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FIXED POINT THEOREMS IN b-MULTIPLICATIVE METRIC SPACES

Muhammad Usman Ali1, Tayyab Kamran2, Alia Kurdi3

In this paper, we introduce the new notion of b-multiplicative metric space.

We prove fixed point theorems for single and multivalued mappings on b-multiplicative
metric spaces, endowed with a graph. We construct examples to illustrate our notions
and results. As illustrative application, we give an existence theorem for the solution of
a class of Fredholm multiplicative integral equations.
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1. Introduction

Grossman and Katz [11] introduced a new kind of Calculus called multiplicative (or
non-Newtonian) calculus by interchanging the roles of subtraction and addition with the
role of division and multiplication, respectively. By using the ideas of Grossman and Katz
[11], Bashirov et al. [4] defined the notion of multiplicative metric.

Özavsar and Cevikel [19] investigated the multiplicative metric spaces along with
their topological properties and proved some fixed point theorems for contraction mappings
of multiplicative metric spaces. Effective contribution in this direction is due to: Abbas et
al. [1] for a study of common fixed points of generalized rational type cocyclic mappings; He
et al. [13] for introducing common fixed point results for weak commutative mappings; Ya-
maod and Sintunavarat [24] for their contribution to fixed points for generalized contraction
mappings with cyclic (α, β)-admissible mapping; Gu and Cho [12] for intersting results con-
cerning common fixed point for four maps satisfying ϕ-contractive condition; Mongkolkeha
and Sintunavarat [17] for their study on best proximity points for multiplicative proximal
contraction mapping; Rome and Sarwar [21] for a characterization of multiplicative metric
completeness.

Czerwik [5] introduced the notion of b-metric space which is a generalization of a met-
ric space. There are some fixed point theorems in b-metric spaces. Huang et al. [14] intro-
duced fixed point results for rational Geraghty contractive mappings; Ozturk and Turkoglu
[20] studied fixed points for generalized alpha-psi-contractions; Shatanawi et al. [22] estab-
lished a study of contraction conditions using comparison functions.

In their elegant survey, Došenović et al. [7] show that the fixed point results for
various multiplicative contractions are in fact equivalent with the corresponding fixed point
results in (standard) metric spaces. We address reader to other valuable sources: Abodayeh
et al. [2], Agarwal et al. [3], Došenović and S. Radenović [6], Shukla [23].
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Even if these remarks are true, we realized this article to introduce the notion of
b-multiplicative metric space and mention some of its topological properties. Then we prove
fixed point theorems for mappings on b-multiplicative metric spaces endowed with a graph,
for single and multivalued mappings. We illustrate our results with the help of examples.
As novel application, we give an existence theorem for the solution of a class of Fredholm
multiplicative integral equations. Last, but not least, let us note that these fixed point
theorems are new in the setting of b-metric space endowed with a graph, as far as we know.

2. Main results

We begin this section by introducing b-multiplicative metric spaces.

Definition 2.1. Let X be a nonempty set and let s ≥ 1 be a given real number. A mapping
m : X ×X → [1,∞) is called a b-multiplicative metric if the following conditions hold:

(m1) m(x, y) > 1 for all x, y ∈ X with x ̸= y and m(x, y) = 1 if and only if x = y;
(m2) m(x, y) = m(y, x) for all x, y ∈ X;
(m3) m(x, z) ≤ m(x, y)s ·m(y, z)s for all x, y, z ∈ X.
The triplet (X,m, s) is called a b-multiplicative metric space.

Example 2.1. Let X = [0,∞). Define a mapping

ma : X ×X → [1,∞), ma(x, y) = a(x−y)2 ,

where a > 1 is any fixed real number. Then for each a, ma is b-multiplicative metric on X
with s = 2. Note that ma is not a multiplicative metric on X.

Example 2.2. If p ∈ (0, 1), then lp(R) =
{
{xn} ⊂ R :

∑∞
n=1 |xn|p < ∞

}
endowed with the

functional

me : l
p(R)× lp(R) → [1,∞), me({xn}, {yn}) = e(

∑∞
n=1 |xn−yn|p)

1/p

for each {xn}, {yn} ∈ lp(R), is a b-multiplicative metric space with s = 2
1
p−1. Note that me

is neither a metric nor a b-metric on X.

