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LINEAR DISCRETE MULTITIME MULTIPLE RECURRENCE

Cristian Ghiu1, Raluca Tuligă2, Constantin Udrişte3

The multitime multiple recurrences are common in analysis of algorithms,
computational biology, information theory, queueing theory, filters theory, statis-
tical physics etc. The theoretical part about them is little or not known. There-
fore, the aim of our paper is to formulate and solve problems concerning nonau-
tonomous multitime multiple recurrence equations. Among other things, we dis-
cuss in detail the cases of linear recurrences with constant coefficients, highlighting
in particular the theorems of existence and uniqueness of solutions.
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1. Introduction

In this paper we shall refer to linear discrete multitime multiple recurrence,
giving original results regarding generic properties and existence and uniqueness
of solutions. Also, we seek to provide a fairly thorough and unified exposition
of efficient recurrence relations in both univariate and multivariate settings. The
scientific sources used in this paper are: filters theory [2], [8], general recurrence
theory [7], [1], [13], our results regarding the diagonal multitime recurrence [3] - [5],
and multitime dynamical systems [9]-[12].

Let m ≥ 1 be an integer number. We denote 1 = (1, 1, . . . , 1) ∈ Zm. Also, for
each α ∈ {1, 2, . . . ,m}, we denote 1α = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zm, i.e., 1α has 1 on
the position α and 0 otherwise. We use the product order relation on Zm.

Let M be an arbitrary nonvoid set and t1 ∈ Zm be a fixed element. We
consider the functions Fα :

{
t ∈ Zm

∣∣ t ≥ t1
}
×M → M , α ∈ {1, 2, . . . ,m}. We fix

t0 ∈ Zm, t0 ≥ t1. A first order discrete multitime recurrence of the type

x(t+ 1α) = Fα(t, x(t)), ∀t ∈ Zm, t ≥ t0, ∀α ∈ {1, 2, . . . ,m}, (1)
is called a discrete multitime multiple recurrence.

This model of multiple recurrence can be justified by the fact that a completely
integrable first order PDE system

∂xi

∂tα
(t) = Xi

α(t, x(t)), t ∈ Rm,

can be discretized as: xi(t+ 1α)− xi(t) = Xi
α(t, x(t)), t ∈ Zm.
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2Dr., Şcoala Gimnazială Nr. 6, Drobeta Turnu Severin, Mehedinţi, Romania, e-mail:
ralucacoada@yahoo.com

3Professor Dr., Department of Mathematics-Informatics, Faculty of Applied Sciences, University
Politehnica of Bucharest, Romania, e-mail: udriste@mathem.pub.ro

29



30 Cristian Ghiu, Raluca Tuligă, Constantin Udrişte

The initial (Cauchy) condition, for the PDE system, is translated into initial condi-
tion for the multiple recurrence.

2. Linear discrete multitime multiple recurrence

Let K be a field. We denote by Z one of the sets Zm or
{
t ∈ Zm

∣∣ t ≥ t1
}

(with
t1 ∈ Zm). For each α ∈ {1, 2, . . . ,m}, we consider the functions Aα : Z →Mn(K),
bα : Z → Kn = Mn,1(K), which define the recurrence

x(t+ 1α) = Aα(t)x(t) + bα(t), ∀α ∈ {1, 2, . . . ,m}, (2)
with the unknown function x :

{
t ∈ Z

∣∣ t ≥ t0
}
→ Kn = Mn,1(K), t0 ∈ Z. This is

a particular case of discrete multitime multiple recurrence (1), with M = Kn and
Fα(t, x) = Aα(t)x+ bα(t).
Theorem 2.1. a) If, for any (t0, x0) ∈ Z ×Kn, there exists at least one function
x :
{
t ∈ Z

∣∣ t ≥ t0
}
→ Kn, which, for any t ≥ t0, verifies the recurrence (2) and the

condition x(t0) = x0, then
Aα(t+ 1β)Aβ(t) = Aβ(t+ 1α)Aα(t), (3)

Aα(t+ 1β)bβ(t) + bα(t+ 1β) = Aβ(t+ 1α)bα(t) + bβ(t+ 1α), (4)
∀t ∈ Z, ∀α, β ∈ {1, 2, . . . ,m}.

b) If the relations (3), (4) are satisfied, then, for any (t0, x0) ∈ Z ×Kn, there
exists a unique function x :

{
t ∈ Z

∣∣ t ≥ t0
}
→ Kn, which, for any t ≥ t0 verifies the

recurrence (2) and the initial condition x(t0) = x0.
Proof. a) One applies Proposition 1.1 from [6]. The relations (2) from [6] become
Aα(t+ 1β)

(
Aβ(t)x+ bβ(t)

)
+ bα(t+ 1β) = Aβ(t+ 1α)

(
Aα(t)x+ bα(t)

)
+ bβ(t+ 1α),

∀x ∈ Kn, ∀t ≥ t1.
In the case Z = Zn, the point t1 is arbitrary. We deduce that the foregoing

relations are true ∀x ∈ Kn, ∀t ∈ Z. Setting x = 0, we obtain the relations (4). It
follows that

Aα(t+ 1β)Aβ(t)x = Aβ(t+ 1α)Aα(t)x, ∀x ∈ Kn, ∀t ∈ Z. (5)
For j ∈ {1, 2, . . . , n}, let ej = (0, . . . , 0, 1, 0, . . . , 0)> be the column of Kn

which has 1 on the position j and 0 in rest. From (5) it follows:
Aα(t+1β)Aβ(t)·

(
e1 e2 ... en

)
= Aβ(t+1α)Aα(t)·

(
e1 e2 ... en

)
, equivalent

to Aα(t+ 1β)Aβ(t)In = Aβ(t+ 1α)Aα(t)In, i.e., the relations (3).
From paper [6] – Theorem 3.1 it follows b). �

Theorem 2.2. For each α ∈ {1, 2, . . . ,m}, we consider the functions
Aα : Zm →Mn(K), bα : Zm → Kn, which define the recurrence (2).

