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SOME SHARP INEQUALITIES ON REAL HYPERSURFACES 
OF SOME QUADRICS

Aliya Naaz Siddiqui1 and Kwang Soon Park2*

The objective of this paper is two-fold: Firstly, we establish some
optimal inequalities involving the normalized scalar curvature and general-
ized normalized δ−Casorati curvatures for real hypersurfaces in the complex
hyperbolic quadrics Qq∗ (and the complex quadrics Qq). Secondly, we study
a notion of the Ricci tensor derived from a curvature of real hypersurfaces
in Qq∗ (and Qq). Then we classify real hypersurfaces with isometric Reeb
flow in Qq∗ (and Qq) by using an integral formula related to the Ricci cur-
vature. Also, we give a complete proof of non-existence of real hypersurfaces
in Qq∗ (and Qq).
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1. Introduction

In a class of Hermitian symmetric spaces of rank 2, usually we can
give examples of Riemannian symmetric spaces G2(Cq+2) = SUq+2/S(U2Uq)
and G∗

2(Cq+2) = SU2,q/S(U2Uq). The q−dimensional complex quadric Qq =
SOq+2/SOqSO2 and complex hyperbolic quadric Qq∗ = SO◦

2,q/SOqSO2 can be
regarded as another kind of Hermitian symmetric spaces with rank 2 of com-
pact type and of noncompact type, respectively. Qq and Qq∗ are the complex
hypersurfaces in complex projective space CPq+1 and complex hyperbolic space
CHq+1, respectively. Many results have been obtained on real hypersurfaces
in G2(Cq+2), G∗

2(Cq+2), Qq and Qq∗ with different conditions (for example,
see [9]). In 2005, Y. J. Suh and Y. Watanabe [13] proved the non-existence
properties related to the Ricci curvature along the direction of structure vec-
tor ξ of any compact real hypersurface in complex two-plane Grassmannian
G2(Cq+2), q ≥ 3. In the present paper, motivated by this result, we will show
a non-existence property for compact real hypersurfaces in Qq∗ and Qq related
to the Ricci curvature.
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On the other hand, B.-Y. Chen [4] introduced the notion of Chen invari-
ants and obtained some optimal inequalities consisting of intrinsic invariants
and some extrinsic invariants for any Riemannian submanifolds. Instead of
concentrating on the sectional curvature with the extrinsic squared mean cur-
vature, the Casorati curvature of a submanifold in a Riemannian manifold was
considered as an extrinsic invariant. The notion of Casorati curvature extends
the concept of the principal direction of a hypersurface of a Riemannian man-
ifold. Several geometers in [8, 15, 16, 5, 6] found geometrical meaning and the
importance of the Casorati curvature and hence obtain optimal inequalities
for the Casorati curvatures of submanifolds in different ambient spaces (for
example [14]). Brubaker et al. [2] obtained a nice geometric interpretation of
Cauchy-Schwarz inequality in terms of Casorati curvature. Recently, Park [10]
proved inequalities for the Casorati curvatures of real hypersurfaces in some
Grassmannians. As a natural prolongation of our research, in the present
paper, we will study these inequalities for real hypersurfaces in Qq∗ and Qq.

2. The complex (hyperbolic) quadrics and hypersurfaces

The homogeneous quadratic equation z21+· · ·+z2q+2 = 0 on Cq+2 defines a
complex hypersurface Qq in the (q+1)−dimensional complex projective space
CPq+1 = SUq+2/S(Uq+1U1). The complex hypersurface Qq is known as the
q−dimensional complex quadric. The 1−dimensional quadric Q1 is isomet-
ric to the round 2−sphere S2. For q ≥ 2 the triple (Qq, J, g) is a Hermitian
symmetric space of rank two and its maximal sectional curvature is equal to
4. The 2−dimensional quadric Q2 is isometric to the Riemannian product
S2×S2. On the other hand, the complex hypersurface Qq∗ in CHq+1 is known
as the q−dimensional complex hyperbolic quadric. The complex structure J on
CHq+1 naturally induces a complex structure on Qq∗ which we will denote by J
as well. We equip Qq∗ with the Riemannian metric g which is induced from the
Begerman metric on CHq+1 with constant holomorphic sectional curvature −4.
For q ≥ 2 the triple (Qq∗, J, g) is a Hermitian symmetric space of rank 2 and its
minimal sectional curvature is equal to 4. The 1−dimensional quadric Q1∗ is
isometric to the 2−dimensional real hyperbolic space RH2 = SOo

1,2/SO1SO2.

