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RECCURENT NEURAL NETWORK FOR PREDICTING TIME 

STEP BISECTIONS IN STRUCTURAL DYNAMICS 

Tudor George ALEXANDRU1, Cristina PUPĂZĂ2 

The automatic time stepping method is widespread throughout commercial 

transient dynamics solvers, being a convenient way of adjusting the load increment 

based on the system state. As part of this algorithm, bisections can be considered an 

indicator of poor model convergence, demanding most of the times improvement 

loops. This paper proposes a new methodology for predicting bisection occurrence 

with the support of Recurrent Neural Networks. A Long-Short Term memory 

implementation is proposed, training and validation being carried out based on 

sequential solver output data. The accuracy of the model is proved by means of a 

highly non-linear structural dynamics simulation. 
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1. Introduction 

During the past decades, Computer Aided Engineering (CAE) software 

has emerged as an integrated virtual prototyping approach that allows engineers to 

verify and optimize design scenarios by recreating their real world behaviour with 

the support of digital environments [1]. In structural mechanics, the Finite 

Element Method (FEM) represents one of the most widespread numerical analysis 

procedures that addresses interdisciplinary problems by dividing a continuous 

geometric domain into a discrete one [2]. To be more attractive to the market, 

companies focus more on product innovation by supporting the traditional design 

processes with emerging disciplines (i.e. nonconventional manufacturing or 

ergonomics) [3]. Thus, engineering projects rely on the ability of CAE tools to 

capture the behaviour of non-linear materials or assembly constraints that are 

subjected to time-varying loads (i.e. 3D printed kinematic structures) [4]. From 

this perspective, FEM based structural dynamics simulations are the most popular 

choice for addressing such aspects. 

The ongoing improvement of CAE software resulted in lower error 

troubleshooting demands, less engineering knowledge being required for reaching 

accurate simulation results [5]. The automatic time stepping method is 
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implemented in most recent transient dynamics solvers for lowering the model 

complexity in non-linear problems. This is achieved by estimating the next time 

step size based on the analysis conditions. An advantage of this approach is its 

bisection component that has the purpose of adjusting the solver settings based on 

the convergence residuals state [6]. Even so, the occurrence of bisections also 

indicates modelling or simulation issues, requiring a careful inspection of the 

possible error sources. Furthermore, the high computational demands involved in 

structural dynamics significantly limit the flexibility of engineers to experiment 

different scenarios. 

From this point of view, the present paper proposes a Machine Learning 

procedure for forecasting convergence errors in transient simulations that deploy 

the automatic time stepping method. The approach relies on sequential data that is 

extracted from force, moment and line search convergence criteria that are written 

at each sub step during the computational process. A Recurrent Neural Network 

(RNN) is developed using the Long-Short Term Memory (LSTM) 

implementation. While the problem fits the description of a deep learning 

classifier, a regression model is deployed instead. The predicted continuous value 

corresponds to the probability of a bisection to take place at a future time step 

based on the convergence of the previous ones.  

A wide range of structural dynamics simulations that involve the use of 

automatic time stepping method are discussed throughout the literature. The work 

disclosed in [7] proposes a simulation methodology that deploys the automatic 

time stepping method for capturing the transient behaviour of small scale grinding 

machines. In this case, the step size is calculated based on the natural frequencies 

extracted from a modal analysis. An approach involving the definition of non-

linear contacts is presented in [8] for capturing the tooth interaction behaviour of 

bevel gears. In this case, due to the complexity of the model, the solution is 

carried out by using the bisection component in automatic time stepping. Recent 

guidelines and checklists are published for dealing with such convergence issues 

[9], each solver being characterized by its own peculiarities. RNNs represent a 

generalization of feedforward neural networks that have internal memory. The 

LSTM RNN implementation is widespread in systems that learn and improve 

from sequential data for solving problems such as image captioning or weather 

forecasting [10]. On the other hand, different types of Machine Learning 

algorithms are deployed for supporting optimization processes based on results of 

CAE simulations [11].  

The original contribution of this paper consists in the use of LSTM to 

support the solving process in structural dynamics simulations, by predicting the 

probability of a time step bisection to occur based on sequences of solver output 

data. In this way, a substantial amount of time can be saved in such engineering 

projects, especially when dealing with large and/or non-linear models. The paper 
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is divided in four sections. The first part of the work describes the theoretical 

aspects of transient dynamics simulation with emphasize on the engineering tasks 

carried out for preparing the model and debugging its convergence errors. The 

second part of the work illustrates the proposed approach by focusing on the 

inputs and outputs, along with the LSTM architecture. A case study is presented 

in the third section, comprising a structural dynamics analysis of a ball bearing 

assembly using ANSYS software. Due to inappropriate analysis settings and the 

deliberate suppression of essential geometric elements, several time step 

bisections occur in the model causing the convergence failure. Finally, 

conclusions are derived in the fourth section.  

