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ITERATIVE ALGORITHMS FOR SOLVING A CLASS OF QUASI

VARIATIONAL INEQUALITIES

by Muhammad Aslam Noor1, Khalida Inayat Noor2, Awais Gul Khan3, Adrian Ghiura4

In this paper, we introduce and study a new class of quasi variational inequal-
ities, known as multivalued extended general quasi variational inequalities. It is shown
that the multivalued extended general quasi variational inequalities are equivalent to the

fixed point problems. We use this alternative equivalent formulation to suggest and ana-
lyze some iterative methods. We consider the convergence analysis of an iterative method
under suitable conditions. We also introduce a new class of Wiener-Hopf equations,

known as multivalued extended general implicit Wiener-Hopf equations. We establish
the equivalence between the multivalued extended general quasi variational inequalities
and multivalued extended general implicit Wiener-Hopf equations. Using this equiva-
lence, we suggest and analyze some iterative methods. Several special cases are also

discussed. The ideas and techniques of this paper may stimulate further research in this
field.
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1. Introduction

Variational inequality problem was introduced by Stampacchia [43]. Variational inequality
theory is an important branch of mathematics due to its vast applications in both pure
and applied sciences. This field is dynamic and is experiencing an explosive growth in both
theory and applications; as a consequence, research techniques and problems are drawn
from various fields. The ideas and techniques of variational inequalities are being applied
in a variety of diverse areas of sciences and prove to be productive and innovative. It has
been shown that this theory provides the most natural, direct, simple, unified and efficient
framework for a general treatment of a wide class of unrelated linear and nonlinear problems,
see [1-44] and references therein.

Noor [20] introduced and studied an important class of variational inequalities using
two operators, which is known as general variational inequality. It turned out that the
odd-order and nonsymmetric obstacle, free, unilateral and moving boundary value problems
can be studied via the general variational inequality. Noor [22] has shown that the general
variational inequality are equivalent to the Wiener-Hopf equations, which were introduced
and studied by Shi [42]. Noor [22] has used this alternative equivalent formulation to sug-
gest several iterative methods for solving the general variational inequality and the related
problems.
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If the convex set, which involved in the variational inequality, also depends upon the
solution implicitly or explicitly, then the variational inequality is called the quasi variational
inequality. Quasi variational inequalities were introduced and studied by Bensoussan and
Lions [3]. They showed that the quasi variational inequality gives a natural and unified
framework for studying the impulse control theory. Chan and Pang [4] introduced and
studied the generalized quasi variational inequality problems. It has been shown that the
generalized quasi variational inequality contains the quasi variational inequality problem as
a special case.

Noor [18] has shown that the quasi variational inequality is equivalent to the fixed
point problem using the projection technique. Using this equivalence, he suggested an itera-
tive method for solving the quasi variational inequality. Noor [21] introduced and studied a
new class of quasi variational inequality, which is called a general quasi variational inequal-
ity involving two operators. Noor [21] proved that the general quasi variational inequality
is equivalent to a fixed point problem. Using this fixed point equivalence, he proposed
an iterative method for solving the general quasi variational inequality and discussed the
convergence of the proposed iterative method.

Motivated and inspired by the research going on in this area, Noor [24] introduced and
studied a new class of quasi variational inequality, which known as generalized multivalued
quasi variational inequality. It has been shown that this class is most general and includes
many classes of quasi variational inequalities as a special cases. He has considered the
existence of a solution of problem using the projection technique and proposed a number
of iterative methods for solving the generalized multivalued quasi variational inequality. He
also established an equivalence relation between generalized multivalued quasi variational
inequality and the implicit Wiener-Hopf equations. He used this equivalence to suggest a
class of iterative methods for solving generalized multivalued quasi variational inequality,
also see [23, 25] and references therein.

It is well known that the convexity plays an important role in the study of variational
inequality and its variant forms. The optimality of a differentiable convex function on a
convex set can be characterized by the variational inequality. In recent years, the concept of
convexity has been generalized in many dimensions, see [5] and references therein. Youness
[44] introduced a concept of nonconvex sets and nonconvex functions. For the properties of
the nonconvex functions see [26, 37]. Noor [31] has considered and studied the nonconvex
function relative to two arbitrary functions. It has shown [31] that the minimum of a dif-
ferentiable nonconvex function involving three functions can be characterized by a class of
variational inequalities, which is called the extended general variational inequality. It also
has been shown that many classes of variational inequalities are the special cases of extended
general variational inequality. It has been proved that the extended general variational in-
equalities are equivalent to the fixed point problems. This alternative fixed point formulation
is used to study the existence of a solution of extended general variational inequality as well
as to develop some iterative methods. Noor [28] has also studied the existence of a solution
of extended general variational inequality via auxiliary principle technique. Liu and Cao
[15] proposed a recurrent neural network based on the projection operator for solving the
extended general variational inequality.

