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SOME SHARP INEQUALITIES ON REAL HYPERSURFACES
OF SOME QUADRICS

Aliya Naaz Siddiqui’ and Kwang Soon Park?’

The objective of this paper is two-fold: Firstly, we establish some
optimal inequalities involving the normalized scalar curvature and general-
ized normalized §— Casorati curvatures for real hypersurfaces in the complex
hyperbolic quadrics QT* (and the complex quadrics Q7). Secondly, we study
a notion of the Ricci tensor derived from a curvature of real hypersurfaces
in QT (and Q). Then we classify real hypersurfaces with isometric Reeb
flow in QT (and Q?) by using an integral formula related to the Ricci cur-
vature. Also, we give a complete proof of non-existence of real hypersurfaces

in QT (and Q7).
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1. Introduction

In a class of Hermitian symmetric spaces of rank 2, usually we can
give examples of Riemannian symmetric spaces Go(C??) = SU,.»/S(UU,)
and G3(Ci*?) = SU,,/S(UsU,). The g—dimensional complex quadric Q7 =
SO442/50,50; and complex hyperbolic quadric Q7 = SO3 ,/SO,SO, can be
regarded as another kind of Hermitian symmetric spaces with rank 2 of com-
pact type and of noncompact type, respectively. Q7 and Q?* are the complex
hypersurfaces in complex projective space CP4! and complex hyperbolic space
CHe", respectively. Many results have been obtained on real hypersurfaces
in Go(C7?), G3(C72), Q? and Q7 with different conditions (for example,
see [9]). In 2005, Y. J. Suh and Y. Watanabe [13] proved the non-existence
properties related to the Ricci curvature along the direction of structure vec-
tor £ of any compact real hypersurface in complex two-plane Grassmannian
G5 (C%%2) g > 3. In the present paper, motivated by this result, we will show
a non-existence property for compact real hypersurfaces in Q7 and Q7 related
to the Ricci curvature.
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On the other hand, B.-Y. Chen [4] introduced the notion of Chen invari-
ants and obtained some optimal inequalities consisting of intrinsic invariants
and some extrinsic invariants for any Riemannian submanifolds. Instead of
concentrating on the sectional curvature with the extrinsic squared mean cur-
vature, the Casorati curvature of a submanifold in a Riemannian manifold was
considered as an extrinsic invariant. The notion of Casorati curvature extends
the concept of the principal direction of a hypersurface of a Riemannian man-
ifold. Several geometers in [8, 15, 16, 5, 6] found geometrical meaning and the
importance of the Casorati curvature and hence obtain optimal inequalities
for the Casorati curvatures of submanifolds in different ambient spaces (for
example [14]). Brubaker et al. [2] obtained a nice geometric interpretation of
Cauchy-Schwarz inequality in terms of Casorati curvature. Recently, Park [10]
proved inequalities for the Casorati curvatures of real hypersurfaces in some
Grassmannians. As a natural prolongation of our research, in the present
paper, we will study these inequalities for real hypersurfaces in Q9 and Q9.

2. The complex (hyperbolic) quadrics and hypersurfaces

The homogeneous quadratic equation 234+ - -+z§ 5 = 0 on C¥*2 defines a
complex hypersurface Q7 in the (¢4 1)—dimensional complex projective space
CPtt = SU,42/S(Uy41Ur). The complex hypersurface Q7 is known as the
g—dimensional complex quadric. The 1—dimensional quadric Q! is isomet-
ric to the round 2—sphere S?. For ¢ > 2 the triple (QY,J, g) is a Hermitian
symmetric space of rank two and its maximal sectional curvature is equal to
4. The 2—dimensional quadric Q? is isometric to the Riemannian product
5?2 x §%. On the other hand, the complex hypersurface Q4* in CHY*! is known
as the g—dimensional complex hyperbolic quadric. The complex structure J on
CHe*! naturally induces a complex structure on Q?* which we will denote by J
as well. We equip Q7" with the Riemannian metric ¢ which is induced from the
Begerman metric on CHY*! with constant holomorphic sectional curvature —4.
For ¢ > 2 the triple (Q%, J, g) is a Hermitian symmetric space of rank 2 and its
minimal sectional curvature is equal to 4. The 1—dimensional quadric Q** is
isometric to the 2—dimensional real hyperbolic space RH? = SO75/S0150,.
The 2—dimensional complex quadric Q% is isometric to the Riemannian prod-
uct of complex hyperbolic spaces CH! x CH!. We will assume ¢ > 3 for the
sections 3 and 4 of this paper.

In addition to the complex structure J there is another distinguished
geometric structure on ()%, namely, a parallel rank two vector bundle U which
contains an S*—bundle of real structures, that is, complex conjugation A on
the tangent spaces of Q7. Both anti-commute with each other, that is, AJ =
—JA. We denote by Az the shape operator of Q9* in CHY"! with respect to
Z. Note that Z € v,;Q% is a unit normal vector of @7 in CH?™! at the point
[2] (for details see [12]). Then we have Azw = w for all w € Tj,;Q7", that is,
Az is just complex conjugation restricted to 7},;Q?. The shape operator Az
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is an anti-linear involution on the complex vector space Tj,;Q? and Tj,;Q% =
V(Az) ® JV(Az), where V(A) = RIT? (N T1,jQ* is the (+1)—eigenspace and
JV(Az) = iR N T1,jQ7 is the (—1)—eigenspace of As.

The Riemannian curvature tensor R of Q% in CH?™ concerning the

Riemannian metric g, the complex structure J and a generic real structure A
in U is given by [12]

R(X,\)Y)Z = —g(YV,2)X +g(X,2)Y — g(JY,Z)JX
+9(JX,2)JY +29(JX,Y)JZ — g(AY, Z)AX
+9(AX, Z)AY — g(JAY, Z)JAX + g(JAX, Z)JAY.

The Riemannian curvature tensor R of Q7 in CP4*! is defined as follows [3]

RIX.Y)Z = g(YV,2)X —g(X,2)Y + g(JY,Z)JX
—g(JX,Z2)JY —29(JX,Y)JZ + g(AY, Z)AX
—g(AX, Z)AY + g(JAY, Z)JAX — g(JAX, Z)JAY.

A nonzero tangent vector W € T},;Q% is called singular if it is tangent
to more than one maximal flat in Q7. There are two types of singular tangent
vectors for the complex hyperbolic quadric Q% [12]

1. If there exists a real structure A € U, such that W € V(A), then W
is singular. Such a singular tangent vector is called U—principal.

2. If there exist a real structure A € Uy and orthonormal vectors

X,Y € V(A) such that II%II = (X%Y), then W is singular. Such a singular
tangent vector is called U—isotropic.

Let M be a real hypersurface in Q7" and denoted by the data (P,&, 7, g)
the induced almost contact metric structure on M and by V the induced
Riemannian connection on M. Note that & = —JN, where N is a unit normal
vector field of M. The vector field £ is known as the Reeb vector field of M
and n is 1—form defined by n(X) = ¢(&, X) for any tangent vector field X on
M. The tangent bundle TM of M splits orthogonally into TM = € & RE,
where € = ker(n) is the maximal complex subbundle of T'M. The structure
tensor field P restricted to € coincides with the complex structure .J restricted
to €, and we have P¢ = 0.

If the integral curves of & are geodesics in M, the hypersurface M is
called a Hopf hypersurface. The integral curves of ¢ are geodesics in M if and
only if £ is a principal curvature vector of M everywhere. If we assume that
M is a Hopf hypersurface, then we have S¢ = ¢, where S denotes the shape
operator of the real hypersurfaces M with the smooth function 8 = g(S¢,€)
on M.

By the Kaehler structure J of the complex hyperbolic quadric (7%, one
can transfer any tangent vector field X on M in Q9" as follows: JX = PX +
n(X)N, where PX = tan(JX) and N is a unit normal vector field on M in
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Q. Then it naturally satisfies the following relations: P2X = —X + n(X)¢,
n(€) =1, and P¢ = 0.

Basic complex linear algebra shows that for every unit tangent vector
W € T;Q" there exist a real structure A € Uy and orthonormal vectors
XY € V(A) such that W = cos(t)X + sin(t).JY, for some ¢ € [0,F]. The
singular tangent vectors correspond to the values ¢t = 0 and t = 7.

Now, we assume that the normal vector N,; of M is not U—principal.
Then there exists a real structure A € U, such that Ny, = cos(t)Z; +
sin(t).JZ,, for some orthonormal vectors Z1,Z, € V(A), t € [0,7]. Note
that ¢ is a function on M. First of all £ = —JN, we have

N = cos(t)Zy + sin(t)J Zo, AN = cos(t)Zy — sin(t)J Z,
(1)
&2 = sin(t) Zy, — cos(t)J Zy, A&y = sin(t)Zs + cos(t)J Zy,

and therefore Q) = T3 Q" © ([Z1] @ [Z,]) is strictly contained in Cy.

Following Gauss equation, the curvature tensor R* for (2g—1)—dimensional
submanifold M in Q7 induced from the curvature tensor R is expressed as
follows (see [12])

R (X.Y)Z = —g(Y,2)X +g(X,2)Y — g(JY, 2)JX + g(JX, Z)JY
+29(JX,Y)JZ — g(AY, Z)AX + g(AX, Z)AY
—g(JAY, 2)JAX + g(JAX, Z)JAY + ¢(SY, Z)SX
—g(SX, Z)SY. (2)

Using (2) and contracting Y and Z, we have the Ricci tensor of M in Q%

2q—1

Ric"(X) = Z [_ 9(Ei, E)X + 9(X, E)E; — g(JE;, Ey) JX
i=1
+g(AX, EB)AE; — g(JAE;, E)JAX + g(JAX, E;)

= —(2¢—1)X + X +PX +2P?X + g(AN,N)AX + X
—g(AX,N)AN + g(JAN,N)JAX + X — g(JAX, N)
JAN + hSX — S*X.

Further, we have

Ric*(X) = —(2¢—1)X +3n(X)¢ + g(AN,N)AX
—g(AX, N)AN + g(JAN,N)JAX
—g(JAX,N)JAN + hSX — S%X, (3)
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where h = trace(S) denotes the mean curvature, defined by the shape operator
S of M in Q7. Then the Ricci curvature K*(&,€) along the direction of & is
given by
K*(§,€) = —(2¢—4) +29(AN, N)g(AE, €)
We suppose that a real hypersurface M in Q% has U—principal unit
normal vector field N, that is, AN = N for a complex conjugation A € U. On

the other hand, for real hypersurfaces with U—isotropic unit normal vector
field N in Q9* (respectively in Q9), we put N = %, for any 7y, Zy € V(A).

3. Optimal inequalities for the Casorati curvatures

Let us consider a local orthonormal tangent frame {E,,..., E,} of TM
and a local orthonormal normal frame {N} of T+M in Q9. At any p € M,
the scalar curvature 7* of M is given by

™= > RYE,E,E,E)= Y g(R(E;,E)E; E). (5)
1<i<j<p 1<i<i<p

The mean curvature vector H of M in Q7 is H = ]l? P o(E;, E;). Conve-

niently, let us put o;; = g(o(E;, E;),N) = g(SE;, E;), for i,j = {1,...,n}.

Then the squared norm of mean curvature vector of M is defined as ||H||> =

2
z%( le aii) and the squared norm of second fundamental form o is de-
noted by € = _||o|?, where [lof|* =377, (O'ij)z. It is known as the Casorati

curvature € of M in Q9.
If we suppose that L is an r-dimensional subspace of TM, r > 2, and
{E1,..., E,} is an orthonormal basis of L. Then the Casorati curvature of the

subspace L is ¢(L) = 1 Z:,j:l (Uz'j)2-

The normalized §-Casorati curvatures d¢(p — 1) and be (p—1) are respec-
tively defined as

elp— 1] = 2, + 221

inf{C(L)|L : a hyperplane of T,M},

and
2p —

~ 1
[0e(p — 1)], = 2€, — sup{€(L)|L : a hyperplane of T,M}.

Now, we define the generalized normalized §-Casorati curvatures d¢(t;p — 1)
and d¢(t;p — 1) as follows:
1. For0<t<p?>—p

[0e(t;p — 1), = t€, + b(t) inf{€(L)|L : a hyperplane of T,,M},
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2. Fort>p*—p
[Oc(t;p — 1)]p = t€, + b(t) sup{€(L)|L : a hyperplane of T,,M},
where b(t) = o (p — 1)+ 1) (> —p — 1), t #p(p — 1).

Definition 3.1. A point r € M is said to be an invariantly quasi-umbilical
point if there exist unit normal vector {N} such that the shape operator S has
an eigenvalue of multiplicity > (p—1). The real hypersurface M is said to be an
mvariantly quasi-umbilical hypersurface, if each of its points is an invariantly
quasi-umbilical point [1].

Theorem 3.1. Let M be a real hypersurface in the complex hyperbolic quadric
Q7. Then
1. The generalized normalized §-Casorati curvature dg(t;p — 1) satisfies

Oe(t;p—1 1
< e(t;p )_(p+ ) (©)
p(p—1) p
foranyt € R with 0 <t < p(p—1).
2. The generalized normalized 0-Casorati curvature o¢(t;p — 1) satisfies
de(t;p—1 1
p(p—1) p

for any t € R witht > p(p —1).
Proof. Let {Ey,...,E,} and {N} be the orthonormal basis of TM and T+M,

respectively at any point p € M. Putting X =W =E,) Y =Z =FE;, 1 # j
into (2) and taking summation 1 < 4,5 < p, we have

> 9(R(ELE)E,E) = > [_Q(Ejij)g(EhEi)+9<Eian)g<Ej7Ei>

1<i,j<p 1<:,5<p
—g(PEj, E)g(PE;, Ei) + g(PE;, E;)g(PEj, E;)
+29(PLE;, Ej)g(PE;), ;) — g(AE;, Ej)g(AE;, E;)
+9(AE;, Ey)g(AE;), E;) — g(JAE), Ej)g(JAE;, E;)
+9(JAE;, E;)g(JAE;, Ei) + g(SE;, E;)g(SEi, E;)

—g(SE,»,E»g(SEj,E»]

By using (5), we get
P P
21 = —p" +3+ gANN) Y g(AE, E) =) g(AE, N)g(AN, E;)

i=1 i=1

p p

+>_ g(JAN, N)g(JAE;, E;) = Y g(JAE;, N)g(JAN, E;)
i=1 =1

+p?|| K = lo|?
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p+1

= "+ 3+ g(AN,N) [ZQ(AEZ-, E;) — g(AN,N)
i=1
p+1
— > 9(AE, N)g(AN, E;) + g(AN, N)g(AN, N)
i=1
p+1
=D 9(JAE, N)g(JAN, E;) +p*||3€]* — |||,
i=1
where g(JAN,N) = g(AE N) = 0. Further, we derive
pH
27 = —p” +3 — g(AN, N)g(AN,N) = Y~ g(AE;, N)g(AN, E)
i=1
p+1

+g(AN, N)g(AN,N) = Y~ g(JAE;, N)g(JAN, E;)

+p? |32 — [|o|[*

p+1 p+1
= P’ 3= g(AE, N)g(AN, E;) = > g(JAE;, N)g(JAN, E;)
=1 i=1

+p? [ — [[o]|*.
Thus, we rewrite the above relation as
27" = —p* + 1+ p?||H|* — pC. (8)

Now, we define the following function, denoted by P, a quadratic polynomial in
the components of the second fundamental form P = ¢t€+b(t)&(L)—27*—p*+1.
Assuming, without loss of generality, that L is spanned by Ei,..., E,_, it
follows that

LU S
1] 1 4,j=1

On combining (8) and (9), we arrive at

p— (P S o2+ (b(_t)) Z_: o — (Z 0i1)°,

p

i,7=1 2,j=1 =1
which can be easily rewritten as
p—1
o=, {(a —1)(00)* + 2p+4) (%)2}
i=1 p
p—1
+ {2@ (0i)> — 2 Z (0ii0j;) app)Q}, (10)
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where a = (’it + ﬂ) From (10), we observe that the critical points

p p—1J°

0¢ = (011,012, - ..,0p) of P are the solutions of the following system of linear
homogenous equations

P P 2 -1

Wu‘ = 2@(0’11) — 22?21 Ogg = 0, WPP = ?tO'pp — 22?21 Ogg = O7

(11)
o7 8P +t
B0y, — 400y =0, o = 457 )oip = 0,

where 7,5 ={1,2,...,p—1},1 # j.

Hence, every solution ¢¢ has o,; = 0 for ¢ # j and the corresponding determi-
nant to the first two equations of the above system is zero. Moreover, it is to
see that the Hessian matrix of P takes the following form

H O O
HP)=| O H, O |,
O O H;
where
20—2 -2 ... =2 =2
-2 2a-2 ... =2 =2
H, = : : : : )
—2 -2 ... 2a—2 =2
—2 -2 ... =2 %

p

O are the null matrices and Hy and Hj are the diagonal matrices of the re-
spective dimensions. Hy and Hj are, respectively, given as

H, = diag(4a, 4a, . .. ,4@),

and
4 t) 4 t 4 t
H3=dz'ag< ks >, (p+ ),...,—(p+ )).
p p p
Hence, we find that H(?P) has the following eigenvalues
)\11 :07)\22 :2(1,)\33 = :)\ppzzaa
4 t
Ny — oy — PO G e o1y it
p

It follows that the Hessian matrix is positive semi-definite for all points and
admits precisely one eigenvalue equal to zero. Therefore, we deduce that P is
parabolic and reaches a minimum P(c¢) for the solution ¢ of the system (11).
In fact, because of the convexity, the critical point ¢¢ is a global minimum.
But inserting (11) into (10), we obtain P(¢¢) = 0. Thus, we deduce P > 0 and
this implies

27 <€+ b(1)E(L) — p* + 1.
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27*

p(p—1)"

The normalized scalar curvature p* of M is defined as p* =

pr < G- blt) )e:(L)—(Jil)

plp—1)  plp-1 p

Thus, we
have

for every tangent hyperplane L of M. If we take the infimum over all tangent
hyperplanes L, our assertion (6) follows. In the same manner, we can establish
an inequality (7) in the second part of the theorem. O

The characterisation of the equality cases is as follows.

Theorem 3.2. Let M be a real hypersurface in the complex hyperbolic quadric
Q7. Equalities hold in the relations (6) and (7) if and only if M is an invari-
antly quasi-umbilical hypersurface with trivial normal connection in Q% and,
with respect to suitable tangent and normal orthonormal frames, the shape
operator S takes the following form

b 0O ..0 0
0b0 ..0 0
S=1: o (12)
000 ... b 0
000 0 ne=by

t

Proof. The equality sign holds in the equalities (6) and (7) if and only if

Oijzoa v i?je{lw-'un}a 27&.]7 (13>
and

S (¢ A P (AR P (14)

t t
Equation (13) means that normal connection is flat. Furthermore, (14)
means that there exist unit normal vector field N such that the shape operator
S has an eigenvalue of multiplicity (p — 1), that is, M is invariantly quasi-
umbilical hypersurface. This proves our assertion. 0

Remark 3.1. (a) Since the generalized normalized §-Casorati curvatures dg (t; p—
1) and é¢(t; p—1) are the generalized versions of the normalized 0-Casorati cur-
vatures d¢(p — 1) and d¢(p — 1), respectively, we can also get the results for the

normalized 6-Casorati curvatures dg(p — 1) and gg(p —1).

(b) Note that we have derived two optimal inequalities for real hyper-
surface M in QT*, now by similar approach ones can easily obtain these two
optimal inequalities in the case of complex quadrics Q1.
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4. Classification of real hypersurfaces in some quadrics with
isometric Reeb flow

Related to integral formula, there were several pinching results being
obtained using a so-called ”Bochner integral formula” (see [19]). Let M be a
compact Riemannian manifold. Then for any tangent vector field X on M, K.
Yano [18] established the following integral formula

| AKGX) + 51exgll = IVXIF = (X)) =1 =0, (15)

where where K (X, X) denotes the Ricci curvature along the direction of the
vector X and Lx is the operator of Lie derivative with respect to X, defined
by (Lxg)(Y,Z2) = g(Vy X, Z) + g(VzX,Y).

Proposition 4.1. Let M be a minimal compact real hypersurface in Q¥,q > 3.
If 217 > —(2q — 1)(2¢ — 2) — 2, then

1. PS=SP,

2. the unit normal vector field N is U—isotropic,

3. 21" =—(2¢—1)(2¢ — 2) — 2.

Proof. The proof is based on the so called Bochner technique. Since M is
minimal, it follows that h = 0. Thus, the the Ricci curvature K*(&,¢) in (4)
along the direction £ becomes

K*(€,€) = —(2q — 4) + 29(AN, N)g(AE, €) — g(S°¢. €), (16)
and the scalar curvature is given by
27% = —(2¢ — 1) + 1 — trace(S?). (17)

By substituting X = ¢ into (15) and by making use of div(§) = trace(PS) = 0,
[|[VE|]? = trace(S?) — g(S2%€,€), and (17), we derive

0 = [ {—(2q—4)+29(AN, N)g(AE, &) — g(S%,€) (18)
M
+5l1ell — trace(s?) + g(5%,€)} +1
= [ {= 20— 4)+ 200209046, 6) + 312l
+27" 4 (2 — 1) =1} %1
= [ for o D@-2) 424 gkl
M

+2g(AN, N)g(AE, &)} * 1. (19)

If 27 > —(2q — 1)(2¢ — 2) — 2, then it follows that integrand (18) is non-
negative and we arrive at 27* = —(2¢ — 1)(2g — 2) — 2, g(AN,N)g(AE, &) =0
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and L¢g = 0. Further,

0 = (Leg)(X,Y) =g(Vx&Y)+g(Vy, X)
= ¢(PSX,Y)+ g(PSY, X)
= g(PSX,Y) — g(SPX,Y),

where we have used Vx& = PSX. Moreover, we have either g(AN,N) =0 or
g(AE, &) = 0. Then by (1), we get ¢ = 7 and the unit normal vector field N
becomes U—isotropic, that is, N = %, for any Z;, Zy € V(A). Hence, we

get our assertions. 0
Following [11] and Proposition 4.1, we state that

Theorem 4.1. Let M be a minimal compact real hypersurface in Q¥*, q > 3.
If 21 > —(2¢ —1)(2¢ — 2) — 2, then M is a tube of radius 7 over CH? in Q.

Similarly, we have

Theorem 4.2. Let M be a minimal compact real hypersurface in Q?,q > 3
with U—isotropic unit normal vector field N. If 27* > (2q — 1)(2q — 2) + 2,
then M s a tube of radius 5 over CP% in Q1.

5. Non-existence of real hypersurfaces in some quadrics

On compact Riemannian manifold M we have the following integral for-
mula [18, 17] (in terms of Ricci curvature K).

Lemma 5.1. Let M be a compact Riemannian manifold. Then for any vector
field X defined on M we have [, {K(X,X)+ |[VX|?} x1 > 0. Then the
equality holds if and only if X is a harmonic vector field.

Before going to prove our main theorem we wish to give the following
proposition with the help of above quoted Lemma 5.1.

Proposition 5.1. Let M be a compact real hypersurface in Q¥ ,q > 3 with
U—principal unit normal vector field N and trace(S?) < (2q¢—2) — hg(SE, &) +
2S¢ .

1. If Ricci curvature K*(&,€) is positive semi-definite, then & is a harmonic
vector field and has vanishing covariant deriwative.

2. If Ricci curvature K*(&,§) is positive definite, then a harmonic vector field
¢ (other than zero) does not exist in M.

Proof. By applying Lemma 5.1 to the structure vector filed £ of a compact real
hypersurface M in Q7 and using (16), we arrive at

0 < /M{K*<5,s>+||vs||2}*1
= /M{—(2q—2)+h9(5575)—9(52€,€)+9(V€,V€)}*1-
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Since Vx& = PSX and g(PX,PY) = g(X,Y) —n(X)n(Y), then we have the
following

0 < /{ 29 — 2) + hg(SE,€) — g(S%€,€) + g(VE, VE)} %1
- / [~ (20— 2) + hg(SE.€) — g(S°€.€) + trace(S?) — g(S%.,6)} =
_ /{ 24 — 2) + hg(S€,€) — 2| SE|> + trace(s?)} + 1

If the trace of the shape operator S? satisfies trace(S?) < (2¢—2) —hg(SE, &)+
2||S¢||?, then the equality holds and we get both the assertions of the theorem.
U

Theorem 5.1. There do not exist any compact real hypersurfaces in Q9*, q >
3, with U—principal unit normal vector field N, satisfying K*(§,€) > 0, and
trace(S?) < (2q — 2) — hg(SE, €) + 2|[5¢|*.

Proof. By the assumption of Proposition 5.1, that is, K*(£,&) > 0, we conclude
that K*(¢,€) = 0 and V& = 0. Taking into account the latter case, that is,
V¢ = 0 and this implies that SX = n(SX)¢ for any tangent vector field X
on M, that is, M is a totally n—umbilical real hypersurface in Q7. From
this we know that the structure vector £ is principal, that is, S¢ = B€, where
B =n(SE). The trace of shape operator is
2q—1 2q—1
h = trace(S) = Z 9(SE;, ;) = Z n(SE)n(E:)
i=1 i=1
= 9(5¢,€) =n(5¢) = 5.
From this and together with K*(&, &) = 0, it follows that K*(£,£) = (2—2q) +
f% — 3% =2—2q. But K*(£,€) =2 — 2q = 0, which further gives ¢ = 1. This
contradicts our assumption g > 3. ([l

Proposition 5.2. Let M be a compact real hypersurface in Q9,q > 3 with
U—1isotropic unit normal vector field N and trace(S?) < (2q—4) — hg(SE, &) +

o/ 8¢

1. If Ricci curvature K*(&,€) is positive semi-definite, then & is a harmonic
vector field and has vanishing covariant derivative.

2. If Ricci curvature K*(&,§) is positive definite, then a harmonic vector field
¢ (other than zero) does not exist in M.

Proof. The proof of this proposition is similar to Proposition 5.1. U

By using the assumption of Proposition 5.2, we can easily prove the
following theorem.

Theorem 5.2. There do not exist any compact real hypersurfaces in Q¥, q >
3, with U—isotropic unit normal vector field N, satisfying K*(£,&) > 0, and
trace(S®) < (2q — 4) — hg(S¢, €) + 2/ S¢| .
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Remark 5.1. Note that ones can study such results for a compact real hy-
persurface in Q4,q > 3 with U—principal unit normal vector field N and
U—principal unit normal vector field N.

6. Some open problems

1. We note that the techniques used in this paper to obtain the sharp
optimal inequalities involving generalized normalized §-Casorati curvatures for
submanifolds in some quadrics with codimension 1 are based on an optimiza-
tion procedure by showing that a quadratic polynomial in the components
of the second fundamental form is parabolic. Now, one can study the sim-
ilar inequalities for general submanifolds (such as CR-submanifolds) as well.
On the other hand, the concept of semi-symmetric metric connection on Rie-
mannian manifold was introduced by H.A. Hayden. Chen-like inequalities for
submanifolds of real, complex and Sasakian space forms endowed with semi-
symmetric metric connections are derived. Moreover, some optimal inequalities
for submanifolds of a Riemannian manifold of quasi-constant curvature with
a semi-symmetric metric connection are obtained by using a different algebra
approaches. The problem is to obtain optimal inequalities for the generalized
normalized J-Casorati curvatures of different classes of submanifolds in some
quadrics admitting semi-symmetric metric connections or other connections.

2. Related to integral formula (sections 4 and 5):

(a) there were several pinching results being obtained using a so-called ” Bochner
integral formula” (for example, see [7]). It is expected that the inequality leads

to minimal compact real hypersurfaces satisfying PS = SP. When the ambi-

ent space is @7, it provides a characterization of tubes of radius 7 over CPpa/?

in Q7 (by using results in [3]). One could study this result.

(b) Would it be possible to redesign the condition(s) so that it becomes a

classification result?
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