Following concepts are defined in the same way as defined for multiplicative metric
spaces by Özavsar and Cevikel [19].

Let (X,m, s) is a b-multiplicative metric space. Then the multiplicative open and
closed ball of radius ε > 1 having center at x is of the form:

Bε(x) = {y ∈ X : m(x, y) < ε} and Bε(x) = {y ∈ X : m(x, y) ≤ ε}

respectively. A point x ∈ X is said to be multiplicative limit point of S ⊂ X, if and only if
(Bε(x)\{x}) ∩ S ̸= ∅ for every ε > 1. A set S ⊂ X is multiplicative closed in (X,m) if S
contains all of its multiplicative limit points. A set S is multiplicative bounded if there exist
x ∈ X and M > 1 such that S ⊆ BM (x). A sequence {xn} is a multiplicative convergent to
x ∈ X denoted by xn →b x, if for every multiplicative open ball Bε(x), there exists a natural
number N0 such that n ≥ N0 ⇒ xn ∈ Bε(x). That is, for each ε > 1, there exists some
N0 ∈ N such that m(xn, x) < ε for each n ≥ N0. Similarly, a sequence {xn} is multiplicative
Cauchy, if for each ε > 1, there exists N0 ∈ N such that m(xm, xn) < ε for each m,n ≥ N0.
A mapping f : X → X is said to be a multiplicative continuous at the point x ∈ X if and
only if f(xn) →b f(x) for every sequence {xn} with xn →b x. A multiplicative metric space
is complete if every multiplicative Cauchy sequence in it is multiplicative convergent to some
x ∈ X.

Lemma 2.1. Let (X,m, s) is a b-multiplicative metric space. If a sequence {xn} is a
multiplicative convergent, then the multiplicative limit point is unique.
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Proof. Suppose that xn →b x and xn →b y. Then for each ε > 1, we have N0 ∈ N such that
m(xn, x) < ε

1
2s and m(xn, y) < ε

1
2s . By using the multiplicative triangular inequality, we

get

m(x, y) ≤ m(x, xn)
s ·m(xn, y)

s < ε.

Since ε > 1 is arbitrary. Thus, we have m(x, y) = 1, that is x = y. �

Let (X,m, s) be a b-multiplicative metric space. Subsequently, G = (V,E) is a di-
rected graph such that the set of its vertices V coincides with X (i.e., V = X) and the set
of its edges E is such that E ⊇ △, where △ = {(x, x) : x ∈ X}. Also assume that G has no
parallel edges. Jachymski [15] introduced the notion of G-continuity on metric space. We are
going to extend this notion to b-multiplicative metric space. A mapping f : X → X is said
to be G-continuous if for each sequence {xn} in X such that xn →b x and (xn, xn+1) ∈ E
for each n ∈ N∪{0}, we have fxn →b fx. Jachymski [15] also introduced the notion of edge
preserving mappings as: A mapping f : X → X is said to be an edge preserving mapping if
for each x, y ∈ X with (x, y) ∈ E, we have (fx, fy) ∈ E.

Now, we move towards our first result.

Theorem 2.1. Let (X,m, s) be a complete b-multiplicative metric space endowed the graph
G and let f : X → X be an edge preserving mapping such that for each (x, y) ∈ E, we have

m(fx, fy) ≤ max{m(x, y),m(x, fx),m(y, fy),m(x, fy)
1
2s ·m(y, fx)}κ (1)

where κ ∈ [0, 1
s ). Assume that the following conditions hold:

(i) there exists x0 ∈ X such that (x0, fx0) ∈ E;
(ii) a. f is G-continuous;
or
b. for each sequence {xn} ⊆ X such that (xn, xn+1) ∈ E and xn →b x, then

(xn, x) ∈ E for each n ∈ N.
Then f has a fixed point.