Noor and Noor [36] considered a new class of quasi variational inequality involving
three nonlinear operators, called extended general quasi variational inequality. Noor et
al. [37] proposed some iterative schemes for solving the extended general quasi variational
inequality and discussed the convergence of the iterative methods. Recently, Antipin et al.
[1] proposed a second-order iterative method using projection technique for solving quasi
variational inequalities. They have considered the convergence criteria of the proposed
iterative method. For the dynamical systems associated with quasi variational inequalities
and related problems, see Noor et al. [39].
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In this paper, we introduce and consider a new class of quasi variational inequality,
known as multivalued extended general quasi variational inequality. It is shown that several
known classes of variational and quasi variational inequalities, which have been studied by
many researchers, are the special cases of this new class. In section 2, we give some basic
results, facts, formulate problem, and discuss some special cases of the multivalued extended
general quasi variational inequality. In section 3, the equivalence between multivalued quasi
variational inequalities and the fixed point problem is established using the projection tech-
niques. This alternative equivalent formulation is used to discuss the existence theory of
multivalued extended general quasi variational inequalities. It is observed that for the ex-
istence of a solution of the concerned problem, the operators should be strongly monotone
and Lipschitz continuous. In section 4, we introduce some new iterative methods for solving
the new class of quasi variational inequalities using the equivalent fixed point formulation.
We discuss the convergence of the iterative methods for solving the variational inequality
under the same conditions which we imposed on the operators in section 3. In section 5, we
introduce a new class of Wiener Hopf equation, called multivalued extended general implicit
Wiener Hopf equation. We establish the equivalence between the new class of quasi varia-
tional inequality and Weiner Hopf equations. This alternative equivalent formulation is used
to suggest a number of new iterative methods for solving the multivalued extended general
quasi variational inequality. The convergence analysis of these methods is also investigated
under some suitable conditions. Several special cases are discussed. Since the multival-
ued extended general quasi variational inequalities include several new and known classes
of (quasi) variational inequalities as special cases, results derived in this paper continue to
hold for these problems. The comparison of these new methods with other methods is an
interesting and challenging problem for future research.

2. Formulation and Basic Results

Let H be a real Hilbert space, whose norm and inner product are denoted by ∥·∥ and
⟨·, ·⟩, respectively. Let C(H) be a family of all nonempty compact subsets of H. Let T, V :
H → C(H) be the multivalued operators. Let h1, h2 : H → H and N (·, ·) : H ×H → H
be the single valued operators.

Given a point-to-set mapping Ω : u → Ω(u), which associates a closed convex valued
set Ω(u) with any element u ∈ H, we consider problem of finding u, w, y ∈ H : w ∈
T (u), y ∈ V (u), h1(u), h2(u) ∈ Ω(u), and

⟨ρN (w, y) + h2 (u)− h1 (u) , h1 (v)− h2 (u)⟩ ≥ 0, ∀v ∈ H : h1 (v) ∈ Ω(u) (1)

where ρ > 0, is a constant. Problem (1) is called the multivalued extended general quasi-
variational inequality. It has many applications in the field of mechanics, physics, pure
and applied sciences, see [6, 7, 12, 14, 15] and references therein. Furthermore, there are
problems arising in structural analysis, which can be studied by the problem (1) only.