The 2−dimensional complex quadric Q2∗ is isometric to the Riemannian prod-
uct of complex hyperbolic spaces CH1 × CH1. We will assume q ≥ 3 for the
sections 3 and 4 of this paper.

In addition to the complex structure J there is another distinguished
geometric structure on Qq∗, namely, a parallel rank two vector bundle U which
contains an S1−bundle of real structures, that is, complex conjugation A on
the tangent spaces of Qq∗. Both anti-commute with each other, that is, AJ =
−JA. We denote by Az the shape operator of Qq∗ in CHq+1 with respect to
z. Note that z ∈ ν[z]Q

q∗ is a unit normal vector of Qq∗ in CHq+1 at the point
[z] (for details see [12]). Then we have Azw = w for all w ∈ T[z]Q

q∗, that is,
Az is just complex conjugation restricted to T[z]Q

q∗. The shape operator Az
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is an anti-linear involution on the complex vector space T[z]Q
q∗ and T[z]Q

q∗ =

V (Az) ⊕ JV (Az), where V (Az) = Rq+2
1

∩
T[z]Q

q∗ is the (+1)−eigenspace and

JV (Az) = iRq+2
1

∩
T[z]Q

q∗ is the (−1)−eigenspace of Az.

The Riemannian curvature tensor R
∗
of Qq∗ in CHq+1 concerning the

Riemannian metric g, the complex structure J and a generic real structure A

in U is given by [12]

R
∗
(X, Y )Z = −g(Y, Z)X + g(X,Z)Y − g(JY, Z)JX

+g(JX,Z)JY + 2g(JX, Y )JZ − g(AY, Z)AX

+g(AX,Z)AY − g(JAY, Z)JAX + g(JAX,Z)JAY.

The Riemannian curvature tensor R of Qq in CPq+1 is defined as follows [3]

R(X,Y )Z = g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX

−g(JX,Z)JY − 2g(JX, Y )JZ + g(AY, Z)AX

−g(AX,Z)AY + g(JAY, Z)JAX − g(JAX,Z)JAY.

A nonzero tangent vector W ∈ T[z]Q
q∗ is called singular if it is tangent

to more than one maximal flat in Qq∗. There are two types of singular tangent
vectors for the complex hyperbolic quadric Qq∗ [12]

1. If there exists a real structure A ∈ U[z] such that W ∈ V (A), then W
is singular. Such a singular tangent vector is called U−principal.

2. If there exist a real structure A ∈ U[z] and orthonormal vectors

X, Y ∈ V (A) such that W
||W || =

(X+JY )√
2

, then W is singular. Such a singular

tangent vector is called U−isotropic.
Let M be a real hypersurface in Qq∗ and denoted by the data (P, ξ, η, g)

the induced almost contact metric structure on M and by ∇ the induced
Riemannian connection on M . Note that ξ = −JN, where N is a unit normal
vector field of M . The vector field ξ is known as the Reeb vector field of M
and η is 1−form defined by η(X) = g(ξ,X) for any tangent vector field X on
M . The tangent bundle TM of M splits orthogonally into TM = C ⊕ Rξ,
where C = ker(η) is the maximal complex subbundle of TM . The structure
tensor field P restricted to C coincides with the complex structure J restricted
to C, and we have Pξ = 0.

If the integral curves of ξ are geodesics in M , the hypersurface M is
called a Hopf hypersurface. The integral curves of ξ are geodesics in M if and
only if ξ is a principal curvature vector of M everywhere. If we assume that
M is a Hopf hypersurface, then we have Sξ = βξ, where S denotes the shape
operator of the real hypersurfaces M with the smooth function β = g(Sξ, ξ)
on M .