The following statements are equivalent:
i) For any α ∈ {1, 2, . . . ,m} and any t ∈ Zm, the matrix Aα(t) is invertible and
∀t ∈ Zm, ∀α, β ∈ {1, 2, . . . ,m} the relations (3), (4) hold.
ii) For any pair (t0, x0) ∈ Zm×Kn, and any α0 ∈ {1, 2, . . . ,m}, there exists at least
one function x :

{
t ∈ Zm

∣∣ t ≥ t0 − 1α0

}
→ Kn, which, for any t ≥ t0 − 1α0, verifies

the relations (2), and also the condition x(t0) = x0.
iii) For any pair (t0, x0) ∈ Zm × Kn, and any α0 ∈ {1, 2, . . . ,m}, there exists a
unique function x :

{
t ∈ Zm

∣∣ t ≥ t0 − 1α0

}
→ Kn, which, for any t ≥ t0 − 1α0,

verifies the relations (2), and also the condition x(t0) = x0.
iv) For any t0, t1 ∈ Zm, with t1 ≤ t0, and for any x0 ∈ Kn, there exists a unique
function x :

{
t ∈ Zm

∣∣ t ≥ t1
}
→ Kn, which, for any t ≥ t1, verifies the relations (2),

and also the condition x(t0) = x0.
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v) For any pair (t0, x0) ∈ Zm × Kn, there exists a unique function x : Zm → Kn,
which, for any t ∈ Zm, verifies the relations (2), and also the condition x(t0) = x0.

Proof. The equivalence of the statements i), iii), iv), v) follows from [6] – Theo-
rem 3.2. Since the implication iii) =⇒ ii) is obvious, it is sufficient to prove the
implication ii) =⇒ i).

ii) =⇒ i): The relations (3), (4) follow from Theorem 2.1.
Let Fα : Zm ×Kn → Kn, Fα(t, x) = Aα(t)x + bα(t), ∀(t, x) ∈ Zm ×Kn. Let

α0 ∈ {1, 2, . . . ,m} and t0 ∈ Zm. Let y ∈ Kn. There exists a function x(·) which
verifies (2), ∀t ≥ t0 − 1α0 and the condition x(t0) = y.

For t = t0−1α0 , one obtains y = Fα0(t0−1α0 , x(t0−1α0)). Since y is arbitrary,
it follows that Fα0(t0 − 1α0 , ·) is surjective, which is equivalent to that the matrix
Aα0(t0 − 1α0) is invertible. Since t0 is arbitrary, it follows that, for any t ∈ Zm, the
matrices Aα0(t) are invertible; here also α0 ∈ {1, 2, . . . ,m} is arbitrary. �

Remark 2.1. If the functions Aα(·) and bα(·) are constants, then the relations (3),
(4) become AαAβ = AβAα (6)

(Aα − In)bβ = (Aβ − In)bα. (7)

3. Fundamental (transition) matrix

We denote by Z one of the sets Zm or
{
t ∈ Zm

∣∣ t ≥ t1
}

(with t1 ∈ Zm).
Consider the functions Aα : Z →Mn(K), α ∈ {1, 2, . . . ,m}, which define the

linear homogeneous recurrence
x(t+ 1α) = Aα(t)x(t), ∀α ∈ {1, 2, . . . ,m}, (8)

with the unknown function x :
{
t ∈ Z

∣∣ t ≥ t0
}
→ Kn = Mn,1(K), t0 ∈ Z.

Proposition 3.1. Suppose that the relations (3) hold true.
For each t0 ∈ Z and X0 ∈ Mn(K) there exists a unique matrix solution

X :
{
t ∈ Z

∣∣ t ≥ t0
}
→Mn(K) of the recurrence
X(t+ 1α) = Aα(t)X(t), ∀α ∈ {1, 2, . . . ,m}, (9)

with the condition X(t0) = X0.

Proof. For the n recurrences which are equivalent to the matrix recurrence, we apply
Theorem 2.1. �

For each t0 ∈ Z, we denote χ( · , t0) :
{
t ∈ Z

∣∣ t ≥ t0
}
→ Mn(K), the unique

matrix solution of the recurrence (9) which verifies X(t0) = In.

Definition 3.1. Suppose that the relations (3) hold true.
The matrix function χ( · , · ) :

{
(t, s) ∈ Z × Z

∣∣ t ≥ s
}
→ Mn(K) is called

fundamental (transition) matrix associated to the linear homogeneous recurrence (8).

For α ∈ {1, . . . ,m} and k ∈ N, we define the function Cα, k : Z →Mn(K),

Cα, k(t) =


k∏

j=1

Aα(t+ (k − j) · 1α) if k ≥ 1

In if k = 0.
(10)

Proposition 3.2. Suppose that the relations (3) hold true.
The matrix functions χ(·) and Cα,k(·) have the properties:
a) χ(t, s)χ(s, r) = χ(t, r), ∀t, s, r ∈ Z, with t ≥ s ≥ r.
b) χ(s, s) = In, ∀s ∈ Z.
c) χ(t+ k · 1α, s) = Cα, k(t) · χ(t, s), ∀k ∈ N, ∀t, s ∈ Z, with t ≥ s.
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d) Cα, k(t) = χ(t+ k · 1α, t), ∀k ∈ N, ∀t ∈ Z.
e) Cα, k(t+ p · 1β)Cβ, p(t) = Cβ, p(t+ k · 1α)Cα, k(t), ∀k, p ∈ N, ∀t ∈ Z.
f) For any t, s ∈ Z with t ≥ s, we have

χ(t, s) =
m−1∏
α=1

Cα,tα−sα(s1, ..., sα, tα+1, ..., tm) · Cm, tm−sm(s1, s2, . . . , sm−1, sm).

g) For any t, s ∈ Z with t ≥ s, the fundamental matrix χ(t, s) is invertible if
and only if, for any α ∈ {1, 2, . . . ,m} and any t ∈ Z, the matrix Aα(t) is invertible.

h) For any α ∈ {1, 2, . . . ,m}, any k ∈ N and for any t ∈ Z, Cα, k(t) is
invertible if and only if, for any α ∈ {1, 2, . . . ,m} and any t ∈ Z, the matrix Aα(t)
is invertible.

i) If ∀α ∈ {1, 2, . . . ,m}, ∀t ∈ Z, the matrix Aα(t) is invertible, then
∀t, s, t0 ∈ Z, with t ≥ s ≥ t0, we have χ(t, s) = χ(t, t0)χ(s, t0)−1.

j) If ∀α ∈ {1, 2, . . . ,m}, the matrix functions Aα(·) are constant, then
Cα, k(t) = Ak

α, ∀k ∈ N, ∀t ∈ Zm, ∀α ∈ {1, 2, . . . ,m},
χ(t, s) = A

(t1−s1)
1 A

(t2−s2)
2 · . . . ·A(tm−sm)

m , ∀t, s ∈ Zm, with t ≥ s.