Example 2.1. For simplicity, and to convey an idea of the applications of the problem
(1), we consider an elastoplasticity problem, which is mainly due to Panagiotopoulos and
Stavroulakis [40] and Noor [25]. It is assumed that a general hyperelastic material law
holds for the elastic behavior of the elastoplastic material under consideration. Moreover, a
nonconvex yield function σ → F (σ) is introduced for the plasticity. For the basic definitions
and concepts, see [40]. Let us assume the decomposition

E = Ee + Ep, (2)

where Ee denotes the elastic and Ep, the plastic deformation of the three-dimensional elasto-
plastic body. We write the complementarity virtual work expression for the body in the form

⟨Ee, τ − σ⟩+ ⟨Ep, τ − σ⟩ = ⟨f, τ − σ⟩ , for all τ ∈ Z. (3)
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Here we have assumed that the body on a part ΓF = Γ − ΓU , the boundary tractions are
given, that is, Si = Fi on ΓF , where

⟨E, σ⟩ =
∫
Ω

ϵijσijdΩ, (4)

⟨f, σ⟩ =
∫
ΓU

UiSidΓ, (5)

Z = {τ : τi,j + fi = 0 on Ω, i, j = 1, 2, 3, Ti = Fi on ΓF , i = 1, 2, 3} , (6)

is the set of statically admissible stresses and Ω is the structure of the body.

Let us assume that the material of the structure Ω is hyperelastic such that

⟨Ee, τ − σ⟩ ≤ ⟨W ′
m (σ) , τ − σ⟩ , for all τ ∈ R6, (7)

where Wm is the superpotential which produces the constitutive law of the hyperelastic
material and is assumed to be quasidifferentiable [40], that is, there exist convex and compact

subsets ∂′Wm and ∂
′
Wm such that

⟨W ′
m (σ) , τ − σ⟩ = max

W e
1 ∈∂′Wm

⟨W e
1 , τ − σ⟩+ max

W e
2 ∈∂

′
Wm

⟨W e
2 , τ − σ⟩ . (8)

We also introduce the generally nonconvex implicit yield function P (σ) ⊂ Z, which is
denoted by means of the general quasi-differentiable function F (σ), that is,

P (σ) = {σ ∈ Z;F (σ) ≤ σ} . (9)

HereWm is generally nonconvex and nonsmooth, but quasi-diffrentiable function for the case
of plasticity with convex yield surface and hyperelasticity. Combining (2)−(9) and using the
technique of Panagiotopoulos and Stavroulakis [40], we can obtain the following multivalued

variational inequality problem: find σ ∈ P (σ) such that W e
1 ∈ ∂′Wm, W e

2 ∈ ∂
′
Wm, and

⟨W e
1 +W e

2 , τ − σ⟩ ≥ ⟨f, τ − σ⟩ , for all τ ∈ P (σ) ,

which is exactly problem (1) with N (w, y) = W e
1 +W e

2 , h1 = h2 = I, the identity operator,

T (u) = ∂′Wm, V (u) = ∂
′
Wm, and Ω (u) = P (σ) .

For other applications of problem (1), see [6, 7, 12, 14, 15] and the references therein.
We now discuss some special cases of problem (1).

I. If Ω (u) ≡ Ω, that is, the convex set Ω is independent of a solution u, then problem
(1) is equivalent to finding u, w, y ∈ H : w ∈ T (u), y ∈ V (u), h1(u), h2(u) ∈ Ω, and

⟨ρN (w, y) + h2 (u)− h1 (u) , h1 (v)− h2 (u)⟩ ≥ 0, (10)

for all ∀v ∈ H : h1 (v) ∈ Ω, This problem is known as multivalued extended general
variational inequality.

II. If h1 ≡ h2, then problem (1) is equivalent to finding u, w, y ∈ H : w ∈ T (u), y ∈
V (u), h1(u) ∈ Ω(u), and

⟨ρN (w, y) , h1 (v)− h1 (u)⟩ ≥ 0, ∀v ∈ H : h1 (v) ∈ Ω(u) (11)

which is known as generalized multivalued quasi-variational inequality. The problem
(11) was introduced and studied by Noor [25].

III. If h1 ≡ h2, and Ω (u) = Ω, then problem (1) is equivalent to finding u, w, y ∈ H : w ∈
T (u), y ∈ V (u), h1(u) ∈ Ω, and

⟨ρN (w, y) , h1 (v)− h1 (u)⟩ ≥ 0, ∀v ∈ H : h1 (v) ∈ Ω, (12)

which is known as generalized multivalued variational inequality.
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IV. If h1 ≡ h2 ≡ I, then problem (1) is equivalent to finding u, w, y ∈ H : w ∈ T (u),
y ∈ V (u), u ∈ Ω(u), and

⟨ρN (w, y) , v − u⟩ ≥ 0, ∀v ∈ Ω(u) , (13)

which is known as multivalued quasi-variational inequality, see Noor [24].
V. If the operator V ≡ 0 and T, h1, h2 : H → H are single valued operators, then

problem (1) is equivalent to finding u ∈ H : h1 (u) ∈ Ω(u) and

⟨ρ (T (u)) + h2 (u)− h1 (u) , h1 (v)− h2 (u)⟩ ≥ 0, (14)

for all v ∈ H : h1 (v) ∈ Ω(u), which is known as the extended general quasi-variational
inequality, introduced and studied by Noor and Noor [36] and Noor et al. [38, 39].

