (pores, unmelted particles, microcracks). By metallography method an 

average level of 0.87% porosity was measured. Thermodynamic calculations 

showed the possibility of multiple phase development, while experimentally only the 

γ phase emerged during solidification of IN 625. The experimentally and 

computational analysis revealed that Nb presents a high tendency to segregate, even 

at high solidification rates encountered during selective laser melting process.  
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1. Introduction 

For nearly 9 decades, nickel-based superalloys were considered the most 

reliable materials when it comes to applications where high temperatures, high 

stress and corrosive environments are implied (i.e. components for gas turbines). 

Throughout time, parts made from nickel superalloys were obtained by multiple 

metallurgical methods (forging, casting, powder metallurgy [1]), but nowadays, 

the industry is focused on advanced manufacturing techniques such as additive 

manufacturing (AM) in order to produce complex shaped parts from nickel, 

aluminum and iron alloys [2].  

The main methods used in the field of metallic additive manufacturing are 

the powder bed fusion processes, like selective laser melting (SLM). SLM process 

implies the melting of a powder layer with a laser source following up a 3D CAD 

model, similarly to a laser welding process which allows the complete melting of 

the powder material [3, 4]. This process has been studied for many years, but until 
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today it hasn’t been used to its fully potential due to a lack of optimum process 

parameter selection for different types of powder and different equipment. The 

final characteristics of the material obtained by SLM are primarily influenced by 

the feedstock quality and process parameters selection. All these factors can cause 

many defects in the as-built material. For example, the powder shape, size and 

distribution can affect the packing factor of powder layer which can cause uneven 

melted areas. Also, powder porosity (manufacturing process induced porosity) 

leads to material internal pores, interaction between laser beam and powder can 

produce balling defects or incomplete powder melting, scanning strategy can 

influence the stress state of the final part which can lead to layer cracking, 

delamination or even part shape modification after removing from the base plate 

[5-12].  

IN 625 is a nickel-chromium superalloy developed for manufacturing parts 

used in harsh environments. It is characterized by a high content of Cr which 

provides corrosion resistance (by surface formation of Cr2O3), while other 

elements ensure solid solution strengthening (i.e. Mo) or precipitation 

strengthening (i.e. Nb). During solidification, multiple phases can emerge, but the 

primary phase developed consists in an austenitic phase – γ matrix (face-centered 

cubic structure - FCC), followed by secondary phases like γ'' phase (Ni3Nb, a 

metastable phase with a body centered tetragonal structure - BCT), carbides and 

multiple topologically closed packed phases (i.e. Sigma, P) caused mainly by 

segregation of different alloying elements. Also, it must be stated that during 

operation at high temperatures, the γ'' phase can be replaced by deleterious 

orthorhombic δ phase characterized by the same stoichiometry [4, 13].  

Even if most studies are focused on AM of IN 718 superalloy, many 

research studies were conducted on AM IN 625 as well. It was established that 

large proportions of powder feedstock with average diameter of 10 µm (D90 ≤ 

10µm) can negatively affect the usability of the material, so it is recommended to 

use powder with a higher average diameter than 10 µm [14]. Regarding the 

material microstructure it was stated that AM IN 625 microstructure is 

characterized by very fine dendritic structures composed of equiaxed grain 

colonies formed at the surface of the melt pool due to rapid cooling, followed by 

large columnar grains that grow epitaxial near the fusion line and can extend on 

multiple layers due to re-melting of previous deposited layers [15-21]. Most 

studies showed that during rapid solidification, mainly the γ phase is formed in IN 

625 followed by emergence of small Nb-rich MC carbides (10-50 nm) in dendrite 

cores [15], but except these two phases others phases like γ'' precipitates, Cr-rich 

M23C6 carbides are formed by solid phase transformation during heat treatments 

[15-19]. Typical AM material defects were reported in the literature for IN 625, 

defects like pores due to unmelted powder particles, lack of fusion defects and 

balling [15-21]. Different values were reported for the material relative density, 
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for example Gao et. al. [22] reported a relative density of 99.7% for electron beam 

melting manufactured IN 625, while Terris et. al. [23] obtained relative densities 

between 95.5 – 99.8%. The goal of the present study was to evaluate the 

microstructural and phase development in case of IN 625 manufactured by SLM, 

using computational and experimental means. 

