U.P.B. Sci. Bull., Series A, Vol. 80, Iss. 4, 2018 ISSN 1223-7027

UNIQUENESS OF INVERSE PROBLEMS FOR
DIFFERENTIAL PENCILS WITH THE SPECTRAL
DISCONTINUITY CONDITION

Yasser KHALILIY, Abdolhadi DABBAGHIAN?, Mohsen Khaleghi
MOGHADAM:?

In this paper we investigate the inverse problem for a differential pencil with

the non-smooth solutions on the finite interval [0-1], we establish properties of the
spectral characteristics and by taking the Weyl function, we prove the uniqueness
theorem for this inverse problem.
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1. Introduction

The boundary value problem L for the differential pencil is written as

y"(x) + (p* — 2pp(x) — g(x)ylx) =0, x e [01] 1)
Uly) = y'(0) — hy(0) =0, (2)
viy) = y'(1) + Hy(1) = 0, 3

with the discontinuity conditions

I}-‘{a +0.p0) = ayla — 0.0, (4)
yia+0.0) =aty'a—-0p +(8p +y)yla—0.p)

in an interior point x =a. The functions »(x) and g(x) are real-valued and
plx) e w01l glx) e L*[0.1]. Also g is a spectral parameter, the coefficients o 3. .
h and H are real numbers and a = +1.

Various problems of natural sciences can be modeled by Sturm-Liouville
equations and parameters of these problems can be recovered by inverse problem
theories. For example, an inverse spectral technique is used to reconstruct some
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components of the residual stress tensor in the arterial wall (see, [10,11]).
Discontinuous boundary value problems which the main discontinuity is caused
by reflection of the shear waves at the base of the crust appear in geophysical
models for oscillations of the earth (see, [3,16]). Inverse problems appear in
electronics for constructing parameters of heterogeneous electronic lines with
desirable technical characteristics (see, [15,19]). After reducing the corresponding
mathematical model, we obtain the boundary value problem L with discontinuities
in an interior point where the potential function 2(x) = 2pp(x) + g(x) must be
constructed from the given spectral information. Spectral information can be also
used to reconstruct the conductivity profiles of a one dimensional discontinuous
medium.

Boundary value problems with discontinuous conditions often appear in
mathematics, physics, geophysics, mechanics and other branches of natural
sciences. The important results for inverse problems without discontinuity
conditions have been studied in [8,14,17]. The behavior of the spectrum and
study of the inverse problem for discontinuous boundary value problems are more
complicated (see, [6,12,13]). Inverse problems for Sturm-Liouville operators and
quadratic pencils of Sturm-Liouville operators with the jump condition have been
studied in many works (see, [5,9,18,20]). For example, Yurko has studied non-
self-adjoint differential pencils with quasi-periodic boundary conditions and
spectral jump conditions in [23]. Yang has considered the inverse problems for
differential pencils with spectral boundary conditions and jump conditions (see,
[21]). Spectral problems for discontinuous operators with the conditions like

[y{u. +0.p) = ayyla — 0, p)l,
y'ila +0,p) =av(a—0p) +avia—0pa),

were also studied in [1,2,13,22]. We would like to study the inverse problem for
differential pencils with Robin boundary conditions and spectral jump conditions
that is a new work in this field. In this work we study the inverse problem for
discontinuous diffusion operators using the Weyl function. We apply the method
of the spectral mappings which is an impressive technique for studying a various
class of the inverse problems.

To give the Weyl function, the fundamental system of solutions (FSS) plays an
important role. By taking this function and applying the spectral mappings
method, we prove the uniqueness solution of the inverse problem. In Sec. 2, we
establish the asymptotic form of the solutions and eigenvalues. In Sec. 3, we
prove the uniqueness theorem. Finally, Sec. 4 contains some conclusion.
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2. The behavior of the spectrum

Let the functions C(x.g). S(x.p). @(x.p) and w(x.2) be the solutions of Eq. (1)
under the initial  conditions  C(0.p) = 5'(0.p) = @0.p) =w(l.p) =1,
€'(0.p) =500.p) =0, '(0.p) = h ¢'(1.p) = —H and the jump condition (4).