VI. If h1 ≡ h2 and the operators T, V, h1 : H → H are single valued operators, then
problem (1) is equivalent to finding u ∈ H : h1 (u) ∈ Ω(u) and

⟨ρ (T (u) + V (u)) , h1 (v)− h1 (u)⟩ ≥ 0, ∀v ∈ H : h1 (v) ∈ Ω(u) . (15)

It is known as the mildly nonlinear quasi-variational inequality and is due to Noor,
see [24].

VII. For the single valued operators T, V : H → H, h1 ≡ h2 ≡ I, the identity operator,
and Ω (u) = Ω , then problem (1) is equivalent to finding u ∈ Ω such that

⟨ρ (T (u) + V (u)) , v − u⟩ ≥ 0, ∀v ∈ Ω. (16)

which is called mildly nonlinear variational inequality, introduced and studied by Noor
[17] in 1975.

VIII. If V = 0, h1 ≡ h2 ≡ I, the identity operator, and for the single valued operator
T : H → H, and Ω (u) = Ω , then problem (1) is equivalent to finding u ∈ Ω such that

⟨ρ (Tu) , v − u⟩ ≥ 0, ∀v ∈ Ω, (17)

which is the well known original variational inequality. It was introduced and studied
by Stampacchia [43]. For the recent applications, generalization, numerical methods
and other aspects of quasi variational inequalities and related optimization problems,
see [1− 43].

Lemma 2.1. For a given z ∈ H, u ∈ Ω satisfies the inequality

⟨u− z, v − u⟩ ≥ 0, ∀v ∈ Ω,

if and only if

u = PΩ [z] ,

where PΩ is the projection of H into a closed and convex set Ω.

It is well known that projection operator PΩ is nonexpansive, that is,

∥PΩ [u]− PΩ [v] ∥ ≤ ∥u− v∥, ∀u, v ∈ H.

We now define the concept of strongly monotonicity for the bifunction operatorN (·, ·),
which was introduced by Noor [25].

Definition 2.1. The single valued operator N (·, ·) is said to be strongly monotone with
respect to the first argument if, for all u1, u2 ∈ H, there exists a constant α > 0, such that

⟨N (w1, ·)−N (w2, ·) , u1 − u2⟩ ≥ α∥u1 − u2∥2, ∀w1 ∈ T (u1) , w2 ∈ T (u2) .

Definition 2.2. The single valued operator N (·, ·) is said to be Lipschitz continuous with
respect to the first argument, if there exists a constant β > 0, such that

∥N (u1, ·)−N (u2, ·) ∥ ≤ β∥u1 − u2∥, ∀u1, u2 ∈ H.
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Similarly, we can define the strongly monotonicity and Lipschitz continuity of the
operator N (·, ·) with respect to the second argument.

Definition 2.3. The set valued operator V : H → C (H) is said to be M-Lipschitz continu-
ous, if there exists a constant ξ > 0 such that

M (V (u1) , V (u2)) ≤ ξ∥u1 − u2∥, ∀u1, u2 ∈ H,

where C (H) is the family of all nonempty compact subsets of H and M (·, ·) is the Hausdorff
metric on C (H), that is for any two nonempty subsets A and B of H,

M (A,B) = max

{
sup
x∈A

d (x,B) , sup
y∈B

d (A, y)

}
,

where

d (x,B) = inf
y∈B

∥x− y∥ and d (A, y) = inf
x∈A

∥x− y∥ .

In order to prove our main results, the next lemma is very important.

Lemma 2.2 ([16]). Let (H, d) be a complete metric space, T : H → CB (H) be a set-valued
mapping. Then, for all x, y ∈ H, u ∈ T (x), there exists v ∈ T (y) such that

∥u− v∥ ≤ M (T (x) , T (y)) .

3. Existence Theory

In this section, we show that the multivalued extended general quasi-variational in-
equality (1) is equivalent to a fixed point problem using Lemma 2.1. We use this alternative
equivalent formulation to discuss the existence of a solution of problem (1).

