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AN ARTIFICIAL NEURAL NETWORK APPROACH FOR 
ANALYSIS AND MINIMIZATION OF HAZ IN CO2 LASER 

CUTTING OF STAINLESS STEEL 

Miloš MADIĆ1, Gheorghe BRABIE2, Miroslav RADOVANOVIĆ3 

This paper present an approach for modeling and analysis of the effects of 
the laser cutting parameters on the width of HAZ obtained in CO2 laser cutting of 
stainless steel by using artificial neural network (ANN). ANN model was developed 
in terms of the specific laser energy (laser power to cutting speed ratio), assist gas 
pressure and focus position. Using the experimental data the ANN was trained with 
gradient descent with momentum algorithm and the average absolute percentage 
errors on training and testing were 3.68 % and 3.52%, respectively. In addition to 
modeling and analysis, through ANN simulation optimal cutting conditions with 
minimal width of HAZ were identified.  

Keywords: CO2 laser cutting, artificial neural networks, heat affected zone, 
modeling, optimization, simulation. 

1. Introduction 

Laser cutting is a thermal, non-contact, and automated process well suited 
for various manufacturing industries where a variety of components in large 
numbers are required to be machined with high dimensional accuracy and surface 
finish. Laser cutting is the process of melting or vaporizing material in a very 
small, well-defined area. The processes of heating, melting, and evaporation are 
produced by the laser beam, affecting a workpiece’s surface. Laser beam is a 
cutting tool able to cut all materials, focused into a very small spot of 0.1…0.2 
mm in diameter concentrating thousands of watts. The power density for cutting 
steels is typically 105-106 MW/m2 [1]. This high density of power allows welding, 
engraving and cutting of different materials [2]. The high power density of the 
focused laser beam in the spot melts or evaporates material in a fraction of a 
second, and coaxial jet of an assist gas removes the evaporated and molten 
material from the cutting zone. 

Laser cutting is a complex machining process with numerous parameters 
which in consort have essential role on the process performance. Maximization of 
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productivity and quality along with costs minimization are of particular interest to 
manufacturers. Each of these goals often requires “optimal” selection of the 
cutting parameter settings. However, the optimum parameter settings for one 
quality characteristic may deteriorate other quality characteristics. A number of 
researchers performed theoretical as well as experimental investigations in order 
to examine laser cutting process [3, 4]. When the cut quality is considered, in 
most reported studies, kerf width, surface roughness and width of the heat affected 
zone (HAZ), were commonly used as cut quality characteristics [5].  

Through appropriate selection and optimization of the laser and operating 
parameters cutting performance characteristics can be improved considerably. 
Mathematical models of the laser cutting processing relates the laser cutting 
parameters and cutting performance and hence provides a means for determining 
optimal or near-optimal cutting conditions. Different methodologies such as: 
multiple regression analysis [6], response surface method [7], fuzzy expert system 
[8] were applied for the analysis of the laser cutting parameters on the cutting 
performance characteristics. As the laser cutting is complex process characterized 
by a multiplicity of interacting parameters, which in turn determine efficiency of 
the whole process, application of artificial neural networks (ANNs) for modeling 
laser cutting is becoming preferred trend [9-12]. The ability of ANNs to capture 
any complex input–output relationships from limited data is very valuable in 
manufacturing processes where huge experimental data for the process modeling 
is difficult and expensive to obtain [13]. They are especially suitable in situations 
where mathematical formulas and prior knowledge on the functional relationship 
between process parameters are unknown.  

Although a good number of research studies have already been done in the 
area of laser cutting, very few have focused on the analysis of the HAZ in laser 
cutting. Rajaram et al. [6] investigated the combined effects of the laser power and 
cutting speed on the width of HAZ in CO2 laser cutting of 4130 steel. It was found 
that an increase in the cutting speed and a decrease in the laser power resulted in a 
decrease in the width of HAZ for the power range from 700 to 1100 W. However, 
it was observed that when using laser power of 1300 W, HAZ width increases 
with an increase in the cutting speed up to 46.6 mm/s and then decreases with 
further increase in the cutting speed. Mathew et al. [14] conducted parametric 
studies on pulsed Nd:YAG laser cutting of carbon fiber reinforced plastic 
composites. The HAZ predictive model was developed using response surface 
methodology (RSM). Repetition rate, cutting speed, pulse duration and beam 
energy are the parameters that were found to have an influence on the HAZ. Paulo 
Davim et al. [15] conducted an experimental study for CO2 laser cutting of 
polymeric materials. It was observed that the HAZ increases with the laser power 
and decreases with the cutting speed. Similar conclusions were drawn by Sheng 
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and Joshi [16] as a result of a numerical study in CO2 laser cutting of stainless 
steel. 