Proof. b) It follows directly from the definition of the function χ(·, ·).
a) We fix s, r, with s ≥ r. Let Y1, Y2 :

{
t ∈ Z

∣∣ t ≥ s
}
→Mn(K),

Y1(t) = χ(t, s)χ(s, r), Y2(t) = χ(t, r), ∀t ≥ s.
Then Y1(t+ 1α) = χ(t+ 1α, s)χ(s, r) = Aα(t)χ(t, s)χ(s, r) = Aα(t)Y1(t);
Y1(s) = χ(s, s)χ(s, r) = Inχ(s, r) = χ(s, r) = Y2(s).
It follows that the functions Y1(·) and Y2(·) are both solutions of the recurrence

(9) and coincide for t = s. From uniqueness property, it follows that Y1(·) and Y2(·)
coincide; hence χ(t, s)χ(s, r) = χ(t, r), ∀t ≥ s.

c) Induction after k. For k = 0, the statement is obvious.
For k = 1: the equality χ(t+ 1α, s) = Cα, 1(t) · χ(t, s) is equivalent to
χ(t+ 1α, s) = Aα(t)χ(t, s), that is true, according to the definition of χ(·, s).

Let k ≥ 2. Suppose the statement is true for k − 1 and we shall prove for k.
χ(t+ k · 1α, s) = Aα(t+ (k − 1) · 1α)χ(t+ (k − 1) · 1α, s)
= Aα(t+ (k − 1) · 1α)Cα, k−1(t) · χ(t, s)
= Aα(t+ (k − 1) · 1α) ·Aα(t+ (k − 2) · 1α) · . . . ·Aα(t+ 1α)Aα(t) · χ(t, s)
= Cα, k(t)χ(t, s).
d) In the equality from the step c), we set s = t. We obtain χ(t+ k · 1α, t) =

Cα, k(t)χ(t, t) = Cα, k(t).
e) We use the step d). Cα, k(t+ p · 1β)Cβ, p(t) =
= χ(t+ p · 1β + k · 1α, t+ p · 1β)χ(t+ p · 1β , t) = χ(t+ p · 1β + k · 1α, t).
Analogously, one shows that Cβ, p(t+ k · 1α)Cα, k(t) = χ(t+ k · 1α + p · 1β, t).
f) One uses the step c): χ(t, s) = χ(t− (t1 − s1) · 11 + (t1 − s1) · 11, s) =
= C1, t1−s1(t− (t1 − s1) · 11) · χ(t− (t1 − s1) · 11, s) =
= C1, t1−s1(s1, t2, . . . , tm)χ

(
(s1, t2, . . . , tm), s

)
=

= C1, t1−s1(s1, t2, . . . , tm)χ
(
(s1, t2, . . . , tm)− (t2 − s2) · 12 + (t2 − s2) · 12, s

)
=

= C1, t1−s1(s1, t2, . . . , tm)C2, t2−s2

(
(s1, t2, . . . , tm)− (t2 − s2) · 12

)
·

·χ
(
(s1, t2, . . . , tm)− (t2 − s2) · 12, s

)
=

= C1, t1−s1(s1, t2, . . . , tm)C2, t2−s2(s1, s2, t3, . . . , tm)χ
(
(s1, s2, t3 . . . , tm), s

)
etc.

g) and h) If all the matrices χ(·, ·) are invertible, then from the equality
χ(t+ 1α, s) = Aα(t)χ(t, s) it follows that Aα(t) is invertible.
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If all matrices Aα(t) are invertible, then Cα, k(t) is invertible since Cα, k(t) is
either In, or a product of the matrices Aα(·).

If all the matrices Cα, k(t) are invertible, then χ(t, s) is invertible since χ(t, s)
is a product of matrices Cα, k(·), according to the step f).

i) The matrix χ(s, t0) is invertible. From the relation
χ(t, s)χ(s, t0) = χ(t, t0), we obtain χ(t, s) = χ(t, t0)χ(s, t0)−1.
j) The relation Cα, k(t) = Ak

α follows directly from the definition of Cα, k(t).
The second equality required is obtained using the step f). �

The following result can be proved easily by direct computation.

Proposition 3.3. We denote by Z one of the sets Zm or
{
t ∈ Zm

∣∣ t ≥ t1
}

(with
t1 ∈ Zm).

We consider the functions Aα : Z → Mn(K), α ∈ {1, 2, . . . ,m}, for which
the relations (3) are satisfied. Let (t0, x0) ∈ Z × Kn. Then, the unique function
x :
{
t ∈ Z

∣∣ t ≥ t0
}
→ Kn = Mn,1(K), which, for any t ≥ t0, verifies the recurrence

(8) and the initial condition x(t0) = x0, is
x(t) = χ(t, t0)x0, ∀t ≥ t0.

If ∀α ∈ {1, 2, . . . ,m}, the matrix functions Aα(·) are constant, then

x(t) = A
(t1−t10)
1 A

(t2−t20)
2 · . . . ·A(tm−tm0 )

m x0, ∀t ≥ t0. (11)
Remark 3.1. Let us suppose that Aα(·), bα(·) verify the relations (3) and (4). Let
y :
{
t ∈ Z

∣∣ t ≥ t0
}
→ Kn be a particular solution of the recurrence (2).

