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MATHEMATICAL MODEL FOR THE STUDY OF THE
LATERAL OSCILLATIONS OF THE RAILWAY VEHICLE

loan SEBESAN!, Dan BAIASU?

Articolul prezinta un model matematic pentru studiul serpuirii unui vagon de
calatori.Modelul include miscarile de clatinare, ruliu si serpuire ale principalelor
elemente constitutive : osiile montate, boghiurile §i cutia. Sistemul de ecuatii este
scris aplicand metode energetice. Se considera neliniaritatile induse de profilul
neregulat al cdii de rulare. Fortele de contact roata sina sunt exprimate utilizand
coeficientii de pseudoalunecare stabiliti conform teoriei lineare a lui
Kalker.Sistemul de ecuatii este rezolvat prin metode numerice.Se determind
raspunsul sistemului — vagon de calatori pe o linie in aliniament §i palier, viteza
critica §i influenta caracteristicilor ~ constructive ale vagonului asupra
performantelor acestuia.

The article presents a mathematical model to study a passenger coach
hunting motion comprising the lateral displacement, rolling and yawing oscillations
for the main constitutive elements: axles, bogies and body. The equation system is
written applying energetic methods. The non-linearities determined by the irregular
profile of the tracks are considered. The wheel — rail contact forces are expressed
using the creepage coefficients established according to Kalker's linear theory. The
equations system is solved through numeric methods. The response of the system —
passenger coach on tangent track, the critical speed and the influence of the
constructive characteristics on its performances are determined.

Keywords: passenger coach, hunting, mathematical model, critical speed, coach’
construction

1. Introduction

The lateral railway vehicle dynamics represent a study area of great
interest in the actual context where more and more railway administrations
implement the high speed trains, which prove to be efficient, economic and
ecological transportation means.

Trains circulating with speeds higher than 160 km/h generate vibrations in
the vehicle body that induce significant operation problems: running instability,
poor ride quality and track wear. From this point of view, an adequate design of
the railway vehicles' suspensions holds an important role in maintaining the
comfort and safety parameters of trains’ operation.

! Prof., Dept. of Railway Vehicles, University POLITEHNICA of Bucharest, Romania,e-mail:
ioan_sebesan@yahoo.com
% PhD. Student, Atelierele CFR Grivita SA, Romania, e-mail: dan.baiasu@grivita.ro



52 Ioan Sebesan, Dan Baiasu

Kinematic theoretical studies of the rolling gear’s elements lateral and
yawing motions [1], [2] have highlighted that the oscillation frequency increases
proportionally to the circulation speed. The speed value where the amplitude of
the oscillations grows and the vehicle movement becomes unstable is called
critical speed. Starting off with this approach, various studies on the railway
vehicle's lateral stability have showed the existence of two sources of instability
for the railway vehicle:

- the bogie instability, induced by the axles' movement instability ;
- the instability of the body, which appears when, in the low frequency domain,
the vehicle body has the tendency of moving along with the bogie.

The dynamic behavior study of the railway vehicle has two directions:

- the dynamic response of the system: simulation of dynamic behavior due to
external stimuli, determination of the concentrated mass accelerations and speeds,
and implicitly the forces that act upon the vehicle;

- the dynamic stability: the study over the system's stability in various operation
conditions.

The mathematical modelling of the rail or of the railway vehicle is
frequently used for study or in order to observe the rail's and railway vehicle's
interaction with the tracks. The dynamic interaction between the vehicle and the
tracks varies depending on the operation conditions, geography, the wheel and rail
treads and the weather conditions.

Obtaining a mathematical model for the study of the dynamic behavior in
the case of the railway vehicle implies the latter being formed out of rigid bodies
inter-connected through weightless suspension elements. A rigid body — be it
vehicle or vehicle component — has 6 degrees of freedom corresponding to the
movements along the three shifting directions (longitudinal, lateral and vertical)
and the rotations around these axes (rolling, pitching and yawing).