Proof. By hypothesis, we have x0 ∈ X such that (x0, x1) ∈ E, where x1 = fx0. From (1),
we have

m(x1, x2) = m(f(x0), f(x1))

≤ max{m(x0, x1),m(x0, fx0),m(x1, fx1),m(x0, fx1)
1
2s ·m(x1, fx0)}κ

= max{m(x0, x1),m(x0, x1),m(x1, x2),m(x0, x2)
1
2s ·m(x1, x1)}κ

= max{m(x0, x1),m(x1, x2)}κ

= m(x0, x1)
κ,

otherwise we have a contradiction, that is, m(x1, x2) ≤ m(x1, x2)
κ. As f is an edge preserv-

ing, we have (x1, x2) ∈ E.
Again, from (1), we obtain

m(x2, x3) = m(f(x1), f(x2))

≤ max{m(x1, x2),m(x1, fx1),m(x2, fx2),m(x1, fx2)
1
2s ·m(x2, fx1)}κ

= max{m(x1, x2),m(x1, x2),m(x2, x3),m(x1, x3)
1
2s ·m(x2, x2)}κ

= max{m(x1, x2),m(x2, x3)}κ

= m(x1, x2)
κ

≤ m(x0, x1)
κ2

.

Continuing in the same way, we construct a sequence {xn} inX such that xn+1 = fxn,
(xn, xn+1) ∈ E and m(xn, xn+1) ≤ m(x0, x1)

κn

for each n ∈ N. Let m,n ∈ N, then by the
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multiplicative triangular inequality, we get

m(xn, xn+m) ≤ m(xn, xn+1)
sn ·m(xn+1, xn+2)

sn+1

· · ·m(xn+m−1, xn+m)s
n+m−1

≤ m(x0, x1)
κnsn ·m(x0, x1)

κn+1sn+1

· · ·m(x0, x1)
κn+m−1sn+m−1

≤ m(x0, x1)
(κs)n+(κs)n+1+···+(κs)n+m−1

≤ m(x0, x1)
(κs)n

1−(κs) .

Letting n → ∞, in above inequality, we get m(xn, xn+m) →b 1. Hence the sequence
{xn} is multiplicative Cauchy sequence. By the completeness of X, there exists x∗ ∈ X such
that xn →b x∗. If f is G-continuous, then xn+1 = fxn →b fx∗. Since the multiplicative
limit is unique, thus x∗ = fx∗. Suppose that (ii − b) holds, then we have (xn, x

∗) ∈ E.
From (1), and multiplicative triangular inequality, we have

m(x∗, fx∗)

≤ m(x∗, xn+1)
s ·m(xn+1, fx

∗)s

= m(x∗, xn+1)
s ·m(fxn, fx

∗)s

≤ m(x∗, xn+1)
s ·max{m(xn, x

∗),m(xn, fxn),m(x∗, fx∗),m(xn, fx
∗)

1
2s ·m(x∗, fxn)}κs

= m(x∗, xn+1)
s ·max{m(xn, x

∗),m(xn, xn+1),m(x∗, fx∗),m(xn, fx
∗)

1
2s ·m(x∗, xn+1)}κs

≤ m(x∗, xn+1)
s ·max{m(xn, x

∗),m(xn, xn+1),m(x∗, fx∗),

m(xn, x
∗)

1
2 ·m(x∗, fx∗)

1
2 ·m(x∗, xn+1)}κs.

Suppose that m(x∗, fx∗) > 1. Letting n → ∞, in above inequality, we get

m(x∗, fx∗) ≤ max{1,m(x∗, fx∗),m(x∗, fx∗)
1
2 }κs = m(x∗, fx∗)κs.

This is a contradiction to our assumption, since κs < 1. Thus, m(x∗, fx∗) = 1. That is,
x∗ = fx∗. �

Example 2.3. Let X = [0,∞) be endowed with a b-multiplicative metric m(x, y) = 3(x−y)2 ,
with s = 2. Define

f : X → X, fx =

{
0 if x < 1
x+7
3 otherwise.