2. Theoretical considerations of transient dynamics in CAE 

CAE software brings together all necessary tools for preparing, solving 

and processing the results of transient dynamics simulations based on implicit or 

explicit integration methods. Examples of engineering problems that can be 

addressed by such procedures are: the analysis of structures under free and forced 

vibrations, the simulation of assemblies by considering inertial effects for both 

rigid and flexible bodies, as well as the approximation of crash behaviour during 

high velocity impact. 

In implicit structural dynamics solvers, the equation of motion can be 

generalized for multiple degrees of freedom systems: 

       ( )}{}{}{
...

tFuKuCuM =++                                                         (1) 

Where: }]{[ uM  represents the inertial forces, }]{[ uC   frictional forces that 

are proportional to the velocity, }]{[ uK  the elastic forces, )}({ tF time varying 

external forces, ][M  the mass matrix or the matrix that describes the inertia of the 

entire structure and ][C is the damping matrix. The matrices [C], [M] and [K] are 

assembled from the element matrices [12]. 

For any given time t, the equations derived from (1) can be considered a 

set of static equilibrium ones that also take into account inertia and damping 

effects. Various time integration methods (i.e. the Newmark or the improved HHT 

ones) can be employed for solving them at discrete time points. The time 

increment between successive iterations is called the integration time step. 

The automatic time stepping method is implemented in most recent 

transient dynamics, electromagnetics or thermal solvers for deciding the optimal 

increment of time and/or loads in response to the current state of the analysis. The 

algorithm involves two major components: time step prediction and time step 

bisection.  



172                                               Tudor George Alexandru, Cristina Pupăză 

Considering a converged solution at time tn the step size for the next tn+1 is 

determined based on the minimization statement [13]: 

( )
mpcgeqn tttttttt = + ,211 ,,,,,min  (2) 

Where: Δteq is the time increment needed for the previous step to converge 

(which is limited by the maximum number of equilibrium iterations), Δt1 and Δt2  
represent the time increments that are influenced by 1st order systems (i.e. 

transient thermal analysis) as well as 2nd order ones (i.e. transient structural 

analysis), Δtg is the time increment that takes into account abrupt changes in the 

contact status while Δtc and Δtp refer to time increments that depend on the 

allowable creep and plastic strain. On the other hand, Δtn represents the time 

increment that is limited by the midstep residual interpolation tolerance defined in 

the analysis settings.  

Time step bisections occur when the number of equilibrium iterations used 

for one substep exceeds the allowable limit or when all equilibrium iterations are 

used. In such cases, the current substep solution for Δtn is removed and the step 

size is reduced by half. 
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Structural dynamics analysis deploys an iterative solving process that is 

based on the Newton-Raphson method. Theoretically, the convergence in such 

simulations is achieved when the out-of-balance load vector is equal to zero. 

However, the existence of nonlinearities in such problems demands an out-of-

balance threshold value to be defined. 

A holistic overview of the stages required to troubleshoot a structural 

dynamics analysis are depicted in Figure 1 and described in the paragraph below. 

 

 
Fig. 1. A holistic overview of the structural dynamics simulation project  



Recurrent neural network for predicting time step bisections in structural dynamics        173 

The input file represents a standardized data structure that transposes the 

digital model defined using CAE Pre-processors in a list of commands that are 

further interpreted by the solver. This allows the equilibrium equations to be 

assembled and solved for each substep. Output files are generated during this 

iterative procedure, providing valuable insights regarding the state of the 

simulation. Based on force, moment, displacement and/or line search criteria, the 

convergence at each Δtn is evaluated. Figure 2 depicts the force convergence 

graph derived from a structural dynamics analysis of a spindle subjected to a 

constant rotational velocity that was previously completed using ANSYS 

Workbench Transient Structural module.  

 

 
Fig. 2. Force convergence in a structural dynamics simulation 

 

In this case, the calculated reaction forces match the applied loads for each 

substep and subsequent load steps. Furthermore, the difference between the 

internal force and the applied one remains at all-steps below the convergence 

criteria proving that no unbalances occur.  

As a good practice, intermediate results are checked after each i substeps 

to identify any modelling problems, such as stress concentrators or unrealistic 

behaviour due to inertial effects. In case of convergence errors, the occurrence of 

time step bisections is verified. Figure 3 represents another attempt of solving the 

same rotating spindle example by using excessively large time step settings. 