Note that for any other solution of the recurrence (2), x :
{
t ∈ Z

∣∣ t ≥ t0
}
→

Kn, the function x(·)− y(·) is a solution of the recurrence (8). Hence, according to
Proposition 3.3, we find x(t)− y(t) = χ(t, t0)

(
x(t0)− y(t0)

)
, ∀t ≥ t0.

It follows that the unique function x :
{
t ∈ Z

∣∣ t ≥ t0
}
→ Kn, which, for any

t ≥ t0, verifies the recurrence (2) and the initial condition x(t0) = x0, is
x(t) = χ(t, t0)

(
x0 − y(t0)

)
+ y(t), ∀t ≥ t0.

Theorem 3.1. We consider the functions Aα :
{
t ∈ Zm

∣∣ t ≥ t0
}
→ Mn(K), α ∈

{1, 2, . . . ,m} (with t0 ∈ Zm), for which the relations (3) are satisfied. We denote

V (t0) =
{
x :
{
t ∈ Zm

∣∣ t ≥ t0
}
→ Kn

∣∣∣ x is solution of the recurrence (8)
}
.

a) The set V (t0) is a K - vector space of dimension n.
b) Let

{
v1, v2, . . . , vn

}
be a basis of Kn. For j ∈ {1, 2, . . . , n}, we consider

yj :
{
t ∈ Zm

∣∣ t ≥ t0
}
→ Kn as solution of the recurrence (8)

which verifies yj(t0) = vj. Then the set
{
y1(·), y2(·), . . . , yn(·)

}
is a basis of the

vector space V (t0).
c) If z1(t), z2(t), . . . , zn(t) are the columns of the matrix χ(t, t0) (for t ≥ t0), then{
z1(·), z2(·), . . . , zn(·)

}
is a basis of the vector space V (t0).

Proof. a) and b): One verifies automatically that V (t0) is a vector space.
Let x(·) ∈ V (t0) and let x0 = x(t0). There exist a1, a2, . . . , an ∈ K such that

x0 = a1v1 + a2v2 + . . .+ anvn.
Let y(·) = a1y1(·) + a2y2(·) + . . . + anyn(·). Obvious that y(·) ∈ V (t0). We

find: y(t0) = a1y1(t0) + a2y2(t0) + . . .+ anyn(t0) = a1v1 + a2v2 + . . .+ anvn = x0.
Since x(·) and y(·) are solutions of the recurrence (8) and x(t0) = y(t0) = x0,
by uniqueness property (Theorem 2.1), it follows that x(·) = y(·); consequently
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x(·) = a1y1(·) + a2y2(·) + . . .+ anyn(·). We have proved that
{
y1(·), y2(·), . . . , yn(·)

}
is a system of generators for the vector space V (t0).

Let a1, a2, . . . , an ∈ K such that a1y1(·) + a2y2(·) + . . . + anyn(·) = 0, i.e.

a1y1(t) + a2y2(t) + . . .+ anyn(t) = 0, ∀t ≥ t0. For t = t0, we obtain
n∑

j=1

ajyj(t0) = 0,

i.e.,
n∑

j=1

ajvj = 0. Consequently aj = 0, ∀j. Hence y1(·), y2(·), . . . , yn(·) are linearly

independent, i.e.,
{
y1(·), y2(·), . . . , yn(·)

}
is a basis of the vector space V (t0); the

dimension of this space is obviously n.
c) Let

{
e1, e2, . . . , en

}
be the canonical basis of the space Kn. Hence In =(

e1 e2 . . . en

)
. From the definition of the matrix χ(t, t0), it follows that zj(·) is the

solution of the recurrence (8) which verifies zj(t0) = ej , ∀j. According to step b), it
follows that

{
z1(·), z2(·), . . . , zn(·)

}
is a basis of the vector space V (t0). �

3.1. Case of non-degenerate matrices

In this subsection, we consider the functions Aα : Zm →Mn(K),
α ∈ {1, 2, . . . ,m}, such that for any α ∈ {1, 2, . . . ,m} and any t ∈ Zm, the matrix
Aα(t) is invertible and ∀t ∈ Zm, ∀α, β ∈ {1, 2, . . . ,m} the relations (3) hold.

According to Theorem 2.2, for any pair (t0, x0) ∈ Zm × Kn, there exists a
unique function x : Zm → Kn, which verifies the recurrence

x(t+ 1α) = Aα(t)x(t), ∀t ∈ Zm, ∀α ∈ {1, 2, . . . ,m}, (12)
and the condition x(t0) = x0.

In this case the fundamental matrix can be defined on the set Zm × Zm. For
each t0 ∈ Zm, χ( · , t0) : Zm →Mn(K) is the unique matrix solution of the recurrence
X(t+1α) = Aα(t)X(t), ∀α ∈ {1, 2, . . . ,m}, which verifiesX(t0) = In. In this way we
obtain the fundamental matrix associated to the recurrence (12), i.e., the function
χ( · , · ) : Zm × Zm →Mn(K).

The statements in Proposition 3.2 are maintained with few changes.
The statement a) rewrites χ(t, s)χ(s, r) = χ(t, r), ∀t, s, r ∈ Zm. The proof is

similar to those given in the proof of Proposition 3.2.
The point i) becomes χ(t, s) = χ(t, t0)χ(s, t0)−1, ∀t, s, t0 ∈ Zm. For t0 = t,

we obtain χ(t, s) = χ(s, t)−1, ∀t, s ∈ Zm.
One can easily show that the point j) can be completed in this way:
if ∀α ∈ {1, 2, . . . ,m}, the matrix functions Aα(·) are constant, then
χ(t, s) = A

(t1−s1)
1 A

(t2−s2)
2 · . . . ·A(tm−sm)

m , ∀t, s ∈ Zm.
The analog of Proposition 3.3 is:
The solution of the recurrence (12) which verifies x(t0) = x0, is
x : Zm → Kn, x(t) = χ(t, t0)x0, ∀t ∈ Zm.
If ∀α ∈ {1, 2, . . . ,m}, the matrix functions Aα(·) are constants, then
x(t) = A

(t1−t10)
1 A

(t2−t20)
2 · . . . ·A(tm−tm0 )

m x0, ∀t ∈ Zm.

