
U.P.B. Sci. Bull., Series C, Vol. 82, Iss. 3, 2020 ISSN 2286-3540

METAMODELING ENVIRONMENT IN CLOUD

Marian LACATUSU1, Anca Daniela IONITA2

Nowadays, moving everything to the Cloud is a trend that is still rising, due to

many advantages, like the efficient resource management. In the case of modeling

tools, moving to Cloud increases the collaborative potential, alongside with the

accessibility to the common user that comes along with this approach. The paper

presents the deployment of a metamodeling environment in a public Cloud, based on

technologies such as Docker and Kubernetes. The solution offers modeling services

in Cloud with a private collaboration capability, for creating modeling environments

specific to various domains. The paper gives an example for modeling sensor

networks, by migrating an on-site modeling environment to a web-based one, hosted

in Cloud.

Keywords: Modeling Environments, Cloud Computing, Containers

1. Introduction

Modeling has been an important endeavor in science and engineering, and

it has been realized with a large variety of paradigms, in respect with the application

domains, like geosciences [1], electrical systems [2] and many others. Model

Driven Development (MDD) is a concept that was first talked about in the nineties,

with the main goal to evolve the ways of application development, by improving

the collaboration within the development team and by making the crossing from

writing code manually to generating source code [3]. This approach resulted in a

multitude of desktop-based modeling tools that fulfilled the needs of software

developers, such as the integration with the most popular programming languages.

With the evolution of technology and the movement to the Cloud, the modeling

tools have evolved with this trend too. As a result, new approaches and features

have arisen with this transition. Many of them are related to the Cloud service

models, such as Modeling as a Service [4], which may come on top of Software as

a Service and propose the offering of a modeling service in Cloud. Furthermore,

Model as a Service [5] sits a layer above Modeling as a Service, as an on-demand

modeling service with the purpose of generating and providing models at the

request of users. Other features and benefits stand in the collaboration ability that

permits a better workflow for development teams. Moreover, the generated/created

1 PhD Student., Automation and Industrial Informatics Department, University POLITEHNICA of

Bucharest, Romania, e-mail: marian.lacatusu@aii.pub.ro
2 Prof., Automation and Industrial Informatics Department, University POLITEHNICA of

Bucharest, Romania, e-mail: anca.ionita@upb.ro

28 Marian Lacatusu, Anca Daniela Ionita

models have to be stored somewhere, so the approach of model repositories is

widely spread alongside the initiative of moving a modeling environment to the

Cloud.

Moving to the Cloud has important advantages, such as cost savings,

disaster recovery and collaboration. This phenomenon is also present in the

modeling community, were blockers such as scalability of the models and

incompatible changes to the model [6] made the movement to Cloud-based

modeling environments very important. As a result, WebGME (Web-based Generic

Modeling Environment) [7] was developed, alongside other tools, such as

AToMPM (A Tool for Multi-Paradigm Modeling) [8], addressing the previously

described blocker (i.e. collaboration).

Our goal was to combine the advantages of WebGME with the benefits

given by Cloud Computing. WebGME in Cloud can offer many advantages,

because it is a privately managed environment with a private collaboration system

and user-managed availability of the modeling environment. Another advantage of

this approach is that the system is not dependent of an infrastructure offered by

WebGME.org, or of a local infrastructure. As a result, the users of WebGME in

Cloud can benefit from the disaster recovery implementation for the Kubernetes

cluster, the high availability and the data security and compliance sustained by the

selected public Cloud.

The work presented in this paper was based on services such as Docker and

Kubernetes, along with their constituent elements. A comparison was also done

between WebGME and its desktop version - Generic Modeling Environment

(GME). WebGME deployed in the IBM Cloud on a Kubernetes cluster offers as

main advantage the collaboration facilities. Thus, modeling projects can be

maintained and modified by multiple users, as service availability and data

persistence are guaranteed by the Cloud. In addition, two new deployments for

Kubernetes were realized, for WebGME and MongoDB. A new image for

WebGME was also developed with a Dockerfile specific for the IBM Cloud

requirements.

Section 2 describes the background and the related work. Section 3 presents

the actual implementation of the modeling environment in Cloud (Section 3.1),

followed by an example that consists in a paradigm migration from GME to

WebGME in Cloud, via the Paradigm Importer plugin (Section 3.2) and a

discussion (Section 3.3).

2. Background and related work

The Generic Modeling Environment offers tool support for creating

metamodels and modeling environments for application domains characterized by

those metamodels, including model editors and model interpreters. The metamodels

Metamodeling environment in Cloud 29

realized with GME include the domain concepts and the relationships between them

– expressed through their abstract syntax. Nonetheless, one can also configure the

resulted tools, and can change the implicit concrete syntax with customized

notations [7].

GME is object-oriented and integrated with various programing languages,

such as Java and C++. It also supports add-ons and decorators. It is a desktop tool

designed for the creation of small and medium-sized models, limited by the

impossibility of multiple users to contribute to the same project.