Consider a graph G = (V,E) as V = X and E = {(x, y) : x, y ≥ 1} ∪ {(x, x) : x ∈ X}. For
each (x, y) ∈ E, we have

m(fx, fy) = 3(
x
3−

y
3 )

2

= (m(x, y))
1
9 .

Thus, (1) holds. Furthermore, it is easy to see that all other conditions of Theorem 2.1 hold.
Therefore, f has a fixed point.

Example 2.4. Let X = R2 endowed with a multiplicative metric defined by the formula
m(x, y) = |x1−y1|+ |x2−y2| for each x = (x1, x2), y = (y1, y2) ∈ R2. Consider the mapping

f : R2 → R2, f(x, y) =

(
5x

7
− 3y

7
+ 1,

8y

9
− 4x

9
+ 1

)
, for each (x, y) ∈ X.

Define the graph G = (V,E) such that V = R2 and E = {(x, y) : x, y ∈ X}. Thus, it is easy
to see that (1) and all other conditions of Theorem 2.1 hold. Thus, f has a fixed point, that
is x = fx, where x = (2, 1).

We denote by CL(X), the class of all nonempty multiplicative closed subsets of X.
Note that a point x0 ∈ X is a fixed point of mapping F : X → CL(X) if we have x0 ∈ Fx0.
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Theorem 2.2. Let (X,m, s) be a complete b-multiplicative metric space endowed the graph
G = (V,E) and let F : X → CL(X) be a mapping such that for each (x, y) ∈ E and u ∈ Fx,
there exists v ∈ Fy satisfying

m(u, v) ≤ m(x, y)κ ·m(y, u)ω (2)

where κ ∈ [0, 1
s ) and ω ≥ 0. Assume that the following conditions hold:

(i) there exists x0 ∈ X and x1 ∈ Fx0 such that (x0, x1) ∈ E;
(ii) for each u ∈ Fx and v ∈ Fy such that m(u, v) < m(x, y) we have (u, v) ∈ E,

whenever (x, y) ∈ E;
(iii) for each sequence {xn} ⊆ X such that (xn, xn+1) ∈ E and xn →b x, then

(xn, x) ∈ E for each n ∈ N.
Then F has a fixed point.

Proof. By hypothesis (i), we have x0 ∈ X and x1 ∈ Fx0 such that (x0, x1) ∈ E. From (2),
for (x0, x1) ∈ E and x1 ∈ Fx0, there exists x2 ∈ Fx1 such that

m(x1, x2) ≤ m(x0, x1)
κ ·m(x1, x1)

ω = m(x0, x1)
κ. (3)

By hypothesis (ii) and (3), we have (x1, x2) ∈ E.
Again from (2), for (x1, x2) ∈ E and x2 ∈ Fx1, there exists x3 ∈ Fx2 such that

m(x2, x3) ≤ m(x1, x2)
κ ·m(x2, x2)

ω = m(x1, x2)
κ ≤ m(x0, x1)

κ2

.

Continuing in the same way, we construct a sequence {xn} inX such that xn ∈ Fxn−1,
(xn, xn+1) ∈ E and m(xn, xn+1) ≤ m(x0, x1)

κn

for each n ∈ N. Let m,n ∈ N, then by the
multiplicative triangle inequality, we have

m(xn, xn+m) ≤ m(xn, xn+1)
sn ·m(xn+1, xn+2)

sn+1

· · ·m(xn+m−1, xn+m)s
n+m−1

≤ m(x0, x1)
κnsn ·m(x0, x1)

κn+1sn+1

· · ·m(x0, x1)
κn+m−1sn+m−1

≤ m(x0, x1)
(κs)n+(κs)n+1+···+(κs)n+m−1

≤ m(x0, x1)
(κs)n

1−(κs) .

Letting n → ∞ in above inequality, we get m(xn, xn+m) →b 1. Hence the sequence
{xn} is a multiplicative Cauchy sequence. By the completeness of X, there exists x∗ ∈ X
such that xn →b x

∗. By hypothesis (iii), we have (xn, x
∗) ∈ E. From (2), for each (xn, x

∗) ∈
E and xn+1 ∈ Fxn, there exists v∗ ∈ Fx∗ such that

m(xn+1, v
∗) ≤ m(xn, x

∗)κ ·m(x∗, xn+1)
ω.