Lemma 3.1. Let Ω(u) be a closed and convex valued set in H. Then u,w, y ∈ H is a
solution of (1) if and only if u,w, y ∈ H satisfies the relation

h2 (u) = PΩ(u) [h1 (u)− ρN (w, y)] ,

where ρ > 0 is a constant and PΩ(u) is the projection of H onto the closed convex-valued set
Ω(u).

Thus from Lemma 3.1, we see that problem (1) is equivalent to a fixed point problem.
We remark that the implicit projection operator PΩ(u) is not nonexpansive. However it is
known [35, 36] that the implicit projection operator PΩ(u) satisfies the Lipschitz continuity
type condition. This condition plays an important role in the existence theory of problem
(1) and the convergence analysis of the iterative algorithms.

Assumption 3.1. For a constant ν > 0, the implicit projection operator PΩ(u) satisfies the
condition

∥PΩ(u) [w]− PΩ(v) [w] ∥ ≤ ν∥u− v∥, for all u, v, w ∈ H. (18)

We now show that Assumption 3.1 holds for some special cases. We consider the case,
for which the convex-valued set Ω (u) can be defined as:

Ω (u) = m (u) + Ω,

where Ω is a closed and convex set and m is a point-to-point mapping. In this case, we have

PΩ(u) [w] = Pm(u)+Ω [w] = m (u) + PΩ [w −m (u)] ,

where PΩ is the projection operator of H onto the convex set Ω.
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If the mapping m (u) is a Lipschitz continuous with constant γ > 0, then for all
u, v, w ∈ H, we have

∥PΩ(u) [w]− PΩ(v) [w] ∥ = ∥Pm(u)+Ω [w]− Pm(v)+Ω [w] ∥
= ∥m (u) + PΩ [w −m (u)]−m (v)− PΩ [w −m (v)] ∥
≤ ∥m (u)−m (v) ∥+ ∥PΩ [w −m (u)]− PΩ [w −m (v)] ∥
≤ 2∥m (u)−m (v) ∥ ≤ 2γ∥u− v∥,

which shows that the Assumption 3.1 holds for ν = 2γ > 0.
We now discuss the existence of a solution of problem (1) and this is the main moti-

vation of our next result.

Theorem 3.1. Let Ω(u) be a closed and convex valued set in H. Let the operator N (·, ·) be
strongly monotone with respect to the first argument with constant α > 0 and Lipschitz con-
tinuous with respect to the first argument with constant β > 0. Let operators h1, h2 : H → H
be strongly monotone with constants σ1 > 0, σ2 > 0 and Lipschitz continuous with constants
δ1 > 0, δ2 > 0, respectively. Assume that the operator N (·, ·) is Lipschitz continuous with
respect to the second argument with constant η > 0. Let T , V : H → C (H) are M-Lispchitz
continuous mappings with constants µ > 0 and ξ > 0 respectively. If Assumption 3.1 holds
and

θ = k + t (ρ) + ρηξ < 1, (19)

k = ν +
√

1− 2σ1 + δ21 +
√

1− 2σ2 + δ22 , (20)

t (ρ) =
√
1− 2ρα+ ρ2β2µ2, (21)

then there exists a solution u, w, y ∈ H : w ∈ T (u), y ∈ V (u), and h1 (u) , h2 (u) ∈ Ω(u)
satisfying the problem (1).

Proof. Let u ∈ H be a solution of problem (1), then by Lemma 3.1, we have

h2 (u) = PΩ(u) [h1 (u)− ρN (w, y)] , (22)

which can be used to define the mapping F (u) as:

F (u) = u− h2 (u) + PΩ(u) [h1 (u)− ρN (w, y)] . (23)

To prove the existence of a solution of (1) , it is enough to show that problem (23) has a
fixed point. Thus, for all u1 ̸= u2 ∈ H, let T (u1) ∋ w1 ̸= w2 ∈ T (u2) and V (u1) ∋ y1 ̸=
y2 ∈ V (u2) such that ∥w1 − w2∥ ≤ M (T (u1) , T (u2)) and ∥y1 − y2∥ ≤ M (V (u1) , V (u2)),
consider

∥F (u1)− F (u2)∥
≤ ∥(u1 − u2)− {h2 (u1)− h2 (u2)}∥

+
∥∥PΩ(u1) [h1 (u1)− ρN (w1, y1)]− PΩ(u2) [h1 (u2)− ρN (w2, y2)]