 

 
Fig. 3. Time step bisection due to inappropriate solver settings  
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The analysis converges for the first load step but bisections occur in the 

second one. In such cases, the Newton-Raphson residual forces are assessed to 

indicate any problematic areas in the model. Subsequently, the shape of the 

convergence curves is analysed in the proximity of the bisection. When the 

residuals represent a steep increase from the previous Δtn-1 substep, the automatic 

time step settings require adjustment. In other scenarios, bisections can occur 

without a clear indicator of model or solver setting issues. Therefore, the 

convergence of the model is verified for the next Δtn+1 substep. The workflow is 

completed when the simulation time is reached. 

The workflow for solving structural dynamics convergence represents a 

limiting aspect of the simulation environments considering the iterative solving 

process deployed and the coexistence of several error factors. Furthermore, the 

high computational demands of non-linear models limit the amount of time 

available for performing and validating adjustment loops. From this perspective, 

an approach that can predict convergence errors based on the information that is 

available during the solving process can significantly lower the complexity of 

such workflows.  

3. Implementing RNNs for supporting convergence troubleshooting 

RNNs represent a generalization of feed forward Deep Learning that 

remembers previous inputs in an internal memory. Most recent Machine Learning 

libraries include improved versions of RNNs (i.e. Gated recurrent unit or LSTM) 

that solve the well-known exploding or vanishing gradients problems. This allows 

regression or classification models to be developed based on sequential data by 

using high level programming interfaces [14]. 

In the proposed approach, a LSTM implementation is deployed to predict 

the probability of a time step bisection to occur based on the convergence state of 

the previous substeps. For this purpose, the raw data that is generated by structural 

dynamics solvers is converted into a dataset that is further used for training and 

validating the neural model. The procedure is divided in three main stages: 

conversion of raw solver output data; encoding the LSTM inputs and model 

training and validation (see Fig. 4). 

 

 
Fig. 4. A schematic representation of the proposed approach 
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In the first stage, the output files that provide relevant convergence 

information are chosen for extracting continuous features in a dataset. Each 

structural dynamics solver has its own standard for writing such logs (i.e. ANSI 

encoding text format). From this perspective, a line by line read procedure can be 

deployed in accordance with the occurrence of certain strings (i.e. “Solution not 

converged”). Figure 5 represents an excerpt of the worksheet output of the solver. 

The highlighted values consist of the max degree of freedom increment (Max. 

DOF Incr.), line search parameter (Line Search Param) and force and 

displacement convergence criteria (F CRIT, F L2, U CRIT, U INF) derived during 

the extraction process. 

 

 
Fig. 5. Conversion of raw solver output data 

 

The resulting labelled data is converted into a multidimensional array, the 

number of lines and columns corresponding to the 2D shape of the dataset while 

the 3rd dimension is defined based on a training constant that describes the size of 

each sequence that is passed to the model. This parameter depends on the number 

of substeps and provides the previous state of the simulation for which the future 

bisection probability is predicted. Feature normalization (denoted x’ in equation 

4) is applied for each entry (x) in the resulting array by using the formula: 
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In the next stage, the time steps for which bisections occur are identified 

from the convergence summary output files. A vector is defined, having a shape 

that is equal to the number of iterations performed in the simulation. Each row in 
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this vector is filled with zeros when the corresponding iteration achieves 

convergence or with non-zero values in case of time step bisections.  

To this end, training and validation of the neural model can be 

accomplished by using the features defined in the multidimensional array and the 

labels derived in this stage. From this perspective, a LSTM classifier can be 

developed to predict the probability of an iteration to belong to the zero 

(convergence) or non-zero (bisection) classes based on previous inputs. Even so, 

in most structural dynamics simulations the existence of time step bisections 

accounts only for a small fraction of labels than the converged substeps.  

In this regard, the ability of the model to classify bisection occurrences is 

limited, considering the lack of consistent training data. To overcome this issue, a 

LSTM regression model is developed instead. For this purpose, the labels are 

converted from categorical to numerical ones, having values ranging between zero 

and one. This allows the occurrence probability of a time step bisection to be 

predicted as a continuous value. Therefore, a linear growth algorithm is depicted 

in Table 1 using as input the bisection vector (vector) and its 1D shape (shape). 

 
Table 1 

Melting points and elemental analyses 

Algorithm for Linear Growth 

procedure linear_growth (vector, shape) 

 read vector 

row_start = 0 

row_end = 0 

counter = 1  

while row_start <= shape do 

  while vector (row_start) = 0 

   increment row_start, counter  

  

 

 

 

end while 

int_quantum = 1 / counter 

quantum = int_quantum 

for i =1 to counter do 

   vector2 (row_end) = quantum 

increment row_end 

quantum = quantum * (i+1) 

  end for 

increment row_start 

counter = 1 

 end while 

end procedure 
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The procedure reads each row of the vector and identifies the position of 

zero values. Two counters are incremented when this condition is satisfied 

(row_start and counter). If the value of the row is different than zero, a variable 

(int_quantum) is calculated as the multiplicative inverse of that row number. A 

second vector (vector2) is filled (row_end) by linearly growing the int_quantum 

variable (quantum) between subsequent loops of i and counter. The procedure 

ends when the shapes of the two vectors are equal.  

Having both features and labels defined in accordance with the regression 

problem, a LSTM architecture can be developed by using in the first stage a 

fraction of the dataset for training the RNN and another one for validating its 

predictions (see Fig. 6) 

 

 
Fig. 6. Graphical representation of the LSTM architecture 

 

In the proposed model, the input layer consists of a multidimensional array 

comprising the normalized solver output data. A stack of four LSTM layers is 

added to capture the abstract concepts in the sequences. The Rectified Linear Unit 

activation function is used between their outputs. Each hidden layer comprises 

hidden cells that are characterized by multiple hidden units. On the other hand, 

each hidden unit addresses the problem of long-term dependencies by adjusting 

the flow of information with the support of input, output and forget gates. To 

improve the generalization ability of the model, the dropout regularization method 

is deployed to randomly exclude LSTM units during each training step. The 



178                                               Tudor George Alexandru, Cristina Pupăză 

accuracy of the model depends on the sequential data that is fed into it. Even so, 

the choice of hidden units and drop out rates that achieve best settings can be 

summarized as: 50, 60, 80 and 120 hidden units having dropout rates of 20% to 

50%. In the output layer, a continuous value is predicted that corresponds to the 

bisection occurrence probability. The Adam optimizer is deployed to perform an 

iterative update of the network’s weights based on stochastic gradient descent 

method. Typical to a regression problem, the Mean Squared Error is used as 

convergence metric.  

4. Verification of the given concepts 

A structural dynamics analysis is completed using the Transient Structural 

module from the ANSYS Workbench interface to verify the given concepts. The 

aim of this simulation is to emphasize the computational aspects that lead to 

convergence issues.  

The geometry in discussion consists of a rigid spindle that is supported by 

a deep groove ball bearing. Kinematic joints are defined to materialize the motion 

of the bodies, non-linear frictional contacts being included to capture the 

interaction between the rolling elements and the inner and outer rings. Only the 

rotation of the spindle around its axis is considered in the simulation. Topology 

operations are conducted to ensure that a Hex-Dominant mesh can be generated 

(see Fig.7). 

 

Fig. 7. Overview of the simulation model 

 

Excessively large automatic time step settings are adopted (initial time 

step: 0.1 seconds; minimum time step: 0.0001 seconds and maximum time step 

0.5 seconds) to enforce convergence issues. Furthermore, the cage of the rolling 

elements was removed from the geometry, causing an unconstrained motion of the 

balls that rub against each other. 

During the solving process, several time step bisections occur due to the 

unbalance of energies in the system. A total of 895 iterations are completed prior 

to aborting the solution. Fig. 8 depicts the force convergence residuals, 

emphasizing the location of time step bisections. 
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Fig. 8. Force convergence residuals and the location of time step bisections 

 

The dataset is assembled as a 3D array having 895 rows (corresponding to 

the number of substeps), 6 columns (corresponding to the maximum degree of 

freedom Increment, line search parameter, force convergence, force criteria as 

well as displacement convergence and displacement criteria) and sets of 7 

sequences. A selection of 700 entries is employed for training the neural model 

while the remaining samples are used for validating its predictions.  

TensorFlow 2.0 with Keras Machine Learning library is used for defining 

the LSTM architecture A total number of 10 epochs is chosen as training 

parameter, meaning that the dataset is backward and forward passed for 10 times. 

During each epoch, the mean square error loss function is monitored to evaluate 

the prediction accuracy of the model. At epoch 1, the loss function has a value of 

0.1913 while at epoch 10 the value is minimized to 0.0514. 

The ability of the model to predict time step bisections is determined by 

using the features from the validation set. For this purpose, the probability peaks 

that exceed 50% threshold between successive sequences are considered bisection 

locations. A maximum error of 1.27% is achieved, the accuracy being around     

+/- 11 substeps. Fig. 9 depicts the predicted vs. real bisection occurrences. 

 

Fig. 9. The occurrence of time step bisections in real vs. predicted cases 
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6. Conclusions 

The present paper addresses the limiting aspects of troubleshooting 

convergence issues in structural dynamics analysis. A RNN approach is proposed 

for predicting time step bisections by using the LSTM implementation. Training 

and testing of the neural model is accomplished with the support of solver output 

data. Methods for encoding the LSTM inputs are depicted throughout the work. A 

general deep learning architecture is proposed together with best hyperparameters 

choices. The results achieved prove the ability of the approach to be implemented 

in large scale structural dynamics projects. 
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