From the multiplicative triangle inequality, we have

m(x∗, v∗) ≤ m(x∗, xn+1)
s ·m(xn+1, v

∗)s

≤ m(x∗, xn+1)
s ·m(xn, x

∗)κs ·m(x∗, xn+1)
ωs.

Letting n → ∞ in above inequality, we get m(x∗, v∗) = 1. That is, x∗ = v∗. Thus, we have
x∗ ∈ Fx∗. �

Example 2.5. Let X = [0,∞) be endowed with a b-multiplicative metric m(x, y) = e(x−y)2 ,
with s = 2. Define

F : X → CL(X), Fx =


[0, x

2 ], if x < 2

{2}, if x = 2

[0, ln(x+ 1)], otherwise.

Consider a graph G = (V,E) as V = X and E = {(x, y) : 0 ≤ x, y ≤ 2} ∪ {(x, x) : x ∈ X}.
To see (2) holds with k = 1

4 and ω = 1, we need to take the following cases:
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(i) For each (x, y) ∈ E with x, y < 2, and u ∈ Fx, there exists v ∈ Fy such that

m(u, v) ≤ e(
x
2−

y
2 )

2

≤ m(x, y)
1
4 ·m(y, u);

(ii) For each (x, y) ∈ E with x < 2, y = 2 and u ∈ Fx, there exists v ∈ Fy = {2}
such that

m(u, v) ≤ m(x, y)
1
4 ·m(y, u) = m(x, y)

1
4 ·m(v, u);

Thus, (2) holds. Furthermore, it is easy to see that all other conditions of Theorem
2.2 hold. Therefore, F has a fixed point.

As special case of Theorem 2.1 we have the following corollary:

Corollary 2.1. Let (X,m, s) be a complete b-multiplicative metric space endowed the graph
G and let f : X → X be an edge preserving mapping such that for each (x, y) ∈ E, one of
the following inequality hold:

(i) m(fx, fy) ≤ m(x, y)κ;
(ii) m(fx, fy) ≤ m(x, fx)κ;
(iii) m(fx, fy) ≤ m(y, fy)κ;

(iv) m(fx, fy) ≤ {m(x, fy)
1
2s ·m(y, fx)}κ,

where κ ∈ [0, 1
s ). Assume that the following conditions hold:

(i) there exists x0 ∈ X such that (x0, fx0) ∈ E;
(ii) a. f is G-continuous;
or
b. for each sequence {xn} ⊆ X such that (xn, xn+1) ∈ E and xn →b x, then

(xn, x) ∈ E for each n ∈ N.
Then f has a fixed point.

Consider the graph G = (V,E) as V = X and E = {(x, y) : x ≼ y}, then by Theorem
2.1 we have the following result:

Corollary 2.2. Let (X,m, s,≼) be a complete b-multiplicative ordered metric space and
let f : X → X be an ordered preserving mapping such that for each x ≼ y, we have

m(fx, fy) ≤ max{m(x, y),m(x, fx),m(y, fy),m(x, fy)
1
2s ·m(y, fx)}κ

where κ ∈ [0, 1
s ). Assume that the following conditions hold:

(i) there exists x0 ∈ X such that x0 ≼ fx0;
(ii) a. f is continuous;
or
b. for each sequence {xn} ⊆ X such that xn ≼ xn+1 and xn →b x, then xn ≼ x for

each n ∈ N.
Then f has a fixed point.

If we consider G = (X,X ×X) then Theorem 2.1 reduces to following result:

Corollary 2.3. Let (X,m, s) be a complete b-multiplicative metric space and let f : X → X
be a mapping such that for each x, y ∈ X, we have

m(fx, fy) ≤ max{m(x, y),m(x, fx),m(y, fy),m(x, fy)
1
2s ·m(y, fx)}κ

where κ ∈ [0, 1
s ). Then f has a fixed point.

