U.P.B. Sci. Bull., Series C, Vol. 82, Iss. 3, 2020 ISSN 2286-3540

METAMODELING ENVIRONMENT IN CLOUD

Marian LACATUSU?, Anca Daniela IONITA?

Nowadays, moving everything to the Cloud is a trend that is still rising, due to
many advantages, like the efficient resource management. In the case of modeling
tools, moving to Cloud increases the collaborative potential, alongside with the
accessibility to the common user that comes along with this approach. The paper
presents the deployment of a metamodeling environment in a public Cloud, based on
technologies such as Docker and Kubernetes. The solution offers modeling services
in Cloud with a private collaboration capability, for creating modeling environments
specific to various domains. The paper gives an example for modeling sensor
networks, by migrating an on-site modeling environment to a web-based one, hosted
in Cloud.

Keywords: Modeling Environments, Cloud Computing, Containers
1. Introduction

Modeling has been an important endeavor in science and engineering, and
it has been realized with a large variety of paradigms, in respect with the application
domains, like geosciences [1], electrical systems [2] and many others. Model
Driven Development (MDD) is a concept that was first talked about in the nineties,
with the main goal to evolve the ways of application development, by improving
the collaboration within the development team and by making the crossing from
writing code manually to generating source code [3]. This approach resulted in a
multitude of desktop-based modeling tools that fulfilled the needs of software
developers, such as the integration with the most popular programming languages.
With the evolution of technology and the movement to the Cloud, the modeling
tools have evolved with this trend too. As a result, new approaches and features
have arisen with this transition. Many of them are related to the Cloud service
models, such as Modeling as a Service [4], which may come on top of Software as
a Service and propose the offering of a modeling service in Cloud. Furthermore,
Model as a Service [5] sits a layer above Modeling as a Service, as an on-demand
modeling service with the purpose of generating and providing models at the
request of users. Other features and benefits stand in the collaboration ability that
permits a better workflow for development teams. Moreover, the generated/created

1 PhD Student., Automation and Industrial Informatics Department, University POLITEHNICA of
Bucharest, Romania, e-mail: marian.lacatusu@aii.pub.ro

2 Prof., Automation and Industrial Informatics Department, University POLITEHNICA of
Bucharest, Romania, e-mail: anca.ionita@upb.ro

28 Marian Lacatusu, Anca Daniela lonita

models have to be stored somewhere, so the approach of model repositories is
widely spread alongside the initiative of moving a modeling environment to the
Cloud.

Moving to the Cloud has important advantages, such as cost savings,
disaster recovery and collaboration. This phenomenon is also present in the
modeling community, were blockers such as scalability of the models and
incompatible changes to the model [6] made the movement to Cloud-based
modeling environments very important. As a result, WebGME (Web-based Generic
Modeling Environment) [7] was developed, alongside other tools, such as
ATOMPM (A Tool for Multi-Paradigm Modeling) [8], addressing the previously
described blocker (i.e. collaboration).

Our goal was to combine the advantages of WebGME with the benefits
given by Cloud Computing. WebGME in Cloud can offer many advantages,
because it is a privately managed environment with a private collaboration system
and user-managed availability of the modeling environment. Another advantage of
this approach is that the system is not dependent of an infrastructure offered by
WebGME.org, or of a local infrastructure. As a result, the users of WebGME in
Cloud can benefit from the disaster recovery implementation for the Kubernetes
cluster, the high availability and the data security and compliance sustained by the
selected public Cloud.

The work presented in this paper was based on services such as Docker and
Kubernetes, along with their constituent elements. A comparison was also done
between WebGME and its desktop version - Generic Modeling Environment
(GME). WebGME deployed in the IBM Cloud on a Kubernetes cluster offers as
main advantage the collaboration facilities. Thus, modeling projects can be
maintained and modified by multiple users, as service availability and data
persistence are guaranteed by the Cloud. In addition, two new deployments for
Kubernetes were realized, for WebGME and MongoDB. A new image for
WebGME was also developed with a Dockerfile specific for the IBM Cloud
requirements.

Section 2 describes the background and the related work. Section 3 presents
the actual implementation of the modeling environment in Cloud (Section 3.1),
followed by an example that consists in a paradigm migration from GME to
WebGME in Cloud, via the Paradigm Importer plugin (Section 3.2) and a
discussion (Section 3.3).