Let ¢,lx. o) and 5,(x, ) be the smooth solutions of Eq. (1) on the interval [0.1]
under the initial conditions ¢,(0.p) = 5;(0.p) =1 and €,{0,p) = 5,(0.2) = 0. For
each fixed =xel01], the functions Cylx.p), 5,(x p), Clx.p), 5(x.0), @(x,p) and
w(x, p) together with their derivatives with respect to x are entire in p.

We can write for x < a and x = a.

Cla,p)} = Ay (p) Cplx, p) + Ay () 55 (x, o), 5
(. p) = Any () Colx, p) + Ana () 5,0, ). (®)

By using the initial conditions at x = 0, it is trivial that for x < a,
Ay lp) = Ap(p) =1, Al =A,() =0,

and therefore

[C{,r,pJ = Cplx, o),
Stx. p) = 5,(x, p).

By taking these solutions and the jump condition (4), we have for x = a,

Ay (p) = aCyla.p) Sila. p) —a=5,(a. p)Cola. p) — Bp +¥)C,(a. p)5,(a. p).
A(p) = (et — a)Cyla p) Cyla. p) + (Bp + ¥)C (a. p).
A3 () = (@ — a*)5,(a.p) 55(a. p) — Bp + 715, (a p),
A (p) = a=*Cyla, p)55(a, p) — aSyla, p)Cila. p) + Bp +1)C,(a, p)5,(a, p).

(6)

Denote the characteristic function for the boundary value problem L by
Alp) = (@lx, p). @lx. p) ),

where {y.z} = yz' — ¥’z is the Wronskian of the functions y(x) and z(x). By virtue
of Liouville’s formula for the Wronskian, we have

Alp) = —Vig) = U(y) @)
(see [9]). This function is entire in p.
From [4,9], we know that for |gl — <. uniformly in x < a.

o(x,p) = cos(px — P(x)) + 0(p~Lexp(|t|x)), (8)
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@' (x,p) = —psin(px— P(x)) + 0(exp(lz|x)), (9)
where P(x) = [, p(t)dt, = p*7 = Imp.

Theorem 2.1. We derive the following asymptotical expression for |gl — e,
ap) = p(—b, sin(p — P(D)) + b_sin(p(2a — 1) — 2P(@) + P(1))
—%{cus{p —P(1)) +2cos(p(2a — 1) — 2P(a) + P{l]]})
+0(exp (1)), (10)

I:'_i

where b, ===— ,b_=

Proof: From [4,9], we know that for Ipl — e,

I

Colx. p) = coslpx — P(x)) + M

+olptexp(lzlx)).

Cylx.p) = —psin(px — P(x)) + 2(x) cos(px — P(x))
+o((exp(|7]x)),

where 0(x) = - [ q(®) dt. Also

5,_\':.1', .G:] — sinlpx—P(x)) _ Qiﬂrmipﬂx—?‘(x})
g g
+olp2exp(lzlx)).

S0 p) = coslpx — P(x)) 4 LT

+olp~texp(lzlx)).

By applying these functions and (5), (6), we obtain for x = a.

Clx.p) = b, cos(px— P(x)) + b_ coslp (2a — x) — 2P(a) + P(x))
+2(sin(px — P00) —2sin(p (2a — x) — 2P(@) + P(x)))
+ 0(ptexp(lzlx)).

Slx.p) = %{Ez,r sin(px —P(x)) + b_sin(p(2a — x) — 2P(a) + P(x))
—%(ms{px— P(x)) —cos(p(2a —x) — 2P(a) + T(x}]})
+ 0(p~2exp(lzlx)).
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Since the functions C(x. g} and 5(x,2) are the fundamental system of solutions of
(1), we can write

plx, p) = Hy(p)C(x, p) + H,(p) S(x, p).
Therefore
w'(x,p) = H(p)C'(x, p) + H,(p) 5'(x. p).