2. Experimental procedure 

2.1 Materials and procedures 

Gas atomized powder of IN 625 superalloy, provided by LPW Technology 

Ltd., was used for experimental investigations (particle size distribution D10 = 

20±2µm, D50 = 30±5µm, D90 = 45±5µm). Prismatic specimens of 15 x 15 x 30 

mm3 (L x l x h) built in vertical position as shown in Fig. 1 were manufactured 

with a Lasertec 30SLM machine (1st generation) using the process parameters 

presented in Table 1. 

 

 
Fig. 1. Schematic representation of the specimens manufactured 

 
Table 1.  

Manufacturing process parameters 

 Layer thickness 40 µm 

Laser 

current 

[mA] 

Exposure 

time [µs] 

Distance 

between 

points [µm] 

Repetitions Focus 

[mm/100] 

Support points 2000 200 20 1 0 

Support material 700 60 30 1 0 

Contour  1500 20 10 1 0 

Sample structure network 2000 200 20 1 0 

Hatch 2000 40 40 1 120 

 

After manufacturing, the specimens were mechanically removed from the 

machine building plate. Microstructural investigations were performed on as-built 

specimens and after they were metallographically prepared by grinding, polishing 

and etching with an etchant made of 10 ml HNO3, 10 ml CH3COOH, 15 ml HCl 

and 5 drops of glycerin. Microstructural and microcompositional investigations 

were performed using the scanning electron microscope (SEM – FEI Inspect F50) 

and energy dispersive spectrometry method (EDS). In order to assess the porosity 
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level an analysis was realized by processing SEM images using the Scandium 

software. A binarization technique was achieved by adjusting the brightness and 

contrast to highlight the pores; further the images were converted to a 16-bit 

greyscale format followed by conversion into black and white threshold images. 

The porosity analysis was realized on 10 micro areas (1.9 mm2) in different cross 

sections of the un-etched specimens. 

The phases development assessment was performed both experimentally 

by X-ray diffraction and computationally by thermodynamic calculations using 

Pandat™ (Computherm LLC, PanNi2018_TH database). These investigations 

aimed to accurately determine which phases emerged during the rapid 

solidification of IN 625. Using Pandat™ it was also analyzed the solidification 

path for equilibrium and non-equilibrium conditions (Lever and Scheil models). 

As input data for thermodynamic calculations different chemical compositions 

were used: the chemical composition of IN 625 powder from the technical 

specification and the chemical composition of IN 625 material experimentally 

determined by EDS. The specimen density was determined by Archimedes 

method using an analytical balance Pioneer PX223 (Ohaus) equipped with a 

density kit, according ISO 3369 standard. 

 

2.2 Results and discussions 

 

Microstructural investigations and phase development analysis  

At lower magnification (200x), it can be observed that the microstructure of 

the SLM manufactured IN 625 is similar with the microstructure of a laser welded 

material - Fig. 2. Regarding the development of the microstructure, it can be said 

that is was formed by heterogeneous nucleation mechanism at the interface of 

powder particle – melted material and by epitaxial and competitive growth. Due 

to a high ratio between undercooling rate and solidification speed, the 

microstructure presents different morphologies.  

 

 
Fig. 2. 3D representation of a specimen microstructure based on SEM images 
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Dendritic columnar along with dendritic cellular morphologies were 

observed. Grains formed with different orientations appeared as a sign of 

competitive growth, along with large crystals arranged on multiple layers as a sign 

of epitaxial growth. In SEM images the deposited layer boundaries, the heat 

affected area - HAZ (element found also in welded structures) and melted pool 

traces can be distinguished – Fig. 3. 