2. Background and related work
The Generic Modeling Environment offers tool support for creating

metamodels and modeling environments for application domains characterized by
those metamodels, including model editors and model interpreters. The metamodels

Metamodeling environment in Cloud 29

realized with GME include the domain concepts and the relationships between them
— expressed through their abstract syntax. Nonetheless, one can also configure the
resulted tools, and can change the implicit concrete syntax with customized
notations [7].

GME is object-oriented and integrated with various programing languages,
such as Java and C++. It also supports add-ons and decorators. It is a desktop tool
designed for the creation of small and medium-sized models, limited by the
impossibility of multiple users to contribute to the same project.

WebGME addresses the limitations of GME, being a more modern
approach that supports collaboration, API and JavaScript integrations, alongside
metamodels and domain-specific models that are stored into the cloud. Maroti et
al. wrote an in-depth description of the WebGME git-like collaborative features,
alongside a very detailed comparation between the two modeling environments —
the desktop and the web-based ones [6].

As previously mentioned, this trend to offer web-based modeling tools is a
part of a more comprehensive approach, called Model as a Service (MaaS), which
lends itself to an implementation through various types of Cloud environments [5].
This also comes with disadvantages like security threats, but it includes various
capabilities, from ‘running’ executable models just like programs and delivering
the results of their execution, to giving access to environments that allow users to
conceive and represent their own models.

As an example of putting in practice the MaaS approach, ATOMPM [8] has
the same collaborative features as WebGME and a multi-view mode that permits
users to work simultaneously at the same project. Another solution that stands at a
starting point of our work is a Cloud deployment of GME on a set of virtual
machines, used for educational scope; the environment, presented in [9], is specific
for modeling sensor networks, and it provided the source metamodel for the
experiment of migration from GME to WebGME presented in this paper.

3. Generic Modeling Environment in Cloud

3.1. Deployment of WebGME in Cloud

It is very important to create a private modeling environment in which all
participants to a modeling project can contribute to the project at the same time.
WebGME integration with IBM Cloud is appropriate to meet this criterion, using
Docker and Kubernetes. A first step of this integration was the creation of a
Kubernetes cluster with a single worker, using the IBM Cloud academic license.
There is a pod that manages at least a container; for containerization purposes we
used Docker, based on a custom WebGME image created with a Dockerfile. Before
creating a WebGME docker file, it was necessary to prepare a configuration file

30 Marian Lacatusu, Anca Daniela lonita

that it will use. This configuration file refers to the WebGME container link to the
MongoDB container.

To create the WebGME image automatically, we created a Dockerfile that
sequentially runs all the commands that compose it (Fig.1). Using the docker build
command, one can create an image from that Dockerfile. The Dockerfile may have
only one CMD statement, i.e. the condition for which the container is running.

FROM node:latest

RUN apt-get update

RUN apt-get install -y git

WORKDIR /usr/app

COPY .

RUN npm install

RUN npm install webgme

ENV NODE ENV docker

EXPCOSE BEESR

RUN cp config.docker.js ./node modules/webgme/config
WORKDIR /usr/app/node modules/webgme
CMD ["node", "app.js"]

Fig 1. WebGME Dockerfile

WebGME is integrated with Git, so it must be installed alongside the
required node-modules. After these procedures, the WebGME is installed, and the
WebGME port is exposed. The container will remain operable as long as script
app.js is running.

After creating the WebGME image, it must be added to the IBM Cloud
container registry. This image storage method is private and integrated with the
Kubernetes service.

The Kubernetes pods are based on deployments that are instructions for
pods and replica sets. The pod is the smallest object that can be deployed in
Kubernetes; it encapsulates storage, a unique IP and container barrier options.

The pods can be used in two ways [10]:

e Using a single container - the most common in Kubernetes, who manages
the pod,

e Managing multiple containers - a pod encapsulates an application staying
on multiple containers that communicate with each other; such a container
can form a single service that may be used; the pod encompasses the
container resources and uses them as a single entity.

The two deployments from Fig. 2 follow the steps described below [10]:

e A deployment called webgme-deployment is created; this is indicated by the
metadata field.