Usually, in the case of railway vehicles, the mathematical models account
for the body case, the bogies and the wheelsets as rigid bodies. The equations
system describing the movement of the mathematical model could thus have 42
quadratic coupled equations. Solving such a system represents a sometimes
inconclusive undertaking regarding the vehicle's behavior. According to [1], [3],
[4] for small amplitude movements, there is a relatively small connection between
the vehicle's oscillations on a vertical and transversal directions, this is why some
of the models presented in literature don't take into account the vertical
oscillations in the study of movement on lateral direction or the horizontal
oscillations for the study of vehicle vertical displacement.

Starting with the 60's, numerous authors have dedicated studies to the
lateral oscillations phenomenon (the hunting motion): Wickens (1965), Law and
Coperrider (1974), Garg and Dukkipatti (1984), Sebesan (1995), Ahmadian and
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Yang (1998), He and McPhee (2002), Fan and Wu (2006), Messouci (2009),
Wang and Liao (2009), Zboinski and Dusza (2011) and others.

The mathematical models used in the literature for the study of vehicles,
differ depending on the number of degrees of freedom taken into account, the
vehicle type, the linear or non-linear treatment of the wheel — rail contact
phenomenon, of the forces appearing at the wheel — rail contact, as well as the
irregularities of the tracks. The complexity of these models has evolved in
proportion as the calculus technique has become more evolved allowing the
finding of solutions for more and more complex sets of differential equations
using up to 38 degrees of freedom and taking into consideration more and more
non-linear aspects of the vehicle — rail interaction.

In paper [5] the authors demonstrated that the critical speed obtained with
the help of a model with 6 degrees of freedom is bigger than the one obtained with
a system having 10 degrees of freedom; as a consequence it is shown that the
precision of the vehicle design increases along with the number of degrees of
freedom considered in the calculus.

A large amount of the mechanical models built until now — [4], [5],[6],
[11], [12] concerning especially the vibrations of the mounted axle, considering
that these determine the vibration regime in the whole vehicle, are of interest
because they allow the study of the non-linearities specific to the processes
generated by the rolling of the mounted axle on the tracks or the assessment of the
importance of various constructive parameters of the vehicle, but cannot represent
the phenomena that take place at the level of the case — bogies connection.
Moreover, few of the mechanical models presented in the literature are validated
through dynamic tests [8], [9], [10], [13].

This article presents a mathematical model of a passenger coach built to
simulate the response from the oscillating system to the irregularities of the tracks
and establishes the critical speed of the coach. Simulation of the vehicle's
response for various values of its constructive parameters facilitates the study of
optimization possibilities for the coach's performance.

2. Mechanical model of the passenger coach

The specific construction characteristics of the vehicle were considered in
order to elaborate the mechanical model. The dynamic response of the coach on
bogies to the tracks' irregularities on a horizontal plan depends strongly on the
configuration of the tracks which represent inputs for the vehicle as an oscillating
system, and also depends on its circulation speed. An accurate design of the axle
suspension can reduce the high frequency vibrations generated by the tracks, by
the reduced conicity of the rolling tread and by the wheel — rail contact forces.
The central suspension must absorb the vibrations transmitted by the bogies to the
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coach case in order to maintain the vehicle in an optimum position during
circulation, so that it ensures the passengers comfort. Both suspensions also
contain dissipative elements that attenuate the vibrations generated by the
vehicle's movement.

A reliable model of the vehicle must include both suspension levels,
allowing the highlighting of the dynamic characteristics of the vehicle's movement
and the study of the relative displacements appearing between the components of
the model. The model must facilitate the calculation of the suspension in order to
optimize the coach performance. The model can also be used to study the vehicle
instability due to the tracks' irregularities and to the inherent auto-induced
instability.