Considering the initial conditions for the solutions (x. g}, Clx.p)} and 5(x. p), we
will have

Icp{UJpJ =H,(p)C(0.p} + Hy(p) 500, p), {1 =H,(p) x1 +H,(p) x0,
@'(0,p) = H,(p)C'(0,p) + H,(p) 5(0, p), h=H,(p)%x 0+ H,(p) x1

So H,(p) = 1and H;(z) =k and consequently ¢(x, 2} = Clx,p} + R5(x, ). Thus

olx,p) = b, cos(px— Px)) + b_ cos(p(2a — x) — 2P(a) + P(x))
-I—%{s:‘n{px— Plx))-2sin(p 2a — x) — 2P(a@) + P(x)))
+2 (b, sin(px— P()) + b_sin(p(2a — x) — 2P(@) + P(x))
~£(cos(px— P(x)) —cos(p(2a — x) - 2P(a) + P(x))))
+ 0(p2exp(lelx) ), x> a. (11)
So
@' (x.p) = p(—b, sin(px— P()) + b_sin(p(2a — x) — 2P(a) + P(x))
+£ (cos(px — P10)) +2c0s(p(2a — x) — 2P(a) + P(x)))
+h(b, cos(px— Px)) — b_cos(p(2a — x) — 2P(a) + Px))
+£ (sin(px— P)) +sinlp 2a - x) — 2P(@) + P(x))))

+ 0(p~texp(ltlx)). x> a. (12)

Using (3) and (7) into account, These yield (10). ©

Lemma 2.1. ([24]). Let {a}_, be the set of real numbers satisfying the
inequalities a, > a; = - = a,_, = 0 and {p}_, be the set of complex numbers. If
b, = 0, then the roots of the equation

g%l 4 bye®t 4o b, et b, =0,
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have the form

Ap=— n=0+1,..
o

where k(n) is a bounded sequence.

Theorem 2.2. For sufficiently large =. the function a(z) has simple zeros of the
form

gy =nm +P(1) +o, +0(n~t), (13)

where g, == {ﬂ{L Ki)

[+Ky

Proof: By the well-known standard method, we can write the zeros of the
function aig} by the following form (see [7])

on =pl + 00", nl = oo,
where & are the zeros of the function

A"p) = p(=b, sin(p — P(1)) + b_sin(p(2a — 1) — 2P(a) + P(1))
+£(cos(p —P(D)) +2c0s(p(2a — 1) - 2P(a) + P(1))))

Considering «, ==- and x, =+, we have

J1+x,® E:+( _.1—,5:'?1{.9 —-P(1)) - .Ki— cos(p— P{'l:l}]

1+

= JTH b (Zmsin(o2a — 1) ~ 2P(@) + P(1)

+ % cos(p(2a — 1) — 2P(a) + 3:'{1}]]-
So

W1+ x2h, (cos o, sin(p — P(1)) — sin 7, cos(p — P(1)))
=1+ x;%b_(cos o, sin(p(2a — 1) — 2P(a) + P(1))
+ sin 0, cos(p (2a — 1) — 2P(@) + P(1))),

—,
1+ K1 by

where o; =Zin (=2 o ). Now assuming £ = =, We can write

K sin(p — P(1) — 0, )= sin(p(2a — 1) — 2Pla) + P(1) + . ).
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Since the trigonometric function sin g = ¥ by using Lemma 2.1, we have for
sufficiently large =,
por =nm +P(1) + o,
By applying the Rouche’s theorem, we arrive at the eigenvalues (13). 0
Corollary 2.1. For lgl — o=, It follows from (8), (9), (11) and (12) that
™ (x,p)| = Clp|™exp(lz|x), x € [0,1] (14)