Letting ω = 0 in Theorem 2.2, we have the following result:

Corollary 2.4. Let (X,m, s) be a complete b-multiplicative metric space endowed the graph
G and let F : X → CL(X) be a mapping such that for each (x, y) ∈ E and u ∈ Fx, there
exists v ∈ Fy satisfying

m(u, v) ≤ m(x, y)κ
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where κ ∈ [0, 1
s ). Assume that the following conditions hold:

(i) there exists x0 ∈ X and x1 ∈ Fx0 such that (x0, x1) ∈ E;
(ii) for each u ∈ Fx and v ∈ Fy such that m(u, v) < m(x, y) we have (u, v) ∈ E,

whenever (x, y) ∈ E;
(iii) for each sequence {xn} ⊆ X such that (xn, xn+1) ∈ E and xn →b x, then

(xn, x) ∈ E for each n ∈ N.
Then F has a fixed point.

By taking G = (X,X ×X) in Theorem 2.2, we get the following result:

Corollary 2.5. Let (X,m, s) be a complete b-multiplicative metric space and let F : X →
CL(X) be a mapping such that for each x, y ∈ X and u ∈ Fx, there exists v ∈ Fy satisfying

m(u, v) ≤ m(x, y)κ ·m(y, u)ω

where κ ∈ [0, 1
s ) and ω ≥ 0. Then F has a fixed point.

Remark 2.1. Note that if d(x, y) is a b metric on X then the function m : X ×X → [1,∞)
defined by m(x, y) = ed(x,y) is a b-multiplicative metric on X. Moreover, if f is a self map
on a b-metric space (X, d) satisfying following inequality

d(fx, fy) ≤ κmax

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy)

2s
+ d(y, fx)

}
,

then by taking m(x, y) = ed(x,y) it follows that m(x, y) satisfies the inequality in Theorem
2.1. Thus one may obtain following result as direct consequence of our Theorem 2.1.

Theorem 2.3. Let (X, d, s) be a complete b- metric space endowed the graph G and let
f : X → X be an edge preserving mapping such that for each (x, y) ∈ E, we have

d(fx, fy) ≤ κmax

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy)

2s
+ d(y, fx)

}
,

where κ ∈ [0, 1
s ). Assume that the following conditions hold:

(i) there exists x0 ∈ X such that (x0, fx0) ∈ E;
(ii) a. f is G-continuous, with respect to d;
or
b. for each sequence {xn} ⊆ X such that (xn, xn+1) ∈ E and xn → x, with respect

to d then (xn, x) ∈ E for each n ∈ N.
Then f has a fixed point.

Similarly, one may deduce following result from Theorem 2.2

Theorem 2.4. Let (X, d, s) be a complete b-metric space endowed the graph G and let
F : X → CL(X) be a mapping such that for each (x, y) ∈ E and u ∈ Fx, there exists
v ∈ Fy satisfying

d(u, v) ≤ κd(x, y) + ωd(y, u),

where κ ∈ [0, 1
s ) and ω ≥ 0. Assume that the following conditions hold:

(i) there exist x0 ∈ X and x1 ∈ Fx0 such that (x0, x1) ∈ E;
(ii) for each u ∈ Fx and v ∈ Fy such that d(u, v) < d(x, y) we have (u, v) ∈ E,

whenever (x, y) ∈ E;
(iii) for each sequence {xn} ⊆ X such that (xn, xn+1) ∈ E and xn → x, with respect

to d, then (xn, x) ∈ E for each n ∈ N.
Then F has a fixed point.