Let t0 ∈ Zm. We denoteW (t0) =
{
x : Zm → Kn

∣∣∣ x is solution of the recurrence (12)
}
.

With a proof similar to those for Theorem 3.1, we obtain:
a) The set W (t0) is a K - vector space of dimension n.
b) Let

{
v1, v2, . . . , vn

}
be a basis of Kn. For j ∈ {1, 2, . . . , n}, we consider
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yj : Zm → Kn as solution of the recurrence (12) which verifies yj(t0) = vj. Then the
set
{
y1(·), y2(·), . . . , yn(·)

}
is a basis of the space W (t0).

c) If z1(t), z2(t), . . . , zn(t) are the columns of the matrix fundamental χ(t, t0), then{
z1(·), z2(·), . . . , zn(·)

}
is a basis of the space W (t0).

4. Solving the linear discrete multitime multiple recurrence
with constant coefficients

Let A1, A2, . . . , Am ∈Mn(K) be constant matrices such that AαAβ = AβAα,
∀α, β ∈ {1, 2, . . . ,m}. Let t0 ∈ Zm and x0 ∈ Kn. According to Proposition 3.3, the
function x :

{
t ∈ Zm

∣∣ t ≥ t0
}
→ Kn, given by the formula (11), is the solution of

the recurrence x(t+ 1α) = Aαx(t), ∀α ∈ {1, 2, . . . ,m}, (13)
which verifies x(t0) = x0. If ∀α, Aα is invertible, then according to results in
Subsection 3.1, the recurrence (13) has a unique solution x : Zm → Kn which verifies
x(t0) = x0. This is defined by the same formula (11), but for any t ∈ Zm.

We shall use the following result.

Theorem 4.1. Let K be a field and let F 6= ∅, F ⊆ Mn(K), such that any two
matrices from F commute. If any matrix in F is diagonalizable (over K), then there
exists an invertible matrix T ∈Mn(K), such that ∀A ∈ F , ∃D(A) ∈Mn(K), D(A)
diagonal matrix, for which A = TD(A)T−1.

We shall denote by diag(d1; d2; . . . ; dn) ∈Mn(K), the diagonal matrix, which
has on the principal diagonal the elements d1, d2, . . . , dn, in this order.

If the matrix A ∈Mn(K) has the columns q1, q2, . . . , qn, we shall denote
A = col(q1; q2; . . . ; qn).

Theorem 4.2. Let A1, A2, . . . , Am ∈ Mn(K) be diagonalizable matrices (over K),
such that AαAβ = AβAα, ∀α, β ∈ {1, 2, . . . ,m}.

Let T = col(v1; v2; . . . ; vn) ∈Mn(K) be an invertible matrix such that
Aα = T · diag(λ1,α;λ2,α; . . . ;λn,α) · T−1, ∀α ∈ {1, 2, . . . ,m},

where λ1,α, λ2,α, . . . , λn,α ∈ K (such T exists, according to Theorem 4.1).
Then, ∀(t0, x0) ∈ Zm ×Kn, the solution of the recurrence (13), which verifies

x(t0) = x0, is x :
{
t ∈ Zm

∣∣ t ≥ t0
}
→ Kn,

x(t) =
n∑

j=1

cj

( m∏
α=1

λ
tα−tα0
j,α

)
vj , ∀t ≥ t0, (14)

where (c1, c2, . . . , cn)> = T−1x0.
If ∀α, the matrix Aα is invertible, then the recurrence (13) has a unique so-

lution x : Zm → Kn which verifies x(t0) = x0. This solution is defined also by the
formula (14), but for any t ∈ Zm.

Proof. According to formula (11), for any t ≥ t0, we have

x(t) =
( m∏

α=1

A
tα−tα0
α

)
x0 =

( m∏
α=1

(
T · diag(λ1,α;λ2,α; . . . ;λn,α) · T−1

)tα−tα0
)
x0

= T ·
( m∏

α=1

diag
(
λ

tα−tα0
1,α ;λtα−tα0

2,α ; . . . ;λtα−tα0
n,α

))
· T−1x0

= col(v1; v2; . . . ; vn) · diag
( m∏

α=1

λ
tα−tα0
1,α ;

m∏
α=1

λ
tα−tα0
2,α ; . . . ;

m∏
α=1

λ
tα−tα0
n,α

)
· T−1x0
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= col

(( m∏
α=1

λ
tα−tα0
1,α

)
v1;
( m∏

α=1

λ
tα−tα0
2,α

)
v2; . . . ;

( m∏
α=1

λ
tα−tα0
n,α

)
vn

)
· (c1, c2, . . . , cn)>

=
n∑

j=1

cj

( m∏
α=1

λ
tα−tα0
j,α

)
vj .

If all the matrices Aα are invertible, then we saw that the formula (11) is true
for any t ∈ Zm. But Aα is invertible iff λj,α 6= 0, ∀j = 1, n. We notice easily that in
this case all equalities above are true for any t ∈ Zm. �

Remark 4.1. If T = col(v1; v2; . . . ; vn) ∈ Mn(K) is the invertible matrix which
appears in Theorem 4.2, then

{
v1, v2, . . . , vn

}
is a basis of Kn, and each vj is an

eigenvector for all the matrices Aα.

Remark 4.2. In the conditions of Theorem 4.2, the fundamental matrix is

χ(t, t0) = T ·
( m∏

α=1

diag
(
λ

tα−tα0
1,α ;λtα−tα0

2,α ; . . . ;λtα−tα0
n,α

))
· T−1, ∀t ≥ t0.

If all the matrices Aα are invertible, then the foregoing formula is true for any
(t, t0) ∈ Zm × Zm.
ForA ∈Mn(K) and k ∈ N, we denote S(k;A) =

{
In +A+ . . .+Ak−1 if k ≥ 1

On if k = 0.