This paper presents an approach for the analysis of the effects of the laser 
cutting parameters on the width of HAZ obtained in CO2 laser nitrogen cutting of 
stainless steel using the ANN model. Backpropagation (BP) ANN trained with 
gradient descent with momentum algorithm was applied to construct a 
mathematical model for the width of HAZ. For conducting the laser cutting 
experiment, Taguchi’s L27 orthogonal array (OA) was used where laser cutting 
parameters, namely laser power, cutting speed, assist gas pressure, and focus 
position were arranged. In addition to modelling and analysis, the laser cutting 
conditions for width of HAZ minimization were identified through the simulation 
of the ANN. 

2. Experimental details 

The experiment was performed by means of ByVention 3015 (Bystronic) 
CO2 laser delivering a maximum output power of 2.2 kW at a wavelength of 10.6 
µm, operating in continuous wave mode. The cuts were performed with a 
Gaussian distribution beam mode (TEM00) on 3 mm thick AISI 304 stainless steel 
using the nitrogen as assist gas with purity of 99.95%. In consideration of the 
numerous parameters that influence cutting process and finally cut quality, some 
of the process parameters were kept constant through the experimentation. A 
focusing lens with a focal length of 5 in. (127 mm) was used to perform the cut. 
The conical shape nozzle (HK20) with nozzle diameter of 2 mm was used. The 
nozzle–work piece stand-off distance was controlled at 1 mm. The control laser 
cutting parameters considered in the study and the levels of each parameter are 
given in Table 1. 

For the experimental design, the Taguchi method has been used, in which 
the experiment trials are performed as per standard orthogonal arrays (OA). Based 
on the selected parameters and parameter levels, a design matrix, constructed in 
accordance with the standard L27(313) Taguchi OA, was used for performing the 
laser cutting experiment. Laser cutting parameters, laser power, cutting speed, 
assist gas pressure and focus position were assigned to columns 1, 2, 5 and 9, 
respectively. The experimental trials were performed with the combination of 
laser cutting parameter levels as given in Table 2. 

Table 1 
Laser cutting parameters and their levels 

Laser cutting parameters Unit Levels
1 2 3 

Laser power, P kW 1.6 1.8 2 
Cutting speed, v m/min 2 2.5 3 
Assist gas pressure, p bar 9 10.5 12 
Focus position, f mm -2.5 -1.5 -0.5
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Table 2 
Experimental design and results 

Exp. 
trial 

Input parameters Experimental 
results 

P v p f HAZ 
(kW) (m/min) (bar) (mm) (µm) 

1 1.6 2 9 -2.5 21.00 
2 1.6 2 10.5 -1.5 23.67 
3 1.6 2 12 -0.5 23.33 
4 1.6 2.5 9 -1.5 15.33 
5 1.6 2.5 10.5 -0.5 20.67 
6 1.6 2.5 12 -2.5 18.67 
7 1.6 3 9 -0.5 19.67 
8 1.6 3 10.5 -2.5 17.67 
9 1.6 3 12 -1.5 20.00 
10 1.8 2 9 -1.5 30.33 
11 1.8 2 10.5 -0.5 25.67 
12 1.8 2 12 -2.5 20.33 
13 1.8 2.5 9 -0.5 26.00 
14 1.8 2.5 10.5 -2.5 19.67 
15 1.8 2.5 12 -1.5 20.33 
16 1.8 3 9 -2.5 18.33 
17 1.8 3 10.5 -1.5 17.00 
18 1.8 3 12 -0.5 19.33 
19 2 2 9 -0.5 28.33
20 2 2 10.5 -2.5 19.33
21 2 2 12 -1.5 20.33 
22 2 2.5 9 -2.5 19.67 
23 2 2.5 10.5 -1.5 22.67 
24 2 2.5 12 -0.5 26.33 
25 2 3 9 -1.5 18.33
26 2 3 10.5 -0.5 20.67
27 2 3 12 -2.5 15.00 

 
Straight cuts each of 60 mm in length were made in each experimental 

trial and the cut quality was evaluated in terms of the width of HAZ. An optical 
microscope (Leitz, Germany) was used to measure the width of HAZ along the 10 
mm segment of the cut edge. The measurements were repeated three times to 
obtain averaged values (Table 2). All the experimental data given in Table 2 were 
used to form experimental data base for ANN training. 

3. ANN modeling of CO2 laser cutting process 

Experimental data obtained from the laser cutting experiment, such as 
input-output data, can be used to form a mathematical model of the process. 
Through a mathematical model, any experimental result of the width of HAZ with 
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any combination of the laser cutting parameters can be estimated. Recently, one of 
the most popular approaches for modeling the functional relationships between 
several measured inputs and one or more outputs is based on artificial neural 
networks (ANNs). Among the various types of ANNs, the feed-forward neural 
networks are one of the most popular because of their simplicity and powerful 
nonlinear modeling ability. The feed-forward ANN is a non-linear mapping 
system composed of many interconnected neurons which are grouped into input, 
hidden, and output layers. 