The coach case center of mass is located at the /. height from the
separation plane between the box and the bogie's frame — the transversal plane
that equally divides the bogie's central suspension's coil spring. This plane is
located at a distance 4., from the bogie's mass center.
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Fig. 1 Mechanical model for passenger coach’s hunting (lateral view)

[ R e

[ i ] i [ i ]

Fig. 2 Mechanical model for passenger coach’s hunting (upper view)
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It is assumed that all the elastic and damping elements have linear
characteristics: the elastic force is directly proportional with the coil spring
deformation and the damping force is directly proportional with the dampers'
deformation speed. In order to deduce the mechanical model movement equations,
a preliminary establishment of the reference systems and coordinates describing
the movement of the concentrated mass inside the model was necessary. The
mechanical model contains the following elements:

- the coach case;

- the bogies b;, j=1,2;

- the wheelsets o;, i=1...4;

- O, Oy, O;— the centers of mass for the mechanical model elements;

- Xo Yo Ze We @o 0. — the displacements, respectively rotations, of the coach
case during movement;

- Xy, Vb Zbp Wb @, Op — the displacements, respectively rotations, of the
bogies;

- Xoi Yoir Zoi Woir Poir Goi — the displacements, respectively rotations, of the
mounted axles;

- h.—distance between O, and Oy; ;

- hy—distance between Oy, and O; .

Fig. 3 Mechanical model for passenger coach’s hunting (transversal view)

Considering the coach as a system of rigid bodies interconnected through
suspension elements, under conditions of geometrical, elastic and inertial
symmetry, with identical wheel and rail patterns, the equilibrium position of the
coach coincides with its median position in relation to the tracks. The yawing
motions of the coach around its equilibrium position were considered to be of
relatively small amplitudes, without moving in all the available space in the
vehicle slot guide. In this case, the rolling surfaces' contact angles are small, the
radii of curvature for the rolling treads remain unchanged and the expression for
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the centering gravitational force can be linearized. Conicity has been considered
as having an equal constant value with the rolling surfaces' effective conicity. The
small contact angles create the premises for neglecting the contact forces' vertical
components in relation with the wheel loads which can be considered equal to the
normal contact forces.

Adopting the hypothesis of the small oscillations implies the existence of
transversal accelerations in the small amplitude vehicle which signifies that the
load transfers between the wheels of the same axle can be neglected. At the same
time, the axle's vertical accelerations at small frequencies characteristic to yawing
can be neglected, the axle load can be considered as being constant so that the
wheel load is also considered as being constant.

The mechanical model's geometrical and elastic symmetry facilitates the
decoupling of the lateral movements from the vertical ones.

In order to study the 4 axles vehicle's lateral oscillations, considering that
we are using the simplifying hypotheses previously presented, the mechanical
model considers the following degrees of freedom: y., we, @c Yo, Wi, @bV Vi,
where j=1,2 represent the bogies and i=1 — 4 the wheelsets.

Hence, a system results, with 17 degrees of freedom corresponding to the
concentrated mass movements that make up the mechanical model.

v
9%

Fig. 4 Forces and moment acting on the wheelset

According to Kalker's theory [7], both the creep tangential forces 7' and

T, and the creep moment M that acts in the contact point wheel — rail can be

written as:
T =xv.0
Ty :ZyVyQ-"Zsro(a)s/V)Q (1)

M, =—y,rv,0+ .15 (0,/v)O
where the spin creepage is given by the expressions:
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o, = o, siny, - corresponding to wheel 1
o, = o, siny, - corresponding to wheel 2 2)
where @, =v/r represents the angular speed transversal component in the wheel

— rail contact point. According to [1], approximate values are indicated for the
300 400

Zy =X —%%

depend on the ratio of the contact ellipse axes.
For the spin coefficient y_, the literature recommends a value of 0.83

creepage coefficients: y ~ (for Q expressed in tons), which

because it is almost independent in respect to the ratio of the contact ellipse axes.
The y. coefficient for a circular contact surface is y, =0.00433/Q and

for a contact surface whose axis length in the running direction is twice,

respectively 0.5 times the length of the other axis is y, =0.00143/Q and,

respectively, y, = 0.0134%/@ .
The y. coefficient has a reduced influence over the yawing motion and

can be neglected.
The creepages in the contact points of the two axle wheels have the
expressions:

le = _V2x = _[(7/r0 )y + (e/v)‘//]
Vly = V2y = y/V_W
@, ==(v/1)7,
@y, = /1)1,
In the contact points, the forces and the moments will have expressions
given by the following relations:

3)

e . e .
T, =—20(L y+ 24 T, = 20Xy +5y)
I"O \% I’O \%

7, =zQ(%—w)—szy1;T2y =zQ(%—w>+szyz @)

My, =M, =—zSQr(%—w>

The centering force : C=0(y, —y,) =¢,» %)

A fixed reference system is considered — O&n{ originating in the mounted
axles' plan, on the tracks axis, at a distance s from the center of gravity O, of the
coach (fig. 3).

In order to determine the relative displacements of the mechanical model's
elements, one has to compare their coordinates in relation to the fixed reference
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system. The relative displacements of the case in relation to the bogies can be
determined at the level of the central suspension and the bogies' relative
displacements in relation to the mounted axles can be determined at the level of
axle suspension. It is also necessary to establish the coordinates for the points
located in the center of the suspension in relation to each of the adjacent element
in the mechanical model.

The central suspension's strokes on the three axes are:

Ax, =~y —y,)(¥d,)
Ay, =y +hp + Dy =y + e, (6)
Az, =(p. —p,)(Fd,)

The axle's suspension strokes on the three axes are:
Ax, =~y —y,)(xd,)
Ay, =y + (_l)mal/jbj + hob¢bj — )i (7)
Az, = (xd,)p,

3. The mathematical model

Lagrange's equation method may be applied as follows, in order to
establish the movement equations:

i[a(E—V)}_ AE-V) 0D
dt o4, oq, o4,

where, ¢, - generalized coordinate, ¢;, - generalized speed, £ — kinetic energy, V —

=0, (8)

potential energy, D — energy dissipation function, Q; — generalized force
corresponding to the generalized coordinate g, .

The oscillating system's kinetic energy, potential energy and the energy
dissipation function have the expressions:
1

2 2 2 4 4
[ LY Sy NI S TR S A 3 - UL S RNELI oS LR o
2 2 2 2 5 2 745 2 45 2 5 27T

2 2 2 2
V= kcyz(yc + hcc@c + (_1)j+l le - yhj + hcb¢hj)2 + kz'x Z[(y/t - Wl?j Xi dt‘ )] + kczz [(¢c - ¢bj Xi dc ):Iz +
=1

Jj=1 J=1

by v e, )] + k.33l ()]

2 4 4
1 Jj=1 =l

+k, _ Z(}’bj + (_I)M‘“//bj = hoy Py — yi)2 + kmz

Jj=1 i=1 J=1i

J=1

2 ) 2 2 2 ,
D=p, Y (G +hoto, + (D, = 3y +hoiy) + oo SN~y N d )] + 02D M6, - oy NEd)F +
=1 j=1

)
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According to the contact forces (4), the generalized forces corresponding
to the generalized coordinates y; si y;, have the following expressions:

Qyi = _2XQ(J:_‘//ij_Cg(l_zs)(yi _’7:')
i —m)+= wl+2LQ%(—wJ

where, X - the creepage coefficient, v — the coach's circulation speed, O — wheel
load,” - effective conicity of the tread, ry — the wheel tread radius, y - spin

(10)
0, = —2ZQ€[

4

creepage coefficient, ¢, — gravitational stiffness, 7, - track deviations on
transversal direction.