Theorem 4.3. For α ∈ {1, 2, . . . ,m}, we consider the matrices Aα ∈ Mn(K),
bα ∈ Kn = Mn,1(K) such that

AαAβ = AβAα, ∀α, β ∈ {1, 2, . . . ,m} (15)
(In −Aα)bβ = (In −Aβ)bα, ∀α, β ∈ {1, 2, . . . ,m}. (16)

Let (t0, x0) ∈ Zm ×Kn. The solution of the recurrence
x(t+ 1α) = Aαx(t) + bα, ∀α ∈ {1, 2, . . . ,m}, (17)

which verifies x(t0) = x0, is the function x :
{
t ∈ Zm

∣∣ t ≥ t0
}
→ Kn, defined for

any t ≥ t0 by

x(t) =
( m∏

α=1

A
tα−tα0
α

)
x0 + S(t1 − t10;A1)b1 +

m∑
β=2

( β−1∏
α=1

A
tα−tα0
α

)
S(tβ − tβ0 ;Aβ)bβ ,

if m ≥ 2, respectively x(t) = A
t1−t10
1 x0 + S(t1 − t10;A1)b1, if m = 1.

Proof. According to Theorem 2.1 and Remark 2.1 it follows that the recurrence (17)
has a unique solution which verifies x(t0) = x0.

We prove the statement by induction on m, the number of components of t.
For m = 1, one verifies immediately, by direct computations, that for any t ≥ t0,
the function x(t) verifies the recurrence (17) and the condition x(t0) = x0.

Let m ≥ 2. Suppose the statement is true for m− 1 and we shall prove it for
m. We denote t̃ = (t2, . . . , tm); t̃0 = (t20, . . . , t

m
0 ).

Let x̃(t̃) = x(t10, t̃) = x(t10, t
2, . . . , tm). If t1 > t10, then

x(t) = x(t1, t̃) = A1x(t1 − 1, t̃) + b1 = A2
1x(t

1 − 2, t̃) +A1b1 + b1 =
= . . . = Ak

1x(t
1 − k, t̃) +Ak−1

1 b1 + . . .+A1b1 + b1 =

= . . . = A
t1−t10
1 x(t10, t̃) +A

t1−t10−1
1 b1 + . . .+A1b1 + b1

= A
t1−t10
1 x̃(t̃) + S(t1 − t10;A1)b1.

We have proved that if t1 > t10, then x(t) = A
t1−t10
1 x̃(t̃) + S(t1 − t10;A1)b1;

relation which is verified immediately for t1 = t10.
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For α ∈ {2, . . . ,m}, we denote 1̃α = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zm−1; hence
1α = (0, 1̃α). For α ≥ 2 and t1 = t10, the relations (17) become: x((t10, t̃) + (0, 1̃α)) =
Aαx(t10, t̃) + bα, i.e., x̃(t̃+ 1̃α) = Aαx̃(t̃) + bα, ∀ t̃ ≥ t̃0, ∀α ∈ {2, . . . ,m}.

Obviously x̃(t̃0) = x(t10, t̃0) = x(t0) = x0. Since t̃ has m− 1 components, from
the induction hypothesis follows that ∀t̃ ≥ t̃0 we have

x̃(t̃) =
( m∏

α=2

A
tα−tα0
α

)
x0 + S(t2 − t20;A2)b2 +

m∑
β=3

( β−1∏
α=2

A
tα−tα0
α

)
S(tβ − tβ0 ;Aβ)bβ,

if m ≥ 3, respectively x̃(t̃) = A
t2−t20
2 x0 + S(t2 − t20;A2)b2, if m = 2.

Hence, if m ≥ 3, for any t ≥ t0, we have x(t) = A
t1−t10
1 x̃(t̃) + S(t1 − t10;A1)b1

= A
t1−t10
1

( m∏
α=2

A
tα−tα0
α

)
x0 +A

t1−t10
1 S(t2 − t20;A2)b2

+
m∑

β=3

A
t1−t10
1

( β−1∏
α=2

A
tα−tα0
α

)
S(tβ − tβ0 ;Aβ)bβ + S(t1 − t10;A1)b1

=
( m∏

α=1

A
tα−tα0
α

)
x0 + S(t1 − t10;A1)b1 +

m∑
β=2

( β−1∏
α=1

A
tα−tα0
α

)
S(tβ − tβ0 ;Aβ)bβ.

If m = 2, for any t ≥ t0, we have x(t) = A
t1−t10
1 x̃(t̃) + S(t1 − t10;A1)b1 =

= A
t1−t10
1 A

t2−t20
2 x0 +A

t1−t10
1 S(t2 − t20;A2)b2 + S(t1 − t10;A1)b1. �

Theorem 4.4. Consider the matrices Aα ∈ Mn(K), bα ∈ Kn = Mn,1(K), which
for any α, β ∈ {1, 2, . . . ,m} satisfy the conditions (15) and (16).

a) Suppose there exists an index α0 ∈ {1, 2, . . . ,m}, for which the matrix
In −Aα0 is invertible. Let v ∈ Kn, such that (In −Aα0)v = bα0, i.e.
v = (In −Aα0)

−1bα0. Then
(In −Aα)v = bα, ∀α ∈ {1, 2, . . . ,m}. (18)

b) Suppose there exists v ∈ Kn, such that, for any α ∈ {1, 2, . . . ,m}, the
relations (18) are true.

Let (t0, x0) ∈ Zm × Kn. Then, the solution of the recurrence (17), which
verifies x(t0) = x0, is the function x :

{
t ∈ Zm

∣∣ t ≥ t0
}
→ Kn, defined for any

t ≥ t0 by
x(t) =

( m∏
α=1

A
tα−tα0
α

)
· (x0 − v) + v. (19)

If furthermore, ∀α, the matrix Aα is invertible, then the recurrence (17) has a
unique solution x : Zm → Kn, which verifies x(t0) = x0. This is defined also by the
formula (19), but for any t ∈ Zm.

