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Abstract: It is shown that there is a fruitful relation between g-frames and g-

frame sequences, from the viewpoint of closed range operators on Hilbert spaces. Also a

new method for characterization of g-frames is introduced.
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1. Introduction

Frames were first introduced in the context of non-harmonic Fourier series [7]. Out-

side the signal processing, frames did not seem to generate much interest until the ground

breaking work of [6]. Since then the theory of frames began to be more widely studied.

During the last 20 years the theory of frames has been growing rapidly, several new applica-

tions have been developed. For example, besides traditional application as signal processing,

image processing, data compression, and sampling theory, frames are now used to mitigate

the effects of losses in pocket-based communication systems and hence to improve the ro-

bustness of data transmission [4], and to design high-rate constellation with full diversity

in multiple-antenna code design [8]. The intrusted reader can find details on frames in the

introductory book [5]. In [1, 2, 3] some applications have been developed.

G-frames have been introduced by W. Sun in 2006. They are generalized frames

and include ordinary frames and many recent generalizations of them, e.g., bounded quasi-

projectors and frames of subspaces ([10]). Afterward, A. Najati was able to complete g-

frames in [9] and he proved some new theorems.

In Section 2, we investigate frames and the effect of closed range operators on them

will be checked. In Section 3, we review g-frames and obtain some results. Finally, in Section

4, we express a new and useful method for characterization of g-frames and we show that

the effect of closed range operator on g-frame gives a g-frame sequences.

Throughout this paper H and K are Hilbert spaces and B(K,H) is the collection

of all bounded linear operators of K into H. If K = H, then B(H,H) will be denoted by

B(H).

If an operator u has closed range, then there exists a right-inverse operator u† (pseudo-

inverse of u) in the following sense (see [5]).
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Lemma 1. Let u ∈ B(K,H) be a bounded operator with closed range Ru. Then there exists

a bounded operator u† ∈ B(H,K) for which

uu†x = x, x ∈ Ru.

Lemma 2. Let u ∈ B(K,H) and u∗ be the adjoint of u. Then the following assertions hold:

(1) Ru is closed in H if and only if Ru∗ is closed in K.

(2) (u∗)† = (u†)∗.

(3) The orthogonal projection of H onto Ru is given by uu†.

(4) The orthogonal projection of K onto Ru† is given by u†u.

(5) Nu† = R⊥
u and Ru† = N⊥

u .

Proof. See [5]. �

2. A necessary condition for frames sequence

Definition 1. Let {fk}∞k=1 be a sequence of members of H. We say that {fk}∞k=1 is a frame

for H if there exist 0 < A ≤ B < ∞ such that

A∥f∥2 ≤
∞∑
k=1

|
⟨
f, fk

⟩
|2 ≤ B∥f∥2, f ∈ H. (1)

The constants A and B are called frame bounds. We say that {fk}∞k=1 is a Bessel

sequence with bound B, if just the right-hand side inequality of (1) holds. We say that

{fk}∞k=1 is a frame sequence, if it is a frame for span{fk}∞k=1.

Let {fk}∞k=1 be a Bessel sequence for H. The pre-frame operator for H will be denoted

by T{fk}, and is defined by:

T{fk} : ℓ2(N) → H,

T{fk}{ck}
∞
k=1 =

∞∑
k=1

ckfk.

For the proof of Theorems 1 and 2, refer to [5].

Theorem 1. A sequence {fk}∞k=1 in H is a frame for H if and only if

T{fk} : {ck}∞k=1 7→
∞∑
k=1

ckfk

defines a well-defined and surjective operator from ℓ2(N) into H.

Theorem 2. A sequence {fk}∞k=1 in H is a frame sequence for H if and only if

T{fk} : {ck}∞k=1 7→
∞∑
k=1

ckfk

defines a well-defined operator from ℓ2(N) into H with closed range.

Theorem 3. For u ∈ B(H,K), if {fk}∞k=1 is a Bessel sequence for H with bound B, then

the following assertions are satisfied:
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(1) the sequence {ufk}∞k=1 is a Bessel sequence for K with bound ||u||2B, and

T{ufk} = uT{fk}. (2)

(2) Let {fk}∞k=1 be a frame for H. Then {ufk}∞k=1 is a frame for K if and only if u is

surjective.

Proof. (1) For all f ∈ K,∑
k

|⟨f, ufk⟩|2 =
∑
k

|⟨u∗(f), fk⟩|2 ≤ ||u||2B||f ||2.