3.1. ANN model development 

To establish a mathematical relationship between the HAZ and the laser 
cutting parameters a multilayer perceptron type ANN was selected. In the present 
paper, the laser power and cutting speed were combined into single parameter. 
Namely, the ratio of laser power to cutting speed is called specific laser energy, 
Es, and defines the energy input per unit length of the material along the cut [17]: 

v
PEs =                                                        (1) 

Therefore, three neurons were used in the input layer, and one neuron in 
the output layer for calculating the width of HAZ. The number of hidden neurons 
was decided considering that the total number of connection weights and biases of 
the hidden and output neurons in the ANN architecture does not exceed the 
available number of data for training. As there are 27 experimental input/output 
data sets, three inputs and one output, the number of neurons in the hidden layer 
was set to 5. In order to increase prediction accuracy, stabilize and enhance ANN 
training, input and output data were normalized between -1 and 1. Linear transfer 
function and hyperbolic tangent sigmoid activation functions were used in the 
output and hidden layer, respectively. These transfer functions were used since it 
was assumed that there exists nonlinear relationship between the input and output 
process parameters. 

3.2. ANN model training 

The practical application of ANN comes with algorithms designed to 
determine the optimum weights and biases in the process called training. ANN 
training is considered as one of the most important step in ANN model 
development. The primary goal of ANN training is to achieve a good balance 
between the ANN ability to respond correctly to the input data used for the 
training and, more preferably, the ability to produce accurate predictions to input 
that is not used in training (generalization ability). The most common training 
algorithm for ANNs is the backpropagation algorithm and its variants because it is 
stable and easy to implement. In the present paper, the ANN training process was 
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carried out using gradient descent with momentum procedure “traingdm” of 
MATLAB Neural Network Toolbox. Gradient descent with momentum algorithm 
has two parameters that control the speed and convergence of the ANN. These are 
learning rate (α) and momentum (µ), and usually take values between 0 and 1 
[18]. The mean squared error (MSE) was selected as performance criterion for 
training process. The training process involves minimizing the mean square error 
(MSE) between desired (target), y, and ANN predicted outputs, for the same input 
pattern, using the available training data (Ntr): 
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Supervised learning was conducted with a zero as a target error value. In 

order to deal with converge to local minima problem and slow convergence, the 
ANN training process was repeated several times using different initial weights. It 
was found that the selected ANN architecture provides the best data fitting 
capability with MSE at the end of training process (10000 epochs) of 0.0135343 
(Figure 1), when learning rate (α) and momentum (µ) were kept at 0.1 and 0.9, 
respectively. 

 
Fig. 1. ANN training process 

3.3. ANN model testing 

Once the ANN training process was finished and the near optimum 
weights and biases of the ANN were determined, the next step consists of 
comparing the ANN predicted values of the width of HAZ with experimental 
values. To test the prediction capability of the developed model, the trained ANN 
was initially tested by presenting 27 input data patterns, which were employed for 
the training purpose.  
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However, in order to test the generalization ability of the ANN model, 7 
new experiment trials were conducted with the laser cutting parameter levels 
which do not belong to the training data set (Table 3). 

Table 3 
Experimental data set for ANN testing 

Exp. 
trial 

Input parameters Experimental 
results 

P v p f HAZ 
(kW) (m/min) (bar) (mm) (µm) 

1 2 2 10.5 -1.5 24 
2 1.8 2.5 9 -2.5 20.33 
3 2 2.5 10.5 -0.5 23.67 
4 1.8 3 12 -1.5 17.33 
5 1.6 2.5 12 -1.5 18.33 
6 1.8 3 10.5 -2.5 18 

Prediction capability of a best ANN is assessed by calculating absolute % 
error in prediction for every input/output data after corresponding de-
normalization, as follows: 

100
output alExperiment

output predicted ANN-result alExperimenterror prediction % Absolute ×=   (3) 

Fig. 2 shows the prediction errors for the ANN model using the training 
and testing data. As the maximum errors in prediction for the width of HAZ are 
12.58% and 8.8% for training and testing data respectively, it can be said that the 
errors are within the tolerable limit. Furthermore, the average errors for training 
and testing data are 3.68% and 3.52%, respectively, which are very small indeed. 
Also it is evident that the developed ANN model has good generalization 
capability i.e. performs well on unseen data. The high performance of the ANN 
model is confirmed by very high correlation coefficient between experimental and 
predicted width of HAZ values as shown in Fig. 3. 