WebGME addresses the limitations of GME, being a more modern

approach that supports collaboration, API and JavaScript integrations, alongside

metamodels and domain-specific models that are stored into the cloud. Maroti et

al. wrote an in-depth description of the WebGME git-like collaborative features,

alongside a very detailed comparation between the two modeling environments –

the desktop and the web-based ones [6].

 As previously mentioned, this trend to offer web-based modeling tools is a

part of a more comprehensive approach, called Model as a Service (MaaS), which

lends itself to an implementation through various types of Cloud environments [5].

This also comes with disadvantages like security threats, but it includes various

capabilities, from ‘running’ executable models just like programs and delivering

the results of their execution, to giving access to environments that allow users to

conceive and represent their own models.

As an example of putting in practice the MaaS approach, AToMPM [8] has

the same collaborative features as WebGME and a multi-view mode that permits

users to work simultaneously at the same project. Another solution that stands at a

starting point of our work is a Cloud deployment of GME on a set of virtual

machines, used for educational scope; the environment, presented in [9], is specific

for modeling sensor networks, and it provided the source metamodel for the

experiment of migration from GME to WebGME presented in this paper.

3. Generic Modeling Environment in Cloud

3.1. Deployment of WebGME in Cloud

It is very important to create a private modeling environment in which all

participants to a modeling project can contribute to the project at the same time.

WebGME integration with IBM Cloud is appropriate to meet this criterion, using

Docker and Kubernetes. A first step of this integration was the creation of a

Kubernetes cluster with a single worker, using the IBM Cloud academic license.

There is a pod that manages at least a container; for containerization purposes we

used Docker, based on a custom WebGME image created with a Dockerfile. Before

creating a WebGME docker file, it was necessary to prepare a configuration file

30 Marian Lacatusu, Anca Daniela Ionita

that it will use. This configuration file refers to the WebGME container link to the

MongoDB container.

To create the WebGME image automatically, we created a Dockerfile that

sequentially runs all the commands that compose it (Fig.1). Using the docker build

command, one can create an image from that Dockerfile. The Dockerfile may have

only one CMD statement, i.e. the condition for which the container is running.

Fig 1. WebGME Dockerfile

WebGME is integrated with Git, so it must be installed alongside the

required node-modules. After these procedures, the WebGME is installed, and the

WebGME port is exposed. The container will remain operable as long as script

app.js is running.

After creating the WebGME image, it must be added to the IBM Cloud

container registry. This image storage method is private and integrated with the

Kubernetes service.

The Kubernetes pods are based on deployments that are instructions for

pods and replica sets. The pod is the smallest object that can be deployed in

Kubernetes; it encapsulates storage, a unique IP and container barrier options.

The pods can be used in two ways [10]:

• Using a single container - the most common in Kubernetes, who manages

the pod,

• Managing multiple containers - a pod encapsulates an application staying

on multiple containers that communicate with each other; such a container

can form a single service that may be used; the pod encompasses the

container resources and uses them as a single entity.

The two deployments from Fig. 2 follow the steps described below [10]:

• A deployment called webgme-deployment is created; this is indicated by the

metadata field.

Metamodeling environment in Cloud 31

• The deployment creates a single replica, indicated by the replicas field.

• The selector field defines how the deployment recognizes the pods to be

managed; in our case it is set as the Webgme app.

• The template field configures the pod to run the Webgme container, and we

use the image loaded into the IBM Cloud container registry.

The Kubernetes cluster (Fig.3) and all of the deployed components can be

monitored from the IBM Cloud Kubernetes Dashboard. Some minor settings, such

as the replica set value, or the user rights, can also be managed from here.

Fig 2. WebGME and Mongo DB Deployments

Fig 3. Kubernetes Cluster in IBM Cloud

3.2. On-site Modeling Environment Migrated to the Cloud

The WebGME Cloud implementation was tested for a metamodel that we

have previously presented in [9]. Fig. 4 shows a part of the abstract syntax of this

32 Marian Lacatusu, Anca Daniela Ionita

metamodel, conceived for creating a graphical modeling language specific for

sensor networks, which have become important to many systems for the data

collection and fusion capabilities [11]. The metamodel was represented in GME -

the on-site metamodeling environment studied here. A SensorNetwork is composed

of several SensorNetworkUnit elements, which can be units for communication,

processing or sensing – the last ones potentially composed of multiple sensors.

There may also be connections between these units, as well as dependencies

between the software units that are part of the processing units. In addition to the

elements represented in Fig. 4, the metamodel contains further details in regard with

the communication, memory, power and sensor aspects. Based on this metamodel,

we created models for testing purposes, in order to be able to find the information

necessary for a side-by-side comparison.

The paradigm created with GME was imported in WebGME deployed in

IBM Cloud, using the MetaGME importer plugin, via the .xmp file. Such an import

is characterized, however, by several limitations [12], like the impossibility to

import roles, constraints, cardinality, aspects and visual properties, as well as the

usage of kinds instead of roles. The result of this export for the sensor network

metamodel is illustrated in Fig. 5.