By the Kaehler structure J of the complex hyperbolic quadric Qq∗, one
can transfer any tangent vector field X on M in Qq∗ as follows: JX = PX +
η(X)N, where PX = tan(JX) and N is a unit normal vector field on M in
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Qq∗. Then it naturally satisfies the following relations: P 2X = −X + η(X)ξ,
η(ξ) = 1, and Pξ = 0.

Basic complex linear algebra shows that for every unit tangent vector
W ∈ T[z]Q

q∗ there exist a real structure A ∈ U[z] and orthonormal vectors
X, Y ∈ V (A) such that W = cos(t)X + sin(t)JY , for some t ∈ [0, π

4
]. The

singular tangent vectors correspond to the values t = 0 and t = π
4
.

Now, we assume that the normal vector N[z] of M is not U−principal.
Then there exists a real structure A ∈ U[z] such that N[z] = cos(t)Z1 +
sin(t)JZ2, for some orthonormal vectors Z1, Z2 ∈ V (A), t ∈ [0, π

4
]. Note

that t is a function on M . First of all ξ = −JN, we have

N[z] = cos(t)Z1 + sin(t)JZ2, AN[z] = cos(t)Z1 − sin(t)JZ2,

ξ[z] = sin(t)Z2 − cos(t)JZ1, Aξ[z] = sin(t)Z2 + cos(t)JZ1,

 (1)

and therefore Q[z] = T[z]Q
q∗ ⊖ ([Z1]⊕ [Z2]) is strictly contained in C[z].

Following Gauss equation, the curvature tensorR∗ for (2q−1)−dimensional

submanifold M in Qq∗ induced from the curvature tensor R
∗
is expressed as

follows (see [12])

R∗(X, Y )Z = −g(Y, Z)X + g(X,Z)Y − g(JY, Z)JX + g(JX,Z)JY

+2g(JX, Y )JZ − g(AY, Z)AX + g(AX,Z)AY

−g(JAY, Z)JAX + g(JAX,Z)JAY + g(SY, Z)SX

−g(SX,Z)SY. (2)

Using (2) and contracting Y and Z, we have the Ricci tensor of M in Qq∗

Ric∗(X) =

2q−1∑
i=1

[
− g(Ei, Ei)X + g(X,Ei)Ei − g(JEi, Ei)JX

+g(JX,Ei)JEi + 2g(JX,Ei)JEi − g(AEi, Ei)AX

+g(AX,Ei)AEi − g(JAEi, Ei)JAX + g(JAX,Ei)

JAEi + g(SEi, Ei)SX − g(SX,Ei)SEi

]
= −(2q − 1)X +X + PX + 2P 2X + g(AN,N)AX +X

−g(AX,N)AN + g(JAN,N)JAX +X − g(JAX,N)

JAN + hSX − S2X.

Further, we have

Ric∗(X) = −(2q − 1)X + 3η(X)ξ + g(AN,N)AX

−g(AX,N)AN + g(JAN,N)JAX

−g(JAX,N)JAN + hSX − S2X, (3)
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where h = trace(S) denotes the mean curvature, defined by the shape operator
S of M in Qq∗. Then the Ricci curvature K∗(ξ, ξ) along the direction of ξ is
given by

K∗(ξ, ξ) = −(2q − 4) + 2g(AN,N)g(Aξ, ξ)

+hg(Sξ, ξ)− g(S2ξ, ξ). (4)

We suppose that a real hypersurface M in Qq∗ has U−principal unit
normal vector field N, that is, AN = N for a complex conjugation A ∈ U. On
the other hand, for real hypersurfaces with U−isotropic unit normal vector
field N in Qq∗ (respectively in Qq), we put N = Z1+JZ2√

2
, for any Z1, Z2 ∈ V (A).