Proof. a) From the relation (In −Aα)bα0 = (In −Aα0)bα it follows the equality:
(In − Aα)(In − Aα0)v = (In − Aα0)bα ⇐⇒ (In − Aα0)(In − Aα)v = (In − Aα0)bα.
Since In −Aα0 is invertible, we obtain (In −Aα)v = bα.

b) Let x(·) be the solution of the recurrence (17), which verifies x(t0) = x0.
We denote y(·) = x(·)− v, i.e. x(·) = y(·) + v. We have

y(t+ 1α) + v = Aα

(
y(t) + v

)
+ bα, ∀α ∈ {1, 2, . . . ,m},

⇐⇒ y(t+ 1α) = Aαy(t)− (In −Aα)v + bα, ∀α ∈ {1, 2, . . . ,m}.
Since the relations (18) are true, it follows that y(·) is the solution of the

recurrence (13) which verifies y(t0) = x0 − v. According to Proposition 3.3, ∀t ≥ t0
we have
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y(t) =
( m∏

α=1

A
tα−tα0
α

)
· (x0 − v). (20)

From the equality y(t) = x(t)− v, we obtain the relation (19).
If ∀α, the matrix Aα is invertible, then according to the remarks in Subsec-

tion 3.1, it follows that the relation (20) is true for any t ∈ Zm; consequently, also
the formula (19) is valid for any t ∈ Zm. �
Remark 4.3. The statement: “there exists v ∈ Kn, such that, for any α, the rela-
tions (18) are true” is equivalent to the fact that the recurrence (17) has a constant
solution x(·) = v.

5. Recurrences on a monoid
Let M be a nonvoid set, let

(
N, ·, E

)
be a monoid and let ϕ : N ×M →M be

an action of the monoid N on the set M , i.e.
ϕ(AB, x) = ϕ

(
A, (B, x)

)
, ϕ(e, x) = x, ∀A,B ∈ N,∀x ∈M. (21)

For any A ∈ N , x ∈M , we denote ϕ(A, x) = Ax (not to be confused with the
operation of monoid N). The relations (21) become

(AB)x = A(Bx), ex = x, ∀A,B ∈ N,∀x ∈M.
We denote by Z one of the sets Zm or

{
t ∈ Zm

∣∣ t ≥ t1
}

(with t1 ∈ Zm).
For each α ∈ {1, 2, . . . ,m}, we consider the functions Aα : Z → N , which

define the recurrence
x(t+ 1α) = Aα(t)x(t), ∀α ∈ {1, 2, . . . ,m}, (22)

with the unknown function x :
{
t ∈ Z

∣∣ t ≥ t0
}
→M , t0 ∈ Z.

Remark 5.1. For
(
N, ·, E

)
=
(
Mn(K), ·, In

)
, M = Kn = Mn,1(K) and the action

ϕ : Mn(K)×Kn → Kn, ϕ(A, x) = Ax, ∀A ∈Mn(K), ∀x ∈ Kn,
the recurrence (22) becomes the recurrence (8).

With a similar proof with those in Theorem 2.1, it follows
Theorem 5.1. a) If, for any (t0, x0) ∈ Z ×M , there exists at least one function
x :
{
t ∈ Z

∣∣ t ≥ t0
}
→M , which, for any t ≥ t0, verifies the recurrence (22) and the

condition x(t0) = x0, then
Aα(t+ 1β)Aβ(t)x = Aβ(t+ 1α)Aα(t)x, (23)

∀t ∈ Z, ∀x ∈M , ∀α, β ∈ {1, 2, . . . ,m}.
b) If the relations (23), are satisfied, then, for any (t0, x0) ∈ Z ×M , there

exists a unique function x :
{
t ∈ Z

∣∣ t ≥ t0
}
→M , which, for any t ≥ t0 verifies the

recurrence (22) and the condition x(t0) = x0.
Now we consider the action of the monoid N on himself, ξ : N × N → N , defined
by ξ(A,X) = A ·X, ∀A,X ∈ N (“ · ” is the operation considered onN).

In this case, being given the functions Aα : Z → N , α ∈ {1, 2, . . . ,m}, the
analogue of the recurrence (22) is

X(t+ 1α) = Aα(t)X(t), ∀α ∈ {1, 2, . . . ,m}, (24)
with the unknown function X :

{
t ∈ Z

∣∣ t ≥ t0
}
→ N , t0 ∈ Z.

By doing like in the proof of Theorem 2.1, it is shown that
Theorem 5.2. a) If, for any t0 ∈ Z, there exists at least one function
X :

{
t ∈ Z

∣∣ t ≥ t0
}
→ N , which, for any t ≥ t0, verifies the recurrence (24) and the

condition X(t0) = E, then
Aα(t+ 1β)Aβ(t) = Aβ(t+ 1α)Aα(t), (25)

∀t ∈ Z, ∀α, β ∈ {1, 2, . . . ,m}.
b) If the relations (25), are satisfied, then, for any (t0, X0) ∈ Z × N , there

exists a unique function x :
{
t ∈ Z

∣∣ t ≥ t0
}
→ N , which, for any t ≥ t0 verifies the

recurrence (24) and the condition X(t0) = X0.
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Definition 5.1. Suppose that the functions Aα : Z → N , α ∈ {1, 2, . . . ,m}, verify
the relations (25).

For each t0 ∈ Z, we denote χ( · , t0) :
{
t ∈ Z

∣∣ t ≥ t0
}
→ N the unique solution

of the recurrence (24) which verifies X(t0) = E.
The function χ( · , · ) :

{
(t, s) ∈ Z × Z

∣∣ t ≥ s
}
→ N is called the fundamental

(transition) function associated to the recurrence (22).
This is the analog of the fundamental solution associated to the recurrence

(8), introduced in Definition 3.1.
For α ∈ {1, 2, . . . ,m} and k ∈ N, we consider the function Cα, k : Z → N ,

defined formally by the relation (10), replacing In with E, but now Aα : Z → N ,
hence Aα(·) are not matrix functions.
Remark 5.2. If the functions Aα : Z → N , α ∈ {1, 2, . . . ,m}, verify the relations
(25), then Proposition 3.2 can be rewritten with the help of Aα(·), Cα, k(·), χ( · , · )
discussed in this section (instead of matrices); the proof is identically to those in
Proposition 3.2.