∥∥
≤ ∥(u1 − u2)− {h2 (u1)− h2 (u2)}∥

+
∥∥PΩ(u1) [h1 (u1)− ρN (w1, y1)]− PΩ(u2) [h1 (u1)− ρN (w1, y1)]

∥∥
+
∥∥PΩ(u2) [h1 (u1)− ρN (w1, y1)]− PΩ(u2) [h1 (u2)− ρN (w2, y2)]

∥∥
≤ ∥(u1 − u2)− {h2 (u1)− h2 (u2)}∥+ ν∥u1 − u2∥

+ ∥{h1 (u1)− h1 (u2)} − ρ {N (w1, y1)−N (w2, y2)}∥
≤ ν∥u1 − u2∥+ ∥ (u1 − u2)− {h2 (u1)− h2 (u2)} ∥

+∥ (u1 − u2)− {h1 (u1)− h1 (u2)} ∥
+∥ (u1 − u2)− ρ {N (w1, y1)−N (w2, y1)} ∥
+ρ∥N (w2, y1)−N (w2, y2) ∥, (24)
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where we have used Assumption 3.1.
Since N (·, ·) is strongly monotone with respect to the first argument with constant

α > 0 and Lipschitz continuous with respect to the first argument with constant β > 0, and
T is M-Lipschitz continuous operator with constant µ > 0, therefore

∥(u1 − u2)− ρ {N (w1, y1)−N (w2, y1)}∥2

= ∥u1 − u2∥2 − 2ρ ⟨N (w1, y1)−N (w2, y1) , u1 − u2⟩+ ρ2∥N (w1, y1)−N (w2, y1) ∥2

≤ ∥u1 − u2∥2 − 2ρα∥u1 − u2∥2 + ρ2β2 ∥w1 − w2∥2

≤ ∥u1 − u2∥2 − 2ρα∥u1 − u2∥2 + ρ2β2 {M (T (u1) , T (u2))}2

≤ ∥u1 − u2∥2 − 2ρα∥u1 − u2∥2 + ρ2β2µ2∥u1 − u2∥2

=
(
1− 2ρα+ ρ2β2µ2

)
∥u1 − u2∥2. (25)

Since h1 and h2 are strongly monotone with constants σ1 > 0, σ2 > 0 and Lipschitz contin-
uous with constants δ1 > 0, δ2 > 0 respectively, therefore we have

∥ (u1 − u2)− {h1 (u1)− h1 (u2)} ∥2 ≤
(
1− 2σ1 + δ21

)
∥u1 − u2∥2. (26)

and

∥(u1 − u2)− {h2 (u1)− h2 (u2)}∥2 ≤
(
1− 2σ2 + δ22

)
∥u1 − u2∥2 . (27)

Since N (·, ·) is also Lipschitz continuous with respect to the second argument with constant
η > 0 and V is M-Lipschitz continuous with constant ξ > 0, therefore we have

∥N (w2, y1)−N (w2, y2)∥ ≤ η ∥y1 − y2∥
≤ ηM (V (u1) , V (u2))

≤ ηξ ∥u1 − u2∥ . (28)

Combining (19) and (24)− (28), we have

∥F (u1)− F (u2)∥ ≤ {ν +
√
1− 2σ1 + δ21 +

√
1− 2σ2 + δ22

+
√
1− 2ρα+ ρ2β2µ2 + ηξρ} ∥u1 − u2∥

= {k + t (ρ) + ηξρ} ∥u1 − u2∥
= θ ∥u1 − u2∥ , (29)

From condition (19), it follows that θ < 1. This shows that mapping F (u) defined by (23)
is a contraction mapping and consequently it has a unique fixed point u,w, y ∈ H satisfying
problem (1).This completes the proof. �

4. Iterative Methods

In this section, we develop and discuss some iterative methods for solving problem
(1). We also consider the convergence analysis of these iterative methods.

From Lemma 3.1, we have

u = u− h2 (u) + PΩ(u) [h1 (u)− ρN (w, y)] .

For a controlling parameter 0 < λ < 1, we have

u = (1− λ)u+ λ
{
u− h2 (u) + PΩ(u) [h1 (u)− ρN (w, y)]

}
. (30)

This fixed point formulation enables us to suggest the following iterative algorithm, for
solving problem (1).