Put ¢lx.p) = % Since yix,p) is the solution of Eq. (1) under the boundary

condition V() = 0, it is trivial that ¢(x. 2} is the solution of Eq. (1) and V(g) = 0.
Also from alp) = Up). we can result clearly that (g} =1. The functions ¢(x. g)
and M(g):=¢(0.5) are called the Weyl solution and Weyl function for the
boundary value problem L. respectively. By virtue of Liouville’s formula for the
Wronskian, we have

{plx.p).5(x.p)} = 0(0.0)5'(0.p) — @' (0.p)5(0.p) =1 x1-0xh=1,
and therefore we can write
¢lx,p) = hy(p) S(x, p) + Ry (Pl (x, p).
Now considering the initial conditions at x = 0, we have

I:p{n,p] = hy(p)500. p) + hy (o) (0. p),
"0, p} = hy (p) 500, p) + k(0 '(0, o).

Since ¢'(0.p) = A(g) + hw (0, pl.we can write  4(p) =¢'(0.p) — hyp(0.p). SO

wring)  alpl+rypio.p)
atgd Alpl

¢'(0,p) = =1+ hM{p).

By regarding to the above system and substituting the initial conditions, we give

Iﬂf{_ﬂ_] =hlp) x0+h(p) x1, = hyip) =Mip),
1+hMp) =h(p) x 1+ M(p) xh, = hip) =1

Thus
¢(x. p) = 5(x. p) + Mp) p(x, p). (15)

Furthermore by taking the initial conditions for the functions , ¢(x. 2} and @(x, g)
we have
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(plx.p). ¢ (x,p)) = @0, p)g" (0. p) — @"(0,p)p(0.p) =1 x (1 + hM(p)) — kM (p) =1. (16)

Theorem 2.3. We have the following asymptotic representations for |zl — ==,

Ylx.p) = coslp(l —x) =P + PN + 0 (p~texp(tl1 - x))). x e @11, (17)

Yix, p) = b eos(p(l — x) — P + P(x))
—b_cos(p(l — 2a — x) — P(1) - 2P(a) + P(x))
+E(sinlp1 — x) — P(L) + P(x))
 4sine(l — 2a — ) — P(D) — 2P(@ + P(x)))
+0 (p'lexp{l*rl'il - x]}), xe [0,al. (18)

Proof: Taking the FSS € (x.p).5,(x.p} and the standard method, we have for
x e (a.1],

wix,p) = By, (p)Colx. p) + By, (p) 5y (k. p). (19)

Applying the conditions of the functions €,(x. p). 5,(x.p) and ¢(x.p) at x =1, we
have

{1:':”:1; p) = By1 (p)Cy(1,p) + B12(p)5,(1, p),

‘PF('LP} =By (P}fuf(ijp} + By5 (P}SD"(L Pl
{ 1 = By1(p)Cp(1,p) + By2 (p)Sp(1, p).
—H = By1(p)Cy'(1,p) + By (p)5y' (1, p).

Now by using Cramer's rule, we can give

sir![.:l—.?iﬂ_l_l_ﬂ i,),
p

By, (p) = cos(p — P(1)) + (Q(1) + H) ;
Ba(p) = psin(p—P1)) - Q) + M) cos(p - P(1) +0(3)

These coefficients together with the FSS ¢,(x. ). 5,(x. o) yield (17). Analogously
by using again the FSS ¢,(x. ). 5,(x. ), the solution (17) and the jump condition
(4), we get (18). O

From (17) and (18), we have

Y (x, p)} = psin(p(1l — x) — P(1) + P(x))
+0 (exp(ll@ - 1)), x e (a1], (20)
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w'(x, p) = p(b, sin(p(1 — x) — P(1) + P(x))
—b_sin(p(1—2a—x) —P(1) —2P(a) + P(x))
—Z(coslp (1 — %) — P(D) + P(x))
+cos (p(1—2a —x) —P(1) — 2P(a) + P(x))))
+0 (e.r;:r{|*r|{1 - .r:]}), x € [0.a). (21)

Inverse Problem 2.1. Suppose that «.8.¥ and a« are known a priori. Given the
Weyl function Mg}, construct the functions g(xJ).q(x) and the coefficients k. H.