Therefore {ufk}∞k=1 is a Bessel sequence for K with bound ||u||2B. Since for all {ck}∞k=1 ∈
ℓ2(N),

uT{fk}{ck}
∞
k=1 =

∞∑
k=1

cku(fk) = T{ufk}{ck}
∞
k=1,

so uT{fk} = T{ufk}.

(2) Suppose that {ufk}∞k=1 is a frame for K. So, T{ufk} is surjective, and since

{fk}∞k=1 is a frame for H, then T{fk} is surjective. Thus, according to (2), u should be

surjective. Conversely, now suppose that u is surjective. Since T{fk} is surjective, then

T{ufk} is surjective too. Whence, {ufk}∞k=1 is a frame for K. �

Theorem 4. If {fk}∞k=1 is a frame for H and u ∈ B(H) with closed range, then {ufk}∞k=1

is a frame sequence.

Proof. See [5]. �

Now, we prove the converse of the assertion stated in Theorem 4.

Theorem 5. Let {fk}∞k=1 be a frame for H, and u ∈ B(H). If {ufk}∞k=1 is a frame sequence

for H, then u has closed range.

Proof. Let {ufk}∞k=1 be a frame sequence for H. According to Theorem 2, T{ufk} is a

well-defiend operator from ℓ2(N) into H with closed range. By Theorem 3,

RT{ufk} = RuT{fk} ⊆ Ru.

Let y ∈ Ru. Then there is x ∈ H such that u(x) = y. Since by Theorem 1, T{fk} is surjective,

so there exists {ck}∞k=1 ∈ ℓ2(N) such that T{fk}{ck}∞k=1 = x. We have y = uT{fk}{ck}∞k=1,

and this means that y ∈ RT{ufk} . Therefore Ru = RT{ufk} , so Ru is closed. �

3. Characterization of g-frames

Throughout this paper {Hj}j∈J will be a sequence of Hilbert spaces, where J is a

subset of Z.
The notation (

∑
j∈J ⊕Hj)ℓ2 will indicate the space{
{fj}j∈J | fj ∈ Hj ,

∑
j∈J

∥fj∥2 < ∞
}
,
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which is a Hilbert space with pointwise operations, and inner product defined by

⟨{fj}, {gj}⟩ :=
∑
j∈J

⟨fj , gj⟩, {fj}, {gj} ∈ (
∑
j∈J

⊕Hj)ℓ2 .

Definition 2. A family {Λj ∈ B(H,Hj)}j∈J is called a g-frame for H with respect to

{Hj}j∈J, if there exist 0 < A ≤ B < ∞ such that

A∥f∥2 ≤
∑
j∈J

∥Λjf∥2 ≤ B∥f∥2, f ∈ H. (3)

The constans A and B are called the lower and upper g-frame bounds for {Λj ∈
B(H,Hj)}j∈J, respectively. We say simply that {Λj}j∈J is a g-frame for H (and delete the

expression ”with respect to {Hj}j∈J”), whenever the space sequence {Hj}j∈J is clear.

We say that {Λj}j∈J is a g-Bessel sequence with bound B, if just the right-hand

side inequality of (3) holds; and {Λj}j∈J is said a g-frame sequence, if it is a g-frame for

span{Λ∗
j (Hj)}j∈J.

We say that {Λj}j∈J is g-complete, if

{f | Λjf = 0 , j ∈ J} = {0}. (4)

For the proof of the following Theorems, we refer to [9] and [10].

Theorem 6. If {Λj}j∈J is a g-frame for H, then

span{Λ∗
j (Hj)}j∈J = H.

Theorem 7. {Λj}j∈J is g-complete if and only if span{Λ∗
j (Hj)}j∈J = H.

Theorem 8. {Λj}j∈J is a g-Bessel sequence for H with bound B if and only if for any finite

subset J1 ⊂ J, ∥∥ ∑
j∈J1

Λ∗
jgj

∥∥2 ≤ B
∑
j∈J1

∥gj∥2, gj ∈ Hj .

For the proof of Theorems 9 and 10, we refer to [9].

Theorem 9. A sequence {Λj}j∈J is a g-Bessel sequence for H with bound B if and only if

T{Λj} : {fj} 7→
∑
j

Λ∗
j (fj)

is a well-defind and bounded operator from (
∑

j∈J ⊕Hj)ℓ2 to H with ∥T{Λj}∥ ≤
√
B.