 
Fig. 2. Prediction performance of the developed ANN 
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(a) (b) 

Fig. 3. The performance of ANN model (a) for training data set, (b) for testing data set 

4. Analysis and discussion 

The developed ANN to predict the width of HAZ based on the cutting 
parameters showed high degree of accuracy within the scope of cutting conditions 
investigated in the study. Thus, the effect of the specific cutting energy, assist gas 
pressure and focus position on the width of HAZ can be studied using the ANN 
model. By changing one parameter at a time, while keeping the all other 
parameters constant at low, center and high level, the main effect plot were 
generated as shown in Fig. 4(a,b,c). In order to examine the interaction effects, 3D 
surface plots were generated considering two parameters at a time, while the third 
parameter was kept constant at center level (Fig. 4(d,e,f)). 
 

  
(a) (b) 
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(c) (d) 

 
(e) (f) 

Fig. 4. Main and interaction effects of the specific cutting energy, assist gas pressure and focus 
position on the width of HAZ 

 
It can be seen from Figure 4a that an increase in Es produces a non-linear 

increase in width of HAZ, and this functional dependence is constant apart from 
the values of the other parameters. In the case of assist gas pressure (Figure 4b), it 
is seen that the effect of the assist gas pressure on the width of HAZ is variable. It 
can be observed that at intermediate Es when focusing the laser beam at half of the 
material thickness, high assist gas pressure increases the width of HAZ. This 
effect may be attributed to the role the assist gas plays in heat transport through 
the thickness of the workpiece and to the rise in flow turbulence and less effective 
cooling at high pressure [17]. Figure 4c suggests that focusing the laser beam deep 
into the bulk of material is beneficial for decreasing the width of HAZ. From the 
interaction effect plot between Es and p (Figure 4d) it is seen that the effect of the 
assist gas pressure is more pronounced for higher specific laser energy. From 
Figure 4e it is seen that the interaction effect of focus position and specific laser 
energy produces highly nonlinear change in the width of HAZ. It can be observed 
that when focusing the laser beam at half of the material thickness there exists a 
range of specific laser energy, i.e. laser power to cutting speed ratio, where the 
width of HAZ is minimum. Similar findings were reported by Mathew et al. [14]. 
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They observed that for laser power to cutting speed ratio of between 2 and 4, the 
HAZ is the minimum. From Fig. 4f it is seen that low focus position in 
conjunction with high assist gas pressure is beneficial for minimizing the width of 
HAZ. On the other hand, focusing the laser beam near the top surface and by 
using low assist gas pressure, results in increased width of HAZ. 

5. Optimization of the width of HAZ through the ANN model 

The optimal selection of cutting parameters should increase the product 
quality to some extent by minimizing the width of HAZ. In the present paper an 
attempt has been made to identify optimal laser cutting conditions for 
minimization of the width of HAZ by considering the laser cutting economics 
which imply that the assist gas pressure is kept at minimum. Therefore, the 
optimization problem can be formulated as follows: 

( )

mm 50mm 52                   
bar 9     :subject to

 ,,f  :minimize to
,            :Find

min

s

.f.- 
pp

fpEHAZ
fE

s

−≤≤
==

=                                 (4) 

To find the optimum laser cutting parameter settings formulated in Eq. 4 
one may apply a large number of methods such as classical mathematical 
methods, Monte Carlo method, genetic algorithms, simulated annealing, particle 
swarm optimization, etc. However, as the optimization problem is reduced in 
finding optimal values of two bounded continuous decision variables (Es and f), 
through the simulation of the developed ANN, one can identify the optimal 
region. Fig. 5 shows ANN simulations in the Es and f plane when assist gas 
pressure of 9 bar is used. 

 

 
 

(a) (b) 
Fig. 5. Prediction of width of HAZ by the ANN model when p=9 bar: (a) 3D surface plot, (b) 

contour plot with optimal cutting region 
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From all of these predictions (Figure 5) it was observed when Es is in the 
range between 32 J/mm and 39 J/mm (which corresponds to laser power to cutting 
speed ratio between 0.533 to 0.65), focusing the laser beam at the half of the 
material thickness produces region of minimal width of HAZ. 

6. Conclusions 

This paper presented artificial neural network approach for the modeling, 
analysis and optimization of the width of HAZ in CO2 laser nitrogen cutting of 
stainless steel. On the basis of derived analysis within the range of laser cutting 
conditions investigated, the following conclusions can be drawn: 

• the functional dependence between the width of HAZ and, assist gas 
pressure and focus position is nonlinear, 

• specific laser energy has a major effect on the width of HAZ. An increase 
in specific laser energy generally led to increasing width of HAZ and this 
effect is dependent on the interaction with assist gas pressure and focus 
position, 

• interaction of the specific laser energy and focus position produces highly 
nonlinear change in the width of HAZ, 

• focusing the laser beam at the half of the material thickness with the 
combination of laser power to cutting speed ratio between 0.533 to 0.65 at 
nitrogen pressure of 9 bar produces minimal width of HAZ. 
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