Algorithm 4.1. Assume that T, V : H → C (H), are multivalued operators. Let N : H ×
H → H, h1, h2 : H → H are single valued operators. Let Ω(u) be a closed convex valued
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set in a real Hilbert space H. For given u0, w0, y0 ∈ H, let w0 ∈ T (u0) , y0 ∈ V (u0),
h1 (u0) ∈ Ω(u0), h2 (u0) ∈ Ω (u0) and

u1 = (1− λ)u0 + λ
{
u0 − h2 (u0) + PΩ(u0) [h1 (u0)− ρN (w0, y0)]

}
.

Using Lemma 2.2; since w0 ∈ T (u0), y0 ∈ V (u0) , then there exist w1 ∈ T (u1),
y1 ∈ V (u1) such that

∥w0 − w1∥ ≤ M (T (u0) , T (u1))

∥y0 − y1∥ ≤ M (V (u0) , V (u1)) ,

where M (·, ·) is the Hausdorff metric on C (H). Let

u2 = (1− λ)u1 + λ
{
u1 − h2 (u1) + PΩ(u1) [h1 (u1)− ρN (w1, y1)]

}
.

By continuing this process, we can obtain the sequences {un} , {wn} , {yn} such that

wn ∈ T (un) : ∥wn+1 − wn∥ ≤ M (T (un+1) , T (un)) (31)

yn ∈ V (un) : ∥yn+1 − yn∥ ≤ M (V (un+1) , V (un)) (32)

un+1 = (1− λ)un + λ
{
un − h2 (un) + PΩ(un) [h1 (un)− ρN (wn, yn)]

}
, (33)

for n = 0, 1, 2, . . ..

We now discuss some special cases of Algorithm 4.1, which are used to solve some
important classes of variational and quasi variational inequalities.

I. If T, V : H → C (H) are multivalued operators and h2 = h1, then Algorithm 4.1
reduces to the following algorithm which is used to find a solution of problem (11).

Algorithm 4.2. For given u0, w0, y0 ∈ H : w0 ∈ T (u0) , y0 ∈ V (u0) , h1 (u0) ∈ Ω(u0),
compute the sequences {un} , {wn} , and {yn} from the iterative schemes

wn ∈ T (un) : ∥wn+1 − wn∥ ≤ M (T (un+1) , T (un))

yn ∈ V (un) : ∥yn+1 − yn∥ ≤ M (V (un+1) , V (un))

un+1 = (1− λ)un + λ
{
un − h1 (un) + PΩ(un) [h1 (un)− ρN (wn, yn)]

}
, n = 0, 1, 2, . . . .

II. If T, V : H → C (H) are multivalued operators, and h2 = h1 = I, the identity
operator, then Algorithm 4.1 reduces to the following algorithm.

Algorithm 4.3. For given u0, w0, y0 ∈ Ω(u0) : w0 ∈ T (u0) , y0 ∈ V (u0), compute the
sequences {un} , {wn} , and {yn} from the iterative schemes

wn ∈ T (un) : ∥wn+1 − wn∥ ≤ M (T (un+1) , T (un))

yn ∈ V (un) : ∥yn+1 − yn∥ ≤ M (V (un+1) , V (un))

un+1 = (1− λ)un + λPΩ(un) [h1 (un)− ρN (wn, yn)] , n = 0, 1, 2, . . . .

III. If Ω (u) = m (u) + Ω, where m is a point-to-point mapping and Ω is a closed and
convex set in the real Hilbert space H, then Algorithm 4.1 reduces to the following
algorithm.

Algorithm 4.4. For given u0, w0, y0 ∈ H : w0 ∈ T (u0) , y0 ∈ V (u0) , and h1 (u0) ,
h2 (u0) ∈ Ω(u0) = m (u0) + Ω, then compute the sequences {un} , {wn} , and {yn} from the
iterative schemes

wn ∈ T (un) : ∥wn+1 − wn∥ ≤ M (T (un+1) , T (un))

yn ∈ V (un) : ∥yn+1 − yn∥ ≤ M (V (un+1) , V (un))

un+1 = (1− λ)un + λ {un − h2 (un) +m (un) + PΩ [h1 (un)− ρN (wn, yn)−m (un)]} ,
for n = 0, 1, 2, . . ..