Theorem 10. A sequence {Λj}j∈J is a g-frame for H if and only if

T{Λj} : {fj} 7→
∑
j

Λ∗
j (fj)

is a well-defind and bounded operator from (
∑

j∈J ⊕Hj)ℓ2 onto H.

Definition 3. Let {Λj}j∈J be a g-Bessel sequence for H. The pre-frame operator is denoted

by T{Λj}, which is defined by

T{Λj} : (
∑
j∈J

⊕Hj)ℓ2 → H,

T{Λj}({fj}j∈J) =
∑
j∈J

Λ∗
j (fj).
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The adjoint operator of T{Λj} is called the analysis operator, and is defined by

T ∗
{Λj} : H → (

∑
j∈J

⊕Hj)ℓ2 ,

T ∗
{Λj}(f) = {Λjf}j∈J.

Finally, we can define the g-frame operator by S{Λj} = T{Λj}T
∗
{Λj}, so

S{Λj}(f) =
∑
j∈J

Λ∗
jΛjf, f ∈ H.

Theorem 11. Let {Λj}j∈J be a sequence of bounded operators from H to Hj. Then the

following assertions are satisfied:

(1) {Λj}j∈J is a g-Bessel sequence for H if and only if
∑

j∈J Λ
∗
j (fj) converges for all

{fj}j∈J ∈ (
∑

j∈J ⊕Hj)ℓ2 .

(2) {Λj}j∈J is a g-frame sequence if and only if

T{Λj} : {fj} 7→
∑
j

Λ∗
j (fj)

is a well-defind operator from (
∑

j∈J ⊕Hj)ℓ2 into H with closed range.

Proof. (1) Suppose that
∑

j∈J Λ
∗
j (fj) converges for all {fj}j∈J ∈ (

∑
j∈J ⊕Hj)ℓ2 . We define

T : (
∑
j∈ג

⊕Hj)ℓ2 → H,

T ({fj}j∈J) =
∑
j∈J

Λ∗
j (fj).

Then T is well-defind. Let for each n ∈ N,

Tn : (
∑
j∈J

⊕Hj)ℓ2 → H,

Tn({fj}j∈J) =
n∑

j=1

Λ∗
j (fj).

Let Bn :=
(∑n

j=1 ∥Λ∗
j∥2

) 1
2 . Since ∥Tn({fj}∞j=1)∥ ≤ Bn∥{fj}∞j=1∥, {Tn} is a sequence of

bounded linear operators, which converges pointwise to T . Hence by the Banach-Steinhaus

theorem, T is a bounded operator with

||T || ≤ lim inf ||Tn||.

So by Theorem 9, {Λj}j∈J is a g-Bessel sequence for H.

The converse is evident.

(2) By Theorem 10, it is enough to prove that if T{Λj} has closed range, then

span{Λ∗
j (Hj)}j∈J = RT{Λj}

. Let f ∈ span{Λ∗
j (Hj)}j∈J. Then

f = lim
n→∞

gn, gn ∈ span{Λ∗
j (Hj)}j∈J ⊆ RT{Λj}

= RT{Λj}
.

Thus span{Λ∗
j (Hj)}j∈J ⊆ RT{Λj}

= RT{Λj}
. On the other hand, if f ∈ RT{Λj}

, then f ∈
span{Λ∗

j (Hj)}j∈J ⊆ span{Λ∗
j (Hj)}j∈J. The proof is completed. �
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4. Main Results

In this section we shall establish some methods for characterization of g-frames.

Theorem 12. A sequence {Λj}j∈J is a g-frame sequence for H with respect to {Hj} if and

only if

f 7→ {Λjf}j∈J (5)

defines a map from H onto a closed subspace of (
∑

j∈J ⊕Hj)ℓ2 .

Proof. First, assume that {Λj}j∈J is a g-frame sequence. Then by Theorem 11, T{Λj} is

well-defind and RT{Λj}
is closed. Therefore T ∗

{Λj} is well-defined and has closed range.

For the opposite implication, by hypothesis∑
j∈J

∥Λjf∥2 < ∞, f ∈ H.

Let

B := sup{
∑
j∈J

∥Λjf∥2 : f ∈ H, ||f || = 1}.

Let gj ∈ Hj , and J1 ⊂ J be finite. We have∥∥ ∑
j∈J1

Λ∗
jgj

∥∥2 =
(

sup
∥f∥=1

|⟨
∑
j∈J1

Λ∗
jgj , f⟩|

)2
≤

(
sup

∥f∥=1

∑
j∈J1

|⟨gj ,Λjf⟩|
)2

≤
( ∑
j∈J1

∥gj∥2
)(

sup
∥f∥=1

∑
j∈J1

∥Λjf∥2
)

≤ B
( ∑
j∈J1

∥gj∥2
)
.