3. Optimal inequalities for the Casorati curvatures

Let us consider a local orthonormal tangent frame {E1, . . . , Ep} of TM
and a local orthonormal normal frame {N} of T⊥M in Qq∗. At any ℘ ∈ M ,
the scalar curvature τ ∗ of M is given by

τ ∗ =
∑

1≤i<j≤p

R∗(Ei, Ej, Ej, Ei) =
∑

1≤i<j≤p

g(R∗(Ei, Ej)Ej, Ei). (5)

The mean curvature vector H of M in Qq∗ is H = 1
p

∑p
i=1 σ(Ei, Ei). Conve-

niently, let us put σij = g(σ(Ei, Ej),N) = g(SEi, Ej), for i, j = {1, . . . , n}.
Then the squared norm of mean curvature vector of M is defined as ||H||2 =
1
p2

(∑p
i=1 σii

)2

and the squared norm of second fundamental form σ is de-

noted by C = 1
p
||σ||2, where ||σ||2 =

∑p
i,j=1

(
σij

)2
. It is known as the Casorati

curvature C of M in Qq∗.
If we suppose that L is an r-dimensional subspace of TM , r ≥ 2, and

{E1, . . . , Er} is an orthonormal basis of L. Then the Casorati curvature of the

subspace L is C(L) = 1
r

∑r
i,j=1

(
σij

)2
.

The normalized δ-Casorati curvatures δC(p− 1) and δ̂C(p− 1) are respec-
tively defined as

[δC(p− 1)]℘ =
1

2
C℘ +

p+ 1

2p
inf{C(L)|L : a hyperplane of T℘M},

and

[δ̂C(p− 1)]℘ = 2C℘ − 2p− 1

2p
sup{C(L)|L : a hyperplane of T℘M}.

Now, we define the generalized normalized δ-Casorati curvatures δC(t; p − 1)

and δ̂C(t; p− 1) as follows:
1. For 0 < t < p2 − p

[δC(t; p− 1)]℘ = tC℘ + b(t) inf{C(L)|L : a hyperplane of T℘M},
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2. For t > p2 − p

[δ̂C(t; p− 1)]℘ = tC℘ + b(t) sup{C(L)|L : a hyperplane of T℘M},
where b(t) = 1

tp
(p− 1)(p+ t)(p2 − p− t), t ̸= p(p− 1).

Definition 3.1. A point r ∈ M is said to be an invariantly quasi-umbilical
point if there exist unit normal vector {N} such that the shape operator S has
an eigenvalue of multiplicity ≥ (p−1). The real hypersurface M is said to be an
invariantly quasi-umbilical hypersurface, if each of its points is an invariantly
quasi-umbilical point [1].

Theorem 3.1. Let M be a real hypersurface in the complex hyperbolic quadric
Qq∗. Then
1. The generalized normalized δ-Casorati curvature δC(t; p− 1) satisfies

ρ∗ ≤ δC(t; p− 1)

p(p− 1)
−

(
p+ 1

p

)
, (6)

for any t ∈ R with 0 < t < p(p− 1).

2. The generalized normalized δ-Casorati curvature δ̂C(t; p− 1) satisfies

ρ∗ ≤ δ̂C(t; p− 1)

p(p− 1)
−

(
p+ 1

p

)
, (7)

for any t ∈ R with t > p(p− 1).

Proof. Let {E1, . . . , Ep} and {N} be the orthonormal basis of TM and T⊥M ,
respectively at any point ℘ ∈ M . Putting X = W = Ei, Y = Z = Ej, i ̸= j
into (2) and taking summation 1 ≤ i, j ≤ p, we have∑
1≤i,j≤p

g(R∗(Ei, Ej)Ej, Ei) =
∑

1≤i,j≤p

[
− g(Ej, Ej)g(Ei, Ei) + g(Ei, Ej)g(Ej, Ei)

−g(PEj, Ej)g(PEi, Ei) + g(PEi, Ej)g(PEj, Ei)

+2g(PEi, Ej)g(PEj, Ei)− g(AEj, Ej)g(AEi, Ei)

+g(AEi, Ej)g(AEj, Ei)− g(JAEj, Ej)g(JAEi, Ei)

+g(JAEi, Ej)g(JAEj, Ei) + g(SEj, Ej)g(SEi, Ei)

−g(SEi, Ej)g(SEj, Ei)

]
.

By using (5), we get

2τ ∗ = −p2 + 3 + g(AN,N)

p∑
i=1

g(AEi, Ei)−
p∑

i=1

g(AEi,N)g(AN, Ei)

+

p∑
i=1

g(JAN,N)g(JAEi, Ei)−
p∑

i=1

g(JAEi,N)g(JAN, Ei)

+p2||H||2 − ||σ||2
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= −p2 + 3 + g(AN,N)

[ p+1∑
i=1

g(AEi, Ei)− g(AN,N)

]

−
p+1∑
i=1

g(AEi,N)g(AN, Ei) + g(AN,N)g(AN,N)

−
p+1∑
i=1

g(JAEi,N)g(JAN, Ei) + p2||H||2 − ||σ||2,

where g(JAN,N) = g(Aξ,N) = 0. Further, we derive

2τ ∗ = −p2 + 3− g(AN,N)g(AN,N)−
p+1∑
i=1

g(AEi,N)g(AN, Ei)

+g(AN,N)g(AN,N)−
p+1∑
i=1

g(JAEi,N)g(JAN, Ei)

+p2||H||2 − ||σ||2

= −p2 + 3−
p+1∑
i=1

g(AEi,N)g(AN, Ei)−
p+1∑
i=1

g(JAEi,N)g(JAN, Ei)

+p2||H||2 − ||σ||2.
Thus, we rewrite the above relation as

2τ ∗ = −p2 + 1 + p2||H||2 − pC. (8)

Now, we define the following function, denoted by P, a quadratic polynomial in
the components of the second fundamental form P = tC+b(t)C(L)−2τ ∗−p2+1.
Assuming, without loss of generality, that L is spanned by E1, . . . , Ep−1, it
follows that

P =
t

p

p∑
i,j=1

σ2
ij +

b(t)

p− 1

p−1∑
i,j=1

σ2
ij − 2τ ∗ − p2 + 1. (9)

On combining (8) and (9), we arrive at

P = (
p+ t

p
)

p∑
i,j=1

σ2
ij + (

b(t)

p− 1
)

p−1∑
i,j=1

σ2
ij − (

p∑
i=1

σii)
2,

which can be easily rewritten as

P =

p−1∑
i=1

[
(a− 1)(σii)

2 +
2(p+ t)

p
(σip)

2

]

+

[
2a

p−1∑
i≤j=1

(σij)
2 − 2

p∑
i≤j=1

(σiiσjj) +
t

p
(σpp)

2

]
, (10)
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where a =

(
p+t
p

+ b(t)
p−1

)
. From (10), we observe that the critical points

σc = (σ11, σ12, . . . , σpp) of P are the solutions of the following system of linear
homogenous equations

∂P
∂σii

= 2a(σii)− 2
∑p

s=1 σss = 0, ∂P
∂σpp

= 2t
p
σpp − 2

∑p−1
s=1 σss = 0,

∂P
∂σij

= 4aσij = 0, ∂P
∂σip

= 4(p+t
p
)σip = 0,

 (11)

where i, j = {1, 2, . . . , p− 1}, i ̸= j.
Hence, every solution σc has σij = 0 for i ̸= j and the corresponding determi-
nant to the first two equations of the above system is zero. Moreover, it is to
see that the Hessian matrix of P takes the following form

H(P) =

 H1 O O
O H2 O
O O H3

 ,

where

H1 =


2a− 2 −2 . . . −2 −2
−2 2a− 2 . . . −2 −2
...

... . . . ...
...

−2 −2 . . . 2a− 2 −2
−2 −2 . . . −2 2t

p

 ,

O are the null matrices and H2 and H3 are the diagonal matrices of the re-
spective dimensions. H2 and H3 are, respectively, given as

H2 = diag
(
4a, 4a, . . . , 4a

)
,

and

H3 = diag

(
4(p+ t)

p
,
4(p+ t)

p
, . . . ,

4(p+ t)

p

)
.

Hence, we find that H(P) has the following eigenvalues

λ11 = 0, λ22 = 2a, λ33 = · · · = λpp = 2a,

λij = 4a, λip =
4(p+ t)

p
, ∀i, j ∈ {1, 2, . . . , p− 1}, i ̸= j.

It follows that the Hessian matrix is positive semi-definite for all points and
admits precisely one eigenvalue equal to zero. Therefore, we deduce that P is
parabolic and reaches a minimum P(σc) for the solution σc of the system (11).
In fact, because of the convexity, the critical point σc is a global minimum.
But inserting (11) into (10), we obtain P(σc) = 0. Thus, we deduce P ≥ 0 and
this implies

2τ ∗ ≤ tC+ b(t)C(L)− p2 + 1.
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The normalized scalar curvature ρ∗ of M is defined as ρ∗ = 2τ∗

p(p−1)
. Thus, we

have

ρ∗ ≤ t

p(p− 1)
C+

b(t)

p(p− 1)
C(L)−

(
p+ 1

p

)
for every tangent hyperplane L of M . If we take the infimum over all tangent
hyperplanes L, our assertion (6) follows. In the same manner, we can establish
an inequality (7) in the second part of the theorem. �

The characterisation of the equality cases is as follows.

Theorem 3.2. Let M be a real hypersurface in the complex hyperbolic quadric
Qq∗. Equalities hold in the relations (6) and (7) if and only if M is an invari-
antly quasi-umbilical hypersurface with trivial normal connection in Qq∗ and,
with respect to suitable tangent and normal orthonormal frames, the shape
operator S takes the following form

S =


b 0 0 . . . 0 0
0 b 0 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . b 0

0 0 0 . . . 0 p(p−1)
t b

 (12)

Proof. The equality sign holds in the equalities (6) and (7) if and only if

σij = 0, ∀ i, j ∈ {1, . . . , n}, i ̸= j, (13)

and

σpp =
p(p− 1)

t
σ11 = · · · = p(p− 1)

t
σp−1 p−1 (14)

Equation (13) means that normal connection is flat. Furthermore, (14)
means that there exist unit normal vector field N such that the shape operator
S has an eigenvalue of multiplicity (p − 1), that is, M is invariantly quasi-
umbilical hypersurface. This proves our assertion. �

Remark 3.1. (a) Since the generalized normalized δ-Casorati curvatures δC(t; p−
1) and δ̂C(t; p−1) are the generalized versions of the normalized δ-Casorati cur-

vatures δC(p− 1) and δ̂C(p− 1), respectively, we can also get the results for the

normalized δ-Casorati curvatures δC(p− 1) and δ̂C(p− 1).
(b) Note that we have derived two optimal inequalities for real hyper-

surface M in Qq∗, now by similar approach ones can easily obtain these two
optimal inequalities in the case of complex quadrics Qq.
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4. Classification of real hypersurfaces in some quadrics with
isometric Reeb flow

Related to integral formula, there were several pinching results being
obtained using a so-called ”Bochner integral formula” (see [19]). Let M be a
compact Riemannian manifold. Then for any tangent vector field X on M , K.
Yano [18] established the following integral formula∫

M

{
K(X,X) +

1

2
||LXg||2 − ||∇X||2 − ||div(X)||2

}
∗ 1 = 0, (15)

where where K(X,X) denotes the Ricci curvature along the direction of the
vector X and LX is the operator of Lie derivative with respect to X, defined
by (LXg)(Y, Z) = g(∇YX,Z) + g(∇ZX, Y ).

Proposition 4.1. Let M be a minimal compact real hypersurface in Qq∗, q ≥ 3.
If 2τ ∗ ≥ −(2q − 1)(2q − 2)− 2, then
1. PS = SP ,
2. the unit normal vector field N is U−isotropic,
3. 2τ ∗ = −(2q − 1)(2q − 2)− 2.

Proof. The proof is based on the so called Bochner technique. Since M is
minimal, it follows that h = 0. Thus, the the Ricci curvature K∗(ξ, ξ) in (4)
along the direction ξ becomes

K∗(ξ, ξ) = −(2q − 4) + 2g(AN,N)g(Aξ, ξ)− g(S2ξ, ξ), (16)

and the scalar curvature is given by

2τ ∗ = −(2q − 1)2 + 1− trace(S2). (17)

By substituting X = ξ into (15) and by making use of div(ξ) = trace(PS) = 0,
||∇ξ||2 = trace(S2)− g(S2ξ, ξ), and (17), we derive

0 =

∫
M

{
− (2q − 4) + 2g(AN,N)g(Aξ, ξ)− g(S2ξ, ξ) (18)

+
1

2
||Lξg||2 − trace(S2) + g(S2ξ, ξ)

}
∗ 1

=

∫
M

{
− (2q − 4) + 2g(AN,N)g(Aξ, ξ) +

1

2
||Lξg||2

+2τ ∗ + (2q − 1)2 − 1
}
∗ 1

=

∫
M

{
2τ ∗ + (2q − 1)(2q − 2) + 2 +

1

2
||Lξg||2

+2g(AN,N)g(Aξ, ξ)
}
∗ 1. (19)

If 2τ ∗ ≥ −(2q − 1)(2q − 2) − 2, then it follows that integrand (18) is non-
negative and we arrive at 2τ ∗ = −(2q − 1)(2q − 2)− 2, g(AN,N)g(Aξ, ξ) = 0
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and Lξg = 0. Further,

0 = (Lξg)(X,Y ) = g(∇Xξ, Y ) + g(∇Y ξ,X)

= g(PSX, Y ) + g(PSY,X)

= g(PSX, Y )− g(SPX, Y ),

where we have used ∇Xξ = PSX. Moreover, we have either g(AN,N) = 0 or
g(Aξ, ξ) = 0. Then by (1), we get t = π

4
and the unit normal vector field N

becomes U−isotropic, that is, N = Z1+JZ2√
2

, for any Z1, Z2 ∈ V (A). Hence, we

get our assertions. �
Following [11] and Proposition 4.1, we state that

Theorem 4.1. Let M be a minimal compact real hypersurface in Qq∗, q ≥ 3.
If 2τ ∗ ≥ −(2q− 1)(2q− 2)− 2, then M is a tube of radius π

4
over CH

q
2 in Qq∗.

Similarly, we have

Theorem 4.2. Let M be a minimal compact real hypersurface in Qq, q ≥ 3
with U−isotropic unit normal vector field N. If 2τ ∗ ≥ (2q − 1)(2q − 2) + 2,
then M is a tube of radius π

4
over CP

q
2 in Qq.

5. Non-existence of real hypersurfaces in some quadrics

On compact Riemannian manifold M we have the following integral for-
mula [18, 17] (in terms of Ricci curvature K).

Lemma 5.1. Let M be a compact Riemannian manifold. Then for any vector
field X defined on M we have

∫
M

{
K(X,X) + ||∇X||2

}
∗ 1 ≥ 0. Then the

equality holds if and only if X is a harmonic vector field.

Before going to prove our main theorem we wish to give the following
proposition with the help of above quoted Lemma 5.1.

Proposition 5.1. Let M be a compact real hypersurface in Qq∗, q ≥ 3 with
U−principal unit normal vector field N and trace(S2) ≤ (2q−2)−hg(Sξ, ξ)+
2||Sξ||2.
1. If Ricci curvature K∗(ξ, ξ) is positive semi-definite, then ξ is a harmonic
vector field and has vanishing covariant derivative.
2. If Ricci curvature K∗(ξ, ξ) is positive definite, then a harmonic vector field
ξ (other than zero) does not exist in M .

Proof. By applying Lemma 5.1 to the structure vector filed ξ of a compact real
hypersurface M in Qq∗ and using (16), we arrive at

0 ≤
∫
M

{
K∗(ξ, ξ) + ||∇ξ||2

}
∗ 1

=

∫
M

{
− (2q − 2) + hg(Sξ, ξ)− g(S2ξ, ξ) + g(∇ξ,∇ξ)

}
∗ 1.
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Since ∇Xξ = PSX and g(PX,PY ) = g(X,Y )− η(X)η(Y ), then we have the
following

0 ≤
∫
M

{
− (2q − 2) + hg(Sξ, ξ)− g(S2ξ, ξ) + g(∇ξ,∇ξ)

}
∗ 1

=

∫
M

{
− (2q − 2) + hg(Sξ, ξ)− g(S2ξ, ξ) + trace(S2)− g(S2ξ, ξ)

}
∗ 1

=

∫
M

{
− (2q − 2) + hg(Sξ, ξ)− 2||Sξ||2 + trace(S2)

}
∗ 1.

If the trace of the shape operator S2 satisfies trace(S2) ≤ (2q−2)−hg(Sξ, ξ)+
2||Sξ||2, then the equality holds and we get both the assertions of the theorem.

�
Theorem 5.1. There do not exist any compact real hypersurfaces in Qq∗, q ≥
3, with U−principal unit normal vector field N, satisfying K∗(ξ, ξ) ≥ 0, and
trace(S2) ≤ (2q − 2)− hg(Sξ, ξ) + 2||Sξ||2.
Proof. By the assumption of Proposition 5.1, that is, K∗(ξ, ξ) ≥ 0, we conclude
that K∗(ξ, ξ) = 0 and ∇ξ = 0. Taking into account the latter case, that is,
∇ξ = 0 and this implies that SX = η(SX)ξ for any tangent vector field X
on M , that is, M is a totally η−umbilical real hypersurface in Qq∗. From
this we know that the structure vector ξ is principal, that is, Sξ = βξ, where
β = η(Sξ). The trace of shape operator is

h = trace(S) =

2q−1∑
i=1

g(SEi, Ei) =

2q−1∑
i=1

η(SEi)η(Ei)

= g(Sξ, ξ) = η(Sξ) = β.

From this and together with K∗(ξ, ξ) = 0, it follows that K∗(ξ, ξ) = (2−2q)+
β2 − β2 = 2− 2q. But K∗(ξ, ξ) = 2− 2q = 0, which further gives q = 1. This
contradicts our assumption q ≥ 3. �
Proposition 5.2. Let M be a compact real hypersurface in Qq∗, q ≥ 3 with
U−isotropic unit normal vector field N and trace(S2) ≤ (2q− 4)−hg(Sξ, ξ)+
2||Sξ||2.
1. If Ricci curvature K∗(ξ, ξ) is positive semi-definite, then ξ is a harmonic
vector field and has vanishing covariant derivative.
2. If Ricci curvature K∗(ξ, ξ) is positive definite, then a harmonic vector field
ξ (other than zero) does not exist in M .

Proof. The proof of this proposition is similar to Proposition 5.1. �
By using the assumption of Proposition 5.2, we can easily prove the

following theorem.

Theorem 5.2. There do not exist any compact real hypersurfaces in Qq∗, q ≥
3, with U−isotropic unit normal vector field N, satisfying K∗(ξ, ξ) ≥ 0, and
trace(S2) ≤ (2q − 4)− hg(Sξ, ξ) + 2||Sξ||2.
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Remark 5.1. Note that ones can study such results for a compact real hy-
persurface in Qq, q ≥ 3 with U−principal unit normal vector field N and
U−principal unit normal vector field N.

6. Some open problems

1. We note that the techniques used in this paper to obtain the sharp
optimal inequalities involving generalized normalized δ-Casorati curvatures for
submanifolds in some quadrics with codimension 1 are based on an optimiza-
tion procedure by showing that a quadratic polynomial in the components
of the second fundamental form is parabolic. Now, one can study the sim-
ilar inequalities for general submanifolds (such as CR-submanifolds) as well.
On the other hand, the concept of semi-symmetric metric connection on Rie-
mannian manifold was introduced by H.A. Hayden. Chen-like inequalities for
submanifolds of real, complex and Sasakian space forms endowed with semi-
symmetric metric connections are derived. Moreover, some optimal inequalities
for submanifolds of a Riemannian manifold of quasi-constant curvature with
a semi-symmetric metric connection are obtained by using a different algebra
approaches. The problem is to obtain optimal inequalities for the generalized
normalized δ-Casorati curvatures of different classes of submanifolds in some
quadrics admitting semi-symmetric metric connections or other connections.

2. Related to integral formula (sections 4 and 5):
(a) there were several pinching results being obtained using a so-called ”Bochner
integral formula” (for example, see [7]). It is expected that the inequality leads
to minimal compact real hypersurfaces satisfying PS = SP . When the ambi-
ent space is Qq, it provides a characterization of tubes of radius π

4
over CPq/2

in Qq (by using results in [3]). One could study this result.
(b) Would it be possible to redesign the condition(s) so that it becomes a
classification result?
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