 

 a  b 

c  d 

 e 

Fig. 3. SEM images with IN 625 microstructure: a) epitaxial growth of crystals; b) competitive 

growth of crystals; c) different morphologies of dendrites; d) cellular dendrites; e) columnar 

dendrites 
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The phase analysis was done by thermodynamic calculations using 

Pandat™ and experimental measurements. The chemical compositions used for 

thermodynamic calculations are presented in Table 2. The solidification path for 

both equilibrium and non-equilibrium conditions was analyzed using the 

experimentally determined chemical composition as presented in Fig. 4. 
 

Table 2.  

Chemical compositions of IN 625 used for thermodynamic calculations 

 Al C Co Cr Fe Mo Nb + Ta Ti Ni 

Technical 

specification 
<0,4 <0,1 <1,0 20-23 3-5 8-10 

3,15-

4,15 
<0,4 Bal. 

Experimentally  0,1 0,02 0,1 21,6 4,0 9,0 3,5 0,17 Bal. 

 

 
Fig. 4. Solidification path of IN 625 alloy in equilibrium and non-equilibrium conditions 

 

The diagram presented in Fig. 6 shows the same liquidus temperature (TL 

= 1388°C) for equilibrium – Lever and non-equilibrium – Scheil conditions, but 

different solidus temperatures (TS) are predicted. For equilibrium conditions a TS 

= 1341°C was predicted while in non-equilibrium conditions, the TS was 

underestimated (TS = 1199°C). The difference between the two models is caused 

mainly because the software predicts only the formation of the γ phase in 

equilibrium conditions while in case of non-equilibrium conditions the software 

predicts the formation of multiple solid fractions, like δ (at a solid fraction of 

0.971, respective T = 1240ºC) and primary carbides MC (at a solid fraction of 

0.948, respective T = 1258ºC). Moreover, using Scheil method it can be predicted 

the distribution of the alloying elements near the solidification front (Fig. 5) in 

order to observe the segregation tendency during solidification.  
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In case of IN 625 it was observed that Nb presents the highest tendency to 

segregate at the end of the solidification process. Taking into account this 

observation, the influence of Nb content on the transformation temperatures was 

analyzed. For this evaluation, the Nb content was selected based on the range 

provided by the composition from the technical documentation. The values used 

were: 3.15%wt. Nb, 3.3% wt. Nb, 3.5% wt. Nb, 3.75% wt. Nb, 4% wt. Nb, 4.15% 

wt. Nb. The results of the analysis are presented in Fig. 6. 

 

 
Fig. 5. Prediction of alloying elements distribution near the solidification front 

 

 
Fig. 6. The influence of Nb content on the transformation temperatures (Scheil method) in 

IN 625 
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It was noticed that small variation of Nb content influence the 

transformation temperatures. Increasing the Nb content reduces the TL and TS of 

the alloy, reduces the temperature range where the MC carbides are formed and 

reduces the temperature at which the δ is formed. By using the chemical 

composition of the IN 625 powder in Pandat™ software, there were predicted the 

phases that can develop in the material during solidification and cooling. Pandat™ 

predicts a high fraction of γ phase at high temperature. As the temperature 

decreases other phases could be formed (σ, δ, P, M6C → M23C6). The fraction of 

predicted phases as a function of temperature is presented in Fig. 7. 

 

 
Fig. 7. Diagram with phase fractions developed during the solidification of IN 625 superalloy 

 

By SEM investigations analysis, multiple phase morphologies were 

observed in SLM manufactured IN 625 – Fig. 8. Even if different morphologies 

were observed in SEM images, based on EDS analysis it was concluded that only 

one phase was developed during the rapid solidification of AM IN 625, namely 

the γ phase.  