Analogous to Proposition 3.3, we have
Proposition 5.1. We consider the functions Aα : Z → N , α ∈ {1, 2, . . . ,m}, for
which the relations (25) are satisfied. Let (t0, x0) ∈ Z × M . Then, the unique
function x :

{
t ∈ Z

∣∣ t ≥ t0
}
→M , which, for any t ≥ t0, verifies the recurrence (22)

and the condition x(t0) = x0, is
x(t) = χ(t, t0)x0, ∀t ≥ t0.
If ∀α ∈ {1, 2, . . . ,m}, the functions Aα(·) are constant, then
x(t) = A

(t1−t10)
1 A

(t2−t20)
2 · . . . ·A(tm−tm0 )

m x0, ∀t ≥ t0.

We return to the recurrence (2), i.e. x(t+ 1α) = Aα(t)x(t) + bα(t); where K
is a field and Aα : Z → Mn(K), bα : Z → Kn = Mn,1(K) verify the relations (3)
and (4). Let x :

{
t ∈ Zm

∣∣ t ≥ t0
}
→ Kn the function which, for any t ≥ t0, verifies

the recurrence (2) and the condition x(t0) = x0 (t0 ∈ Z, x0 ∈ Kn).
We shall assume in addition that ∀α ∈ {1, 2, . . . ,m}, ∀t ∈ Z, the matrix

Aα(t) is invertible. Let χ(·, ·) be the transition (fundamental) matrix associated to
the linear homogeneous recurrence (8). According to Proposition 3.2, ∀t ≥ s, the
matrix χ(t, s) is invertible. Since ∀t ≥ t0, χ(t+ 1α, t0) = Aα(t)χ(t, t0) or
Aα(t) = χ(t+ 1α, t0)χ(t, t0)−1, it follows that the equality (2) is equivalent to

x(t+ 1α) = χ(t+ 1α, t0)χ(t, t0)−1x(t) + bα(t)
⇐⇒ χ(t+ 1α, t0)−1x(t+ 1α) = χ(t, t0)−1x(t) + χ(t+ 1α, t0)−1bα(t).

Let x̃ :
{
t ∈ Zm

∣∣ t ≥ t0
}
→ Kn, x̃(t) = χ(t, t0)−1x(t), ∀t ≥ t0. For α ∈ {1, 2, . . . ,m},

let Ãα :
{
t ∈ Zm

∣∣ t ≥ t0
}
→ Kn, Ãα(t) = χ(t+ 1α, t0)−1bα(t), ∀t ≥ t0.

We have x̃(t0) = χ(t0, t0)−1x(t0) = x(t0).
From the above it follows that x(·) is a solution of the recurrence (2) which

verifies x(t0) = x0, if and only if x̃(·) is the solution of the recurrence
x̃(t+ 1α) = Ãα(t) + x̃(t), ∀t ≥ t0, ∀α ∈ {1, 2, . . . ,m}, (26)

which verifies x̃(t0) = x0. We find that the recurrence (26) is of type (22), where:(
N, ·, E

)
=
(
Kn,+, 0

)
, M = N = Kn and the action is

ψ : Kn ×Kn → Kn, ψ(Ã, x̃) = Ã+ x̃, ∀Ã ∈ Kn, ∀x̃ ∈ Kn.

The relation (25) corresponding to the recurrence (26) is: Ãα(t+1β)+Ãβ(t) =
Ãβ(t+ 1α) + Ãα(t) ⇐⇒ χ(t+ 1β + 1α, t0)−1bα(t+ 1β) + χ(t+ 1β, t0)−1bβ(t)
⇐⇒ χ(t+ 1β + 1α, t0)−1bα(t+ 1β) + χ(t+ 1β, t0)−1bβ(t) = χ(t+ 1α + 1β, t0)−1
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bβ(t+1α)+χ(t+1α, t0)−1bα(t) ⇐⇒ bα(t+1β)+χ(t+1α +1β, t0)χ(t+1β, t0)−1bβ(t)
= bβ(t+1α)+χ(t+1α +1β, t0)χ(t+1α, t0)−1bα(t) ⇐⇒ Aα(t+1β)bβ(t)+bα(t+1β) =
Aβ(t+ 1α)bα(t) + bβ(t+ 1α); and this is the relation (4), which is satisfied.

Let χ̃( · , · ) :
{
(t, s) ∈ Zm × Zm

∣∣ t ≥ s ≥ t0
}
→ Kn be the fundamental

function associated to the recurrence (26). According to Proposition 5.1, we have
x̃(t) = χ̃(t, t0) + x0. Since x(t) = χ(t, t0)x̃(t), it follows that

x(t) = χ(t, t0)x0 + χ(t, t0)χ̃(t, t0).
According to Remark 5.2, the matrix χ̃(t, t0) writes as a sum of matrices

C̃α, k(·) (analogue of the relation in the step f) of Proposition 3.2, but with the

operation “ + ” instead of multiplication), and: C̃α, k(t) =
k∑

j=1

Ãα(t+ (k − j) · 1α),

if k ≥ 1, and C̃α, 0(t) = 0; i.e. the analogue of the formula (10).
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[6] C. Ghiu, R. Tuligă, C. Udrişte, Discrete multiple recurrence, U.P.B. Sci. Bul. Series A,

81(2019), No. 4, 25-38.

[7] H. Hauser, C. Koutschan, Multivariate linear recurrences and power series division, Discrete

Mathematics, 312(2012), 3553-3560.

[8] V. Prepeliţă, Multiple (n, m)-hybrid Laplace Transformation and applications to multidimen-

sional hybrid systems. Part I, U.P.B. Sci. Bull. Series A, 72(2010), No. 2, 105-120.
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