The mathematical model considers the aspects of the non-linearities
introduced by the irregularities of the tracks. According to [1], [4], the expression
of the alignment deviations is possible in a sinusoidal form:

- 17y, =1y cos[2(vt + 1+ a)/ L] for the trailing bogie axles;

- N34 =1, cos[2z(vt =1 £ a)/ L] for the driven bogie axles. (11

Applying Lagrange's equations we obtain the movement equations for the
coach case, bogies and axles (12):
m.y.+ 2k4’y [2()’(» + hz'cq)c)_ (yhl + V2 )+ he ((phl + Py )] +2p, [2(yc + hcc¢c)_ (ybl + yh2)+ hy, (¢bl + 0 )] =0

(L. 127, +2p, I+ pod® Wy, + 2, 1> + k@ W, = ol = )+ Pl (B =0 Yoy = Py +171)
- ktyl(ybl Vi )+ kqvl(%l Py )hm kc‘fdt (‘//m t¥,, ) =0

(ch /2)¢r + 2(pc_vh2“ + pczdj )¢c + 2(k4yhrzc + kudc )¢ + 2pc) cry pm h(‘r(ybl +y172 )+ (pcyhcu ch p(‘zdf)
) ((/’/71 + P ) + 2kctvhccyL kuhac (ybl + yz;z)+ (kayhu hy—k.d; )((/’hl + @y ) =0

m,y by T chyj} b T Z(kc + Zk,,‘, )yb/‘ - chyj} P zp(}-hur(/)f ( 1)”1 pﬁyl W, — (pcyhcb .bj - 2k(‘yy P 2k(‘yhcc¢(‘ -
- 2(_ 1)1‘+l kz'yl V.- 2(kc) h., + 2k0\ h, i 2k{1y (yzj*l +1,; ) =0

Uy /20y + podipy + (ko 42k, 0> 42k, d2 Wy~ pod?yr, —k o dly, ~k,a(y,, .~ vy, )~ kod vy, +v,,)=0

Uy /D6, +p, 12+ pod? +2p,.d2 Yo, + (k12 + k. d? +2k@h:b+2k A2 Yoy +Pohoy. +pohohy, —pod? Yo, +

+( )Mlpa hyyr, — Py hm)’bj +k£) hyy, + (km hph, —k.d; )¢’ Hllk hcbl/lc (kc) h, +2k0»hob )y[)j +
+kmhob(y2/fl +y2/)—0
. . c (1 - Zy) j+
m,5,+222 5 + Z[k% T = 220w, = 2k, vy + 2 1) a2k, by = e (= 20,
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O,

v

. e, e
jy, +220°Ty, -2k, dlyy =220,

0

2
L, +[2zQe—}//, +20k,d + 7,00, —[2;(3
v

4. The response of the system

The general form of the movement equations for the system with more
degrees of freedom (12) is:

[M]gi+[Clai+ [K gl = {F )} (13)
where, [M] — mass matrix, [C] — damping matrix, [K] — stiffness matrix, i} -
acceleration vector, f} - speed vector, 4} - displacements vector, {F (t)} - force

vector.
Thus, for the system with 17 degrees of freedom, the displacements vector

is: {q}:[yc Ve @ Vot ¥ Py Vo Voo Poa Vv Wi V2 Wo V3 W5 V) ‘//4]'
The mass matrix is a square matrix of order 17, with mass on diagonal and
moments of inertia of the concentrated mass composing the mechanical model
associated to the coach previously presented. The [C] and [K] matrices are square
matrices of order 17 made up of the damping coefficients and the stiffnesses of
the mechanical system. Because it is not possible to establish analytical
expressions in relation to the system's response or the critical speed, both the
study of movement stability and the determination of the hunting oscillations
amplitudes are made using a numerical integration method of the movement
equations, the Runge — Kutta method of 4% order, for which the MATLAB

program package has specific procedures.
Table 1
Construction data of the passenger coach

Body case mass m=30760 kg
Bogie mass mp= 2300 kg
Wheelset mass m,= 1410 kg

Body case moments of inertia

1.,=53596 kgm’

1.=1661732 kgm’

Bogie moments of inertia

1,,=2240 kgm®

L= 2965 kgm®

Axles moments of inertia

1,980 kgm®

1,.=100 kgm’