Thus by Theorem 8, {Λj}j∈J is a g-Bessel sequence for H. Therefore T{Λj} is well-defined

and bounded. Furthermore, if the range of the map in (5) is closed, the same is true for

T{Λj}. So by Theorem 11, item 2, {Λj}j∈J is a g-frame sequence. �

Theorem 13. Let {Λj}j∈J be a g-frame sequence for H with respect to {Hj}j∈J. Then

{Λj}j∈J is a g-frame for H with respect to {Hj}j∈J if and only if the map

f 7→ {Λjf}j∈J (6)

from H onto a closed subspace of (
∑

j∈J ⊕Hj)ℓ2 is injective.

Proof. Let for all j ∈ J, Λj(f) = 0. Then the value of the map (6) at f is zero, and since

it is injective, f = 0. By (4), this means that {Λj}j∈J is g-complete. Since {Λj}j∈J is a

g-frame sequence for H with respect to {Hj}j∈J, by Theorem7, {Λj}j∈J is a g-frame for H

with respect to {Hj}j∈J.

The converse is evident. �

In [9] Najati has shown that if {Λj}j∈J is a g-frame for H with respect to {Hj}j∈J

and u ∈ B(H,K) has closed range, then {Λju
∗}j∈J is a g-frame sequence for H with respect

to {Hj}j∈J.



Some Results on Frames and g-Frames 105

Now we show that its converse is also true.

Theorem 14. Let {Λj}j∈J be a g-frame for H, u ∈ B(H) and let {Λju
∗}j∈J be a g-frame

sequence for H. Then u has closed range.

Proof. By Theorem 11, item 2, T{Λju∗} is a well-defiend operator from (
∑

j∈J ⊕Hj)ℓ2 to H

with closed range. Since ∑
j∈J

∥Λju
∗f∥2 ≤ B∥u∗f∥2 ≤ B∥u∥2∥f∥2,

{Λju
∗}j∈J is a g-Bessel sequence for H. If {fj}j∈J ∈ (

∑
j∈J ⊕Hj)ℓ2 , then

uT{Λj}{fj}j∈J =
∑
j∈J

uΛ∗
j (fj)

=
∑
j∈J

(Λju
∗)∗(fj)

= T{Λju∗}{fj}j∈J.

Therefore uT{Λj} = T{Λju∗}. Thus uT{Λj} has closed range too. We have Ru = RuT{Λj}
.

Indeed, it is clear that RuT{Λj}
⊆ Ru. Let y ∈ Ru, then there exists x ∈ H such that

u(x) = y. Since by Theorem 10, T{Λj} is surjective, there is {fj}j∈J ∈ (
∑

j∈J ⊕Hj)ℓ2 such

that T{Λj}({fj}j∈J) = x. Thus y = uT{Λj}({fj}j∈J), and the proof is completed. �

Theorem 15. A sequence {Λj}j∈J is a g-frame for H with respect to {Hj}j∈J with bounds

A and B if and only if the following two conditions are satisfied:

(1) {Λj}j∈J is g-complete.

(2) The operator

T{Λj} : {fj} 7→
∑
j

Λ∗
j (fj)

is well-defined from (
∑

j∈J ⊕Hj)ℓ2 into H, and for each {fj}j∈J ∈ N⊥
T{Λj}

,

A
∑
j∈J

∥fj∥2 ≤ ∥T{Λj}{fj}∥
2 ≤ B

∑
j∈J

∥fj∥2. (7)

Proof. First, suppose that {Λj}j∈J is a g-frame. By Theorems 6 and 7, item 1 is satisfied.

By Theorem 9, T{Λj} is a well-defind operator from (
∑

j∈J ⊕Hj)ℓ2 toH, and ∥T{Λj}∥2 ≤
B. Now, we have

∥T{Λj}{fj}j∥
2 ≤ ∥T{Λj}∥

2∥{fj}j∥2 ≤ B
∑
j∈J

∥fj∥2,

and the right-hand inequality in item 2 is proved.

By Theorem 7, T{Λj} is surjective. So RT{Λj}
is closed. Therefore RT∗

{Λj}
is closed .

Thus

N⊥
T{Λj}

= RT∗
{Λj}

= RT∗
{Λj}

.