Remark 2.2. By the best of our knowledge, we note that these fixed point theorems are
new in the setting of b-metric spaces, endowed with a graph.
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3. Application

Let X = C([a, b],R+), a > 0 and R+ = (0,∞), be the space of all positive, continuous
real valued functions, endowed with the b-multiplicative metric

m(x, y) =

supt∈[a,b]

∣∣∣x(t)y(t)

∣∣∣2 if x(t)
y(t) > 1

supt∈[a,b]

∣∣∣ y(t)x(t)

∣∣∣2 if x(t)
y(t) < 1

and graph G = (V,E) such that V = X and E = {(x, y) : x(t) ≥ y(t), ∀t ∈ [a, b]}.
As an application, we give an existence theorem for the Fredholm multiplicative in-

tegral equation of the following type.

x(t) =

∫ b

a

K(t, s, x(s))ds, t, s ∈ [a, b] (4)

where K : [a, b]× [a, b]× R+ → R+ is continuous and nondecreasing function.

Theorem 3.1. LetX = C([a, b],R+), a > 0, endowed with the graph G and let the operator

F : X → X, Fx(t) =

∫ b

a

K(t, s, x(s))ds

where K : [a, b]× [a, b]× R+ → R+ is continuous and nondecreasing function. Assume that
the following conditions hold:

(i) for each t, s ∈ [a, b] and x, y ∈ X with (x, y) ∈ E, there exists a constant η > 0
such that ∣∣∣∣K(t, s, x(s))

K(t, s, y(s))

∣∣∣∣ ≤ (∣∣∣∣x(s)y(s)

∣∣∣∣)η

;

(ii) the constant η is such that η < 1
2(b−a) ;

(iii) there exists x0 ∈ X such that (x0, Fx0) ∈ E.
Then the integral equation (4) has at least one solution.

Proof. First we show that for each (x, y) ∈ E, the the inequalities (i) of Corollary 2.1 holds.
For each (x, y) ∈ E, we have∣∣∣∣Fx(t)

Fy(t)

∣∣∣∣2 ≤

(∫ b

a

∣∣∣∣K(t, s, x(s))

K(t, s, y(s))

∣∣∣∣ds
)2

≤

(∫ b

a

(∣∣∣∣x(s)y(s)

∣∣∣∣η)ds
)2

≤

(∫ b

a

(
m(x, y)

η
2

)ds)2

=

((
m(x, y)

b−a
) η

2

)2

= m(x, y)η(b−a) for each t ∈ [a, b].

Thus, we get m(Fx, Fy) ≤ m(x, y)κ, κ = η(b− a) ∈ [0, 1
2 ), for each (x, y) ∈ X. Since K

is nondecreasing, for each (x, y) ∈ E we have (Fx, Fy) ∈ E. Moreover, by hypothesis (iii),
(x0, Fx0) ∈ E. Also, by continuity of K, F is a G-continuous. Therefore by Corollary 2.1,
there exists at least one fixed point of the operator F , that is, integral equation (4) has at
least one solution. �
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4. Conclusion

Maginniss [16] used non-Newtonian calculus to create a theory of probability that is
adopted to human behavior and decision making. Many authors have contributed in this
field. The collective book [25] presents how a non-Newtonian calculus could be applied to re-
postulate and analyze the neoclassical (Solow-Swan) exogenous growth made in economics.
Non-Newtonian way to look at differential equations has been a great surprise to us, it
opens the question if there are major fields of economic analysis which can be profoundly re-
thought in the light of this discovery. Non-Newtonian calculus has been used in the study of
biomedical image analysis by Florak et al. [9, 10], while Mora used non-Newtonian calculus in
the study of contour detection in images with multiplicative noise [18]. Several applications
regarding these subjects can be seen in differential equations, calculus of variations, finite
differential method, complex analysis, actuarial science, finance, economics, biology and
demographics.

A semimetric space (X, d) is called a b-metric space if for each x, y, z ∈ X, we have

d(x, y) ≤ s[d(x, z) + d(z, y)]. (5)

This condition was put together by Czerwik [5] in order to generalize the Banach contraction
principle. The same inequality given in (5) was also discussed by Fagin et al. [8], who called
this new distance a measure of nonlinear elastic matching. In this paper we discuss the
analogue version of b-metric space as b-multiplicative metric space. One application has
been discussed here, and possible application regarding this discovery are discussed above.

Acknowledgement. Authors are thankful to the reviewers for their useful comments and
suggestions to improve the manuscript.
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