IV. If Ω (u) = m (u) + Ω and h2 = h1, then Algorithm 4.1 reduces to the following
algorithm.



12 Muhammad Aslam Noor et al.

Algorithm 4.5. For given u0, w0, y0 ∈ H : w0 ∈ T (u0) , y0 ∈ V (u0) , and h1 (u0) ∈
Ω(u0) = m (u0) + Ω, then compute the sequences {un} , {wn} , and {yn} from the iterative
schemes

wn ∈ T (un) : ∥wn+1 − wn∥ ≤ M (T (un+1) , T (un))

yn ∈ V (un) : ∥yn+1 − yn∥ ≤ M (V (un+1) , V (un))

un+1 = (1− λ)un + λ {un − h1 (un) +m (un) + PK [h1 (un)− ρN (wn, yn)−m (un)]} ,
for n = 0, 1, 2, . . ..

V. If Ω (u) = m (u) + Ω and h2 = h1 = I, the identity operator, then Algorithm 4.1
reduces to the following algorithm.

Algorithm 4.6. For given u0, w0, y0 ∈ Ω(u0) = m (u0) + Ω : w0 ∈ T (u0) , y0 ∈ V (u0),
then compute the approximate solutions {un} , {wn} , and {yn} from the iterative schemes

wn ∈ T (un) : ∥wn+1 − wn∥ ≤ M (T (un+1) , T (un))

yn ∈ V (un) : ∥yn+1 − yn∥ ≤ M (V (un+1) , V (un))

un+1 = (1− λ)un + λ {m (un) + PΩ [un − ρN (wn, yn)−m (un)]} ,
for n = 0, 1, 2, . . ..

For suitable and appropriate choice of the operators and spaces, one can suggest
several iterative methods for solving problem (1).

In the next theorem, we show that the approximate solution obtained from the iter-
ative Algorithm 4.1 converges strongly tou,w, y ∈ H, the exact solution of problem (1).

Theorem 4.1. Let Ω(u) be any closed and convex valued set in H. Let the operator N (·, ·)
be strongly monotone with respect to the first argument with constant α > 0 and Lipschitz
continuous with respect to the first argument with constant β > 0. Let the operators h1,
h2 : H → H be strongly monotone with constant σ1 > 0, σ2 > 0 and Lipschitz continuous
with constants δ1 > 0, δ2 > 0, respectively. Assume that the operator N (·, ·) is Lipschitz
continuous with respect to the second argument with constant η > 0. Let T , V : H →
C (H) be M-Lispchitz continuous mappings with constants µ > 0 and ξ > 0 respectively. If
Assumption 3.1 and relation (19) hold, then there exists a solution u, w, y ∈ H : w ∈ T (u),
y ∈ V (u), and h1 (u) , h2 (u) ∈ Ω(u) satisfying problem (1), and the sequences {un} , {wn},
and {yn} generated by Algorithm 4.1 converges to u, w and y strongly in H, respectively.

Proof. From Theorem 3.1 it is clear that there exists a solution u ∈ H of problem (1). Then
from (30) and (33) , we have

∥un+1 − u∥ = ∥ (1− λ) (un − u) + λ{(un − u)− (h2 (un)− h2 (u))

+PΩ(un) [h1 (un)− ρN (wn, yn)]− PΩ(u) [h1 (u)− ρN (w, y)]]}∥
≤ (1− λ) ∥un − u∥+ λ ∥(un − u)− {h2 (un)− h2 (u)}∥

+λ
∥∥PΩ(un) [h1 (un)− ρN (wn, yn)]− PΩ(u) [h1 (u)− ρN (w, y)]

∥∥
≤ (1− λ) ∥un − u∥+ λ ∥(un − u)− {h2 (un)− h2 (u)}∥

+λ
∥∥PΩ(un) [h1 (un)− ρN (wn, yn)]− PΩ(u) [h1 (un)− ρN (wn, yn)]

∥∥
+λ

∥∥PΩ(u) [h1 (un)− ρN (wn, yn)]− PΩ(u) [h1 (u)− ρN (w, y)]
∥∥

≤ (1− λ) ∥un − u∥+ λ ∥(un − u)− {h2 (un)− h2 (u)}∥
+λν ∥un − u∥+ λ ∥(un − u)− {h1 (un)− h1 (u)}∥
+λ ∥(un − u)− ρ {N (wn, yn)−N (w, yn)}∥
+λρ ∥N (w, yn)−N (w, y)∥ ,

where we have used