Now if {fj}j∈J ∈ N⊥
T{Λj}

, then {fj}j∈J ∈ RT∗
{Λj}

and hence

{fj}j∈J = T ∗
{Λj}(g) = {Λjg}j∈J
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for some g ∈ H. Therefore

(
∑
j∈J

∥fj∥2)2 = (
∑
j∈J

∥Λjg∥2)2 = |⟨S{Λj}(g), g⟩|
2

≤ ∥S{Λj}g∥
2∥g∥2

≤ ∥S{Λj}g∥
2
( 1
A

∑
j∈J

∥Λjg∥2
)
.

This implies

A
∑
j∈J

∥fj∥2 ≤ ∥S{Λj}g∥
2 = ∥T{Λj}{Λjg}∥2 = ∥T{Λj}{fj}∥

2,

and statement 2 is proved.

Conversly, assume that {Λj}j∈J is g-complete and inequlities (7) is satisfied. Consider

{tj}j∈J = {fj}j∈J + {gj}j∈J, where {fj}j∈J ∈ NT{Λj}
and {gj}j∈J ∈ N⊥

T{Λj}
. We have

∥T{Λj}{tj}j∈J)∥2 = ∥T{Λj}{gj}j∈J∥2

≤ B
∑
j∈J

∥gj∥2

≤ B∥{fj}+ {gj}∥2

= B∥{tj}j∈J∥2.

Therefore {Λj}j∈J is a g-Bessel sequence.

Now let {yn} be a sequence of members of RT{Λj}
such that yn → y for some y ∈ H.

So there is a {xn} ∈ N⊥
T{Λj}

such that T{Λj}(xn) = yn. By (7), we have

A∥{xn − xm}∥2 ≤ ∥T{Λj}{xn − xm})∥2

= ∥T{Λj}{xn} − T{Λj}{xm}∥2

= ∥yn − ym∥2.

Thus {xn} is a Cauchy sequence in (
∑

j∈J ⊕Hj)ℓ2 . Therefore {xn} converges to some x ∈
(
∑

j∈J ⊕Hj)ℓ2 and the continuity of T{Λj} implies y = T{Λj}(x) ∈ RT{Λj}
, showing that

RT{Λj}
is closed. Since span{Λ∗

j (Hj)} ⊆ RT{Λj}
, by assumption in item 1, we have RT{Λj}

=

H.

Let T †
{Λj} denotes the pseudo-inverse of T{Λj}. By Lemma 2, item 3, T{Λj}T

†
{Λj} is

the orthogonal projection onto RT{Λj}
= H. Thus for any {fj}j∈J ∈ (

∑
j ⊕Hj)ℓ2 ,

A∥T †
{Λj}T{Λj}{fj}j∥

2 ≤ ∥T{Λj}T
†
{Λj}T{Λj}{fj}j∥

2 = ∥T{Λj}{fj}j∥
2.

By Lemma 2, item 5, we have NT †
{Λj}

= R⊥
T{Λj}

, and therefore

∥T †
{Λj}∥

2 ≤ 1

A
.

Also by Lemma 2, item 2, we have

∥(T ∗
{Λj})

†∥2 ≤ 1

A
.
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But (T ∗
{Λj})

†T ∗
{Λj} is the ortogonal projection onto

R(T∗
{Λj}

)† = R(T †
{Λj}

)∗ = N⊥
T †
{Λj}

= RT{Λj}
= H.

So, for all f ∈ H,

∥f∥2 = ∥(T ∗
{Λj})

†T ∗
{Λj}f∥

2

≤ 1

A
∥T ∗

{Λj}f∥
2

=
1

A

∑
j∈J

∥Λjf∥2.

This implies that {Λj}j∈J satisfies the lower g-frame condition. �

5. Conclusions

Some new results on the g-frames on the Hilbert spaces were presented. Studying

g-frames showed that one can take the existence of the Bessel sequence to be equivalent

with the convergence of the series of the synthesis operator. Also, the existence of a g-frame

sequence for H is equivalent with the existence of a surjective operator from H onto the

representation space of the g-frame. This operator is injective in case we consider g-frame in

place of g-frame sequence. The relationship between a closed range operator on H with a g-

frame has been fully characterized. As an important consequence, we have also specified the

relation between g-completeness of a g-frame and the well-definedness of synthesis operator

in a special case.

The behavior of a g-frame after deletion of some of its members, and also approxi-

mating every member of H by the remaining members of the g-frame, is an open field to

explore.
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