Fig 4. Part of the metamodel from the on-site metamodeling environment (after [9])

Metamodeling environment in Cloud 33

Fig 5. Modeling environment migrated to the Cloud

3.3. Discussion

The microservices Cloud infrastructure for WebGME was implemented

using Kubernetes and Docker. As a result, WebGME can be privately accessed via

a public IP of the Kubernetes worker and privately managed on a public Cloud. For

these activities, two deployments and two new services were realized.

A new configuration for the WebGME docker image has been introduced,

in order to suit the MongoDB connectivity. WebGME in Cloud is expected to work

better than other desktop and web-based solutions (classic WebGME and

AToMPM), according to the following criteria: high availability, disaster recovery,

private collaboration, resource management, and private modeling environment.

However, they are influenced by the IBM Cloud offerings and Worker

performance. High availability means the ability of a system/application to run

without a failure for a large amount of time. For our work, disaster recovery was

considered the capacity of the system to be still available if a natural/non-natural

disaster occurs. Private collaboration and private modeling environment refer to

the fact that the Git-like features that contain the modeling process are accessible

and visible to certain users. Resource management is a criterion that is inherited

from the Cloud implementation, where resources can be deployed/deleted as

needed.

All of the presented criteria represent strengths that the private

implementation of WebGME in Cloud has in comparison with similar tools such as

classic WebGME and AToMPM. These improvements can help teams in achieving

teamwork goals and private environment management alongside cost savings

guaranteed by the Cloud provider costs plans.

Regarding performance monitoring for this solution, a specialized

monitoring tool like ELK Stack, New Relic, or Dynatrace needs to be added for

proper performance track at the pod and application level. This addition represents

a much-needed improvement for a production-ready Kubernetes cluster.

34 Marian Lacatusu, Anca Daniela Ionita

 4. Conclusion

This paper presented an implementation of the WebGME modeling

environment in IBM Cloud and an example of metamodel migration, from a source

metamodel for sensor networks initially developed in GME - the on-site variant of

this environment. WebGME in Cloud is accessible to all the members of a

development team at the same time, and the modifications on the same project can

be made by them on any device.

The Cloud-based solution is beneficial in comparison with the web-based

and the on-site variants, i.e. WebGME and GME. The integration of WebGME

with IBM Cloud was made possible by technologies such as Kubernetes and

Docker. This approach came with the advantages offered by containers, such as

rapid deployment, simplicity, continuous deployment and isolation.

R E F E R E N C E S

[1]. Z. Li, Q. Yang, K. Liu, M. Sun, J. Xia, “Building Model as a Service to support geosciences”, in

Computers, Environment and Urban Systems, vol. 61, Part B, 2017, pp. 141–152

[2]. D.I. Dogaru, I. Dumitrache, “Modelling the dynamic electrical system in the context of cyber

attacks”, in UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, vol.

80, iss. 2, 2018, pp. 3-16

[3]. M. Maróti, R. Kereskényi, T. Kecskes, P. Völgyesi, A. Ledeczi, “Online Collaborative Environment

for Designing Complex Computational Systems”, in Procedia Computer Science, vol. 29, 2014,

pp. 2432-2441

[4]. S. Popoola J. Carver and J. Gray, “Modeling as a Service: A Survey of Existing Tools”, in

Proceedings of the Model-Driven Engineering Languages and Systems Conference, 2017

[5]. E. Cayirci, "Modeling and simulation as a cloud service: A survey," 2013 Winter Simulations

Conference (WSC), Washington, DC, 2013, pp. 389-400

[6]. M. Maróti T. Kecskes, R. Kereskényi, B. Broll, P. Völgyesi, L. Jurácz, T. Levendoszky, A. Ledeczi,

“Next generation (Meta)modeling: Web- and cloud-based collaborative tool infrastructure”,

CEUR Workshop Proceedings, vol. 1237, 2014, pp. 41-60

[7]. GME: Generic Modeling Environment, http://www.isis.vanderbilt.edu/projects/GME, Accessed

March 26 2019

[8]. E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, H. Ergin, “AToMPM: a web-

based modeling environment”, in Joint Proceedings of MODELS’13 Invited Talks,

Demonstration Session, Poster Session, and ACM Student Research Competition, vol. 1115,

CEUR-WS.org, 2013, pp. 21–25

[9]. A. Ionita, F. Anton, A. Olteanu, “Sensor Network Modeling as a Service”, in Proceedings of the 8th

Int. Conference on Cloud Computing and Services Science (CLOSER 2018) 2018, pp. 346-353

[10]. Kubernetes Concepts: https://kubernetes.io/docs/concepts/, Accessed March 26 2019

[11]. M. Kenyeres, and J Kenyeres: “Multi-Sensor data fusion by average consensus algorithm with fully-

distributed stopping criterion: comparative study of weight designs.”, UPB Scientific Bulletin,

Series C: Electrical Engineering and Computer Science, vol. 81, iss. 2, 2019, pp. 27-42

[12]. MetaGMEParadigmImporter: https://github.com/webgme/webgme-

engine/tree/master/src/plugin/coreplugins/MetaGMEParadigmImporter, Accessed March 26

2019

http://www.isis.vanderbilt.edu/projects/GME