Pandat™ predicts a fraction of 99.6% γ phase after solidification at 

1000°C. The prediction is in good agreement with the X-ray diffraction results on 

as-built specimens that show that the dominant phase is γ phase (FCC), while 

other possible minor phases are under 1%.  

The morphological differences encountered were caused by the 

combination of process parameters and scanning strategy, dendrite growth 

direction, melting temperature, remelting of multiple layers and high solidification 

rates.  
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a b c 

Fig. 8. Morphologies encountered in IN 625 

 

An EDS analysis was performed on equiaxed dendrite core and in 

interdendritic regions in order to evaluate the elemental segregation. Using the 

EDS results (Table 3), the partition coefficient Ks was calculated with eq. (1). The 

KS(i) partition coefficient represents the tendency of the alloying element to 

segregate either in the dendrite cores (KS(i)>1) or in the interdendritic areas 

(KS(i)<1).  

 

                                                 (1) 

 

where: Ks(i) – repartition coefficient of element i; 

              Cc(i) – concentration of the element (i) in cellular dendrite cores; 

              CI(i) – concentration of element (i) in interndritic areas.  

 
Table 3  

Medium values of the chemical composition determined by EDS 
 C Al Si P Nb Mo Ti Cr Mn Fe Co Ni 

Dendrite core 0.05 0.08 0.05 0.02 3.75 9.29 0.18 21.75 0.01 3.885 0.1 Bal. 

Interdendritic 

area 0.08 0.09 0.05 0.02 4.92 11.8 0.18 21.11 0.01 3.73 0.1 Bal. 

 

The experimental results were correlated with the results from simulation 

results and it was concluded that even in case of rapid solidification Nb and Mo 

segregates in the interdendritic areas (KS Nb = 0.76, KS Mo = 0.79). 

 

Density and porosity analysis  

Significant differences regarding the density of the specimens were not 

observed, the average value of material density being 8.42 g/cm3 compared with 

the theoretical density of IN 625 determined by calculations using the chemical 

composition of the powder material which is 8.49 g/cm3. Using the presented 

process parameters and the measurements a relative density of the material of 

99.18% was calculated. The low degree of densification was caused by the 

process induced internal defects, like pores, lack of fusion and microcracks.  
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It was observed that unmelted powder particles were entrapped in big 

pores. Theoretically, based on the density measurements, the material should 

exhibit an average of 0.82% porosity level.  

The experimentally measured porosity level was in the range of 0.24% – 

1.5% (average value 0.87%). The differences are caused by the uneven 

distribution of internal pores, areas with multiple pores were encountered along 

with areas with a reduce degree of porosity – Fig. 9. Future investigations should 

be realized in order to define proper process parameters that can be used in order 

to obtain denser material. 

 

 a   b 

 c  d 

Fig. 9. Binarized SEM images used for porosity evaluation  

3. Conclusions 

The present work was carried out on IN 625 superalloy manufactured by 

SLM. The results showed that the process parameters used induced surface 

material defects – balling caused by material boiling and splash of the melt pool. 
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Due to presence of many internal defects (unmelted powder particles, pores, 

microfractures) the material have a degree of densification of only 99.18%. The 

experimentally determined porosity level was in the range of 0.24% – 1.5% 

(average value 0.87%) depending on the cross-section investigated. The pores 

formed during the process are randomly distributed all over the specimens and 

exhibits multiples shapes. It was observed that unmelted powder particles were 

entrapped in big pores.  

The microstructure of SLM manufactured IN 625 is similar with the 

microstructure of a laser welded material, with columnar and cellular dendritic 

morphologies. By thermodynamic calculations it was predicted that multiple 

phases can emerge during material solidification. It was experimentally 

determined that due to high solidification rate mainly the γ phase was formed. It 

was also observed that Nb presents a high tendency to segregate, even at high 

solidification rates encountered during SLM. Further studies will be conducted in 

order to optimize the process parameters that can be used in order to obtain denser 

material and to investigate their influence on the mechanical properties of SLM 

manufactured IN 625. 
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