Central suspension stiffness

k=133 kN/m

k=133 KN/m

k=473 kKN/m

Axle suspension stiffness

ko= 256 kKN/m

k= 885 kKN/m

ko= 904 kN/m

Central suspension damping

Pex— 0 kN/m/s

o= 25 KN/m/s

po= 18 kKN/m/s

Damping of the axle suspension

Po=3,67 KN/m/s

Wheel tread radius 75=0,460 m
The track’s gauge 2e=1,435m
The bogie's wheelbase 2a=2,560 m
The distance between bogies 2[=172m
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The distance between the central suspension's | 2d=2m
springs

The distance between the axle's suspension | 2d,=2 m
springs

The distance case center — central suspension h.~=1,24m
The distance axles suspension - bogie center ho;=0,01 m
The distance central suspension - bogie center he= 0,06 m
Load on wheel 0=51250 N
The creepage coefficient =190

The spin creepage coefficient 10,83
The effective wheel conicity y=0,14

The maximum testing speed

Vo= 50 m/s

The data presented above helped in accomplishing a working numerical
simulation using the MATLAB program. In the simulation it was considered that
the coach is launched on a tangent track and runs with a constant speed. In the
movement equations' general expressions the coach was considered as an
oscillating system activated by the tracks' irregularities. The elements' response
was thus established — concentrated masses that make up the coach's mechanical
model, translated in the generalized displacements' diagrams in relation to time at
the maximum speed at which the coach is checked in the test polygon — 180 km/h,
presented in fig. 5-12. The diagram study indicates that the tracks' perturbations
effect is not felt at the coach case level, as opposed to the bogie and axles where it
persists during the coach's circulation. The coach's main suspension acts
correspondingly and meets the comfort demands inside the coach.

Fig.5 Case lateral displacement

Fig. 8 Bogie’s lateral
displacement

Fig.6 Coach’s case yaw

Fig.9 Bogie’s yaw

Fig.7 Coach’s case roll

Fig. 10 Bogie’s roll
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Fig.11 Wheelset’s lateral displacement Fig.12 Wheelset’s yaw

5. The vehicle’s critical speed

The critical speed is the speed where the vehicle becomes unstable due to
the fact that, on the wheel — rail contact, the creepage becomes pure slip [1]. The
vehicle's maximum circulation speed must be lower than the critical speed.
According to [6], vehicles with great speeds are operated mainly on straight tracks
therefore the stability of the vehicle should be studied on tangent tracks.

The equations system describing the vehicle's movement is considered as a
continuous dynamic system in time. The internal stability of this type of system
solely depends on the distribution of the eigenvalues of the characteristic matrix in
the complex plan.

The coach's critical speed is determined using the construction
characteristics of the coach model seen above and the movement equations given
by (12). We proceed then in calculating the eigenvalues of the characteristic
matrix of the order I system resulted through the variable change:

_ |4}
b= =
that has the form:
Gy=EM}+F o) (14)

[E]{ [0] /] } (15)

-M]'[x] -[m]"[c]

The dynamic system is asymptotically stable if and only if all the
eigenvalues of the matrix E have a negative real part.

Determination of the eigenvalues of the matrix E was accomplished in
MATLAB using the “eig” routine and increasingly varying the coach's circulation
speed. As long as the real part of all the eigenvalues obtained is negative — the
coach's movement is stable. If detecting a speed value for which at least one
determined eigenvalue has the real part positive the speed's variation step is
refined up to the necessary precision.

with
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Fig.15 Axle lateral displacement , v>230 km/h
In what regards the coach used in the simulation, the critical speed was
determined at a value of 63,7 m/s (~ 230 km/h). In a loaded state, the coach's
critical speed will increase as a result of the stabilizing centering effect.
The coach's response is presented in the fig. 13-15 — the Ilateral
displacement of the first axle — at inferior, equal and superior speeds to the critical
value.

6. The construction characteristics’ influence on the vehicle's stability

The mathematical model determined in the previous chapter can be used
for improving the design of railway vehicles. Thus, applying the eigenvalues
method, the influence of several construction characteristics of the vehicle over
the critical speed can be studied.