Metamodeling environment in Cloud 31

e The deployment creates a single replica, indicated by the replicas field.
e The selector field defines how the deployment recognizes the pods to be
managed; in our case it is set as the Webgme app.
e The template field configures the pod to run the Webgme container, and we
use the image loaded into the IBM Cloud container registry.
The Kubernetes cluster (Fig.3) and all of the deployed components can be
monitored from the IBM Cloud Kubernetes Dashboard. Some minor settings, such
as the replica set value, or the user rights, can also be managed from here.

gpiVersion: apps/vl apiVersion: apps/wvl
Deployment Deployment

mongo—deployment

! mongo

n mongo
il : mongo:latest

ntainerbort: =/U0lY
Fig 2. WebGME and Mongo DB Deployments
Clusters {

Access A

Q
Overview

Il Name T Status Worker Pool Zone Private IP Public IP

Worker Nodes
Worker Pools N [l 0000006c @ Normal default hou02 10.76.141.253 173.193.85.143
Add-ons

Items perpage: 10 v 1-1of 1items 1 v 1ofl
DevOps New

Fig 3. Kubernetes Cluster in IBM Cloud

3.2. On-site Modeling Environment Migrated to the Cloud

The WebGME Cloud implementation was tested for a metamodel that we
have previously presented in [9]. Fig. 4 shows a part of the abstract syntax of this

32 Marian Lacatusu, Anca Daniela lonita

metamodel, conceived for creating a graphical modeling language specific for
sensor networks, which have become important to many systems for the data
collection and fusion capabilities [11]. The metamodel was represented in GME -
the on-site metamodeling environment studied here. A SensorNetwork is composed
of several SensorNetworkUnit elements, which can be units for communication,
processing or sensing — the last ones potentially composed of multiple sensors.
There may also be connections between these units, as well as dependencies
between the software units that are part of the processing units. In addition to the
elements represented in Fig. 4, the metamodel contains further details in regard with
the communication, memory, power and sensor aspects. Based on this metamodel,
we created models for testing purposes, in order to be able to find the information
necessary for a side-by-side comparison.

The paradigm created with GME was imported in WebGME deployed in
IBM Cloud, using the MetaGME importer plugin, via the .xmp file. Such an import
is characterized, however, by several limitations [12], like the impossibility to
import roles, constraints, cardinality, aspects and visual properties, as well as the
usage of kinds instead of roles. The result of this export for the sensor network
metamodel is illustrated in Fig. 5.

SensorMetwork = Communication Memory Power = Sensor

T Name:|SensorNetw0rk ||F'aladigm8heet Azpect | Class Diagram ~ | Base: [NAA |Znnm:|‘|DD"/= e

SensorMetwork Sensorietwork Uit
==NModel== ==Nodel==

0.
0.
ArchitectureType : enum srS
0.'T o.*
Connect .T,

==Connection=> | ________1 /
) W

dst

CommunicationUnit « AggregationUnit Sensor ProcessingUnit
==ModelProxy== |07 ==Model== o ==ModelProxy== ==Model== o
F.] ™ MeasurandType . enum
t] . il
vJ [[

PowerlUnit SensingUnit x -

. Dependency 0. SoftwareUnit

==NModelProxy== |0 ==Nodel=>= <<Connection=> |_ B <<Model=>
» b=
5

Fig 4. Part of the metamodel from the on-site metamodeling environment (after [9])

Metamodeling environment in Cloud 33

® GME > test > master > ROOT |

- O~ m~ #®|~ # N 1] @ Q [Find s 8 LA P B e 7
T =

L]
m
3
w
g
2
El
2
2
El
b
®

FILTER

HOL
g

Fig 5. Modeling environment migrated to the Cloud

3.3. Discussion

The microservices Cloud infrastructure for WebGME was implemented
using Kubernetes and Docker. As a result, WebGME can be privately accessed via
a public IP of the Kubernetes worker and privately managed on a public Cloud. For
these activities, two deployments and two new services were realized.

A new configuration for the WebGME docker image has been introduced,
in order to suit the MongoDB connectivity. WebGME in Cloud is expected to work
better than other desktop and web-based solutions (classic WebGME and
AToMPM), according to the following criteria: high availability, disaster recovery,
private collaboration, resource management, and private modeling environment.
However, they are influenced by the IBM Cloud offerings and Worker
performance. High availability means the ability of a system/application to run
without a failure for a large amount of time. For our work, disaster recovery was
considered the capacity of the system to be still available if a natural/non-natural
disaster occurs. Private collaboration and private modeling environment refer to
the fact that the Git-like features that contain the modeling process are accessible
and visible to certain users. Resource management is a criterion that is inherited
from the Cloud implementation, where resources can be deployed/deleted as
needed.

All of the presented criteria represent strengths that the private
implementation of WebGME in Cloud has in comparison with similar tools such as
classic WebGME and AToMPM. These improvements can help teams in achieving
teamwork goals and private environment management alongside cost savings
guaranteed by the Cloud provider costs plans.

Regarding performance monitoring for this solution, a specialized
monitoring tool like ELK Stack, New Relic, or Dynatrace needs to be added for
proper performance track at the pod and application level. This addition represents
a much-needed improvement for a production-ready Kubernetes cluster.

34 Marian Lacatusu, Anca Daniela lonita

4. Conclusion

This paper presented an implementation of the WebGME modeling
environment in IBM Cloud and an example of metamodel migration, from a source
metamodel for sensor networks initially developed in GME - the on-site variant of
this environment. WebGME in Cloud is accessible to all the members of a
development team at the same time, and the modifications on the same project can
be made by them on any device.

The Cloud-based solution is beneficial in comparison with the web-based
and the on-site variants, i.e. WebGME and GME. The integration of WebGME
with IBM Cloud was made possible by technologies such as Kubernetes and
Docker. This approach came with the advantages offered by containers, such as
rapid deployment, simplicity, continuous deployment and isolation.

REFERENCES

[1]. Z. Li, Q. Yang, K. Liu, M. Sun, J. Xia, “Building Model as a Service to support geosciences”, in
Computers, Environment and Urban Systems, vol. 61, Part B, 2017, pp. 141-152

[2]. D.l. Dogaru, I. Dumitrache, “Modelling the dynamic electrical system in the context of cyber
attacks”, in UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, vol.
80, iss. 2, 2018, pp. 3-16

[3]. M. Mardti, R. Kereskényi, T. Kecskes, P. Vélgyesi, A. Ledeczi, “Online Collaborative Environment
for Designing Complex Computational Systems”, in Procedia Computer Science, vol. 29, 2014,
pp. 2432-2441

[4]. S. Popoola J. Carver and J. Gray, “Modeling as a Service: A Survey of Existing Tools”, in
Proceedings of the Model-Driven Engineering Languages and Systems Conference, 2017

[5]. E. Cayirci, "Modeling and simulation as a cloud service: A survey,” 2013 Winter Simulations
Conference (WSC), Washington, DC, 2013, pp. 389-400

[6]. M. Mar6ti T. Kecskes, R. Kereskényi, B. Broll, P. Vdlgyesi, L. Juracz, T. Levendoszky, A. Ledeczi,
“Next generation (Meta)modeling: Web- and cloud-based collaborative tool infrastructure”,
CEUR Workshop Proceedings, vol. 1237, 2014, pp. 41-60

[7]. GME: Generic Modeling Environment, http://www.isis.vanderbilt.edu/projectssGME, Accessed
March 26 2019

[8]. E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, H. Ergin, “AToMPM: a web-
based modeling environment”, in Joint Proceedings of MODELS’13 Invited Talks,
Demonstration Session, Poster Session, and ACM Student Research Competition, vol. 1115,
CEUR-WS.org, 2013, pp. 21-25

[9]. A. lonita, F. Anton, A. Olteanu, “Sensor Network Modeling as a Service”, in Proceedings of the 8th
Int. Conference on Cloud Computing and Services Science (CLOSER 2018) 2018, pp. 346-353

[10]. Kubernetes Concepts: https://kubernetes.io/docs/concepts/, Accessed March 26 2019

[11]. M. Kenyeres, and J Kenyeres: “Multi-Sensor data fusion by average consensus algorithm with fully-
distributed stopping criterion: comparative study of weight designs.”, UPB Scientific Bulletin,
Series C: Electrical Engineering and Computer Science, vol. 81, iss. 2, 2019, pp. 27-42

[12]. MetaGMEParadigmImporter: https://github.com/webgme/webgme-
engine/tree/master/src/plugin/coreplugins/MetaGMEParadigmImporter, Accessed March 26
2019

http://www.isis.vanderbilt.edu/projects/GME