3. Uniqueness theorem

Now we prove the uniqueness theorem for the solution of the inverse problem.
We consider together with L = L(p(x}).q(x).h.H) a boundary value problem
= L(p(x).§(x). i &) of the same form (1)-(4) but with different coefficients. If a

certain symbol denotes an object related to L. then the same symbol with tilde will
denote the analogs object related to £.

Theorem 3.1. If M(g) = i), then L =L Thus, the specification of the Weyl
function uniquely determines the boundary value problem L.

Proof: We assume that =. 5.» and a are known a priori. At first, we define the
matrix P Cx. p) = [P, Ce.p)] . _ . by the formula

=

P(x.p) [:?_1(1’..:!3 Sir.ﬂf‘] — [?J':J-’.ﬂf‘ -.f":r.ﬂf‘]l (22)

#(xp) S xpd o' (xp) " (xp)
By virtue of (16), this yields

{ffi{x, p) = o) (x.0) — YV (x. 0)F" (x. ). 23)
Py(x,p) =¢ =00z, p) g (x, p) — @2 (x,p) $x, p).

Also we have

{fp(xJ J‘j} = Pll(x-' P}@{XJ P} + Py; {x, P}@f{xJ P}J (24)

@(x, p) = Pyy (x, p)@d(x, p) + P2 (x, p) @' (x, p).

Using (15) and (23), we obtain
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By (x.p) = @Y (0 p) 8% 0) — SYY (2, 0)@ (3. )
+ii(p) 2 (x, p) @' (x, o),

Py(x.p) =59 Y(x p)@(x. ) — Y (x. p) S0 )
—H(p)p " (x. p)B(x. p).

(25)

where §f(g) = M(p) — M(g). Since M(g) = M(p), we deduce that #i(z) =0, and
consequently, for each fixed x in [0.1]. the functions P (x,p). k = 1.2, are entire in
P

Fix & = 0. Denote Gz =ip € C: |p — g, | = &1, It follows from (10), (15), (17), (18),
(20) and (21) that

™ (G, p)| < Clol™exp(lel(1 - x)),  xe[01] (26)
1A(a) | = Clpl exp (21D, pE Gg, (27)
lo™ (x, p}| = Clpl™ texp(lzl(1 — X)), xe [0,1], pE Gz (28)

For each fixed x € [0,1], one gets from (14), (23) and (28) that
|P11_ I:J.'_. l':!‘:]l = ':-_1.- |1F;_: ':J.',. _I':P‘:] | = C: |_|'3|_1.- P E Gﬂ-

Therefore P, (x.p) =P, (x) and P (x.p) =0 for x € [0,1]. Together with (24), this
yields

¢(x,p) = P (x)@(x, p), ¢(x,p) = P (x)d(x, p). (29)
Since for sufficiently large ¢. we have

- S L
sin px = =g, cos px == g”'PF,

by taking (8), (10), (11) , (15), (17) and (18), we can obtain as lgl — =, arg

pel(0.-)

58 = axp (1 (PO0) - P)), 258 — oxp (£ (P00 - PW))). (30)
From (29) and these relations. we result that P(x) = P(x) and consequently
plx) = glx). Also we can get FixJ=1 and therefore olx.p) = @(x.p) and
gplx.p) = glx.p) for all =, p. SO glx) =§x), h=% and #=4. The proof is
completed. O
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4. Conclusion

Through review of the papers, we have noted a lack in the inverse problem field
for differential pencils. Indeed inverse problems for pencils of operators with
Robin boundary conditions and spectral jump conditions have not been studied
yet. We use the method of the spectral mappings and by taking the Weyl function
we prove the uniqueness solution of the inverse problem.
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