The papers [4], [5], [9] contain studies of vehicle’s stability with respect to
the construction parameters of the wheelsets and suspensions. Paper [9] explicitly
assumes the critical speed of the vehicle as unique optimization criteria. Paper [6]
features the conclusions of similar studies and formulates recommendations for
the suspension construction.

Image 16 presents the passenger coach’s critical speed variation for
conicity values equivalent to 0.12 , 0.13 and 0.14.

It is noticeable that the critical speed decreases along with the tracks’
equivalent coning growth. Among the most frequent causes of the equivalent
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coning growth we can mention wear due to the wheels’ rolling pattern
exploitation or the tracks’ radius of curvature growth.
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Fig.16 The influence of the effective conicity on the stability

The axles’ suspension construction holds a particular importance over the
vehicle stability on a horizontal plan. In general, a growth in the axles’ suspension
stiffness leads to a significant stability growth. Thus, if a longitudinal rigidity
growth is accomplished, from 250 to 300 kN/m, the vehicle’s critical speed can be
augmented with up to 18 km/h.
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Fig.17 The influence of the Fig.18 The influence of the transversal
longitudinal stiffness of the axle suspension stiffness of the axle suspension

In the case of the studied vehicle it was noticed that a maximum critical
speed of 64 m/s can be accomplished under the conditions of an axle suspension
with a transversal stiffness around 885 kN/m, according to fig. 18.
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Fig.19 The influence of the transversal stiffness
of the central suspension

Using more and more rigid suspensions also brings an intensification of
the wear of the bogies subassemblies.
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Fig.20 The influence of the transversal damping

Image 19 suggests that central suspension stiffness growth on a vertical
direction reduces the coach's critical speed. Thus, a vertical stiffness growth of
60% in the central suspension produces a critical speed decrease of 15 km/h.

If the coach's central suspension transversal damping value grows from 20
kN/m/s to 30 kN/m/s, the critical speed increases with more than 20 km/h. If the
damping has very high values the dampers become very rigid and have the
tendency of behaving like bogie — case coupling elements, transmitting
oscillations from the rolling apparatus to the coach case, reducing thus both
dynamic performance and vehicle comfort.

7. Conclusions

The article presents a mathematical model with 17 degrees of freedom for
a passenger coach reaching a maximum speed of 160 km/h.

The model considers the coach's lateral oscillations, respectively the lateral

displacement, yawing and rolling motions of the concentrated mass building up
the associated mechanical model: the coach case, the bogies and the mounted
axles. The mathematical model proposed in this paper applies the equations
featured in [1] for the bogies and wheelsets lateral movements and extend them to
a passenger coach. A mathematical model to study the lateral dynamics of an
entire vehicle solved with an original computer program is an original approach at
national level.
The present study is conducted for the creep domain with linear friction
coefficient characteristic. Previous studies proved that in the stability studies, the
critical speed evaluated through linear methods it is higher than the non-linear
critical speed, a fact that should be considered in the design activity. The non-
linear systems offer a better accuracy in the evaluation of the dynamic behavior of
the railway vehicle almost simulating the real phenomenon. The linear approach
of the vehicle’s stability is useful in the design phase because it allows the
investigation of the influence of the construction parameters on the critical speed.
In that way it is possible to identify the optimal value domains of those
parameters.
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The equations system describing the vehicle's movement on a lateral
direction was treated through numerical methods in order to determine its
components' response to the coach's movement on an irregular track .

The critical speed of the coach used to exemplify the mathematical model
was determined and applications of the study of the influence of construction
parameters of the coach over its performances were presented.

It was shown that vehicle performance optimization is possible, allowing
the increase of the critical speed with 20 km/h exclusively through an adequate
suspension design. However, this undertaking must be the result of an
optimization and adequacy process of the suspension's construction parameters in
relation with the domain in which the railway vehicle is used and according to the
specific operating conditions. Under this extent the presented mathematical model
can represent an useful instrument in the calculation, design and optimization of
the dynamic performances of railway vehicles.

The presented mathematical model offers developing opportunities
considering the non-linearities of the wheel — rail contact and the situations when
the vehicle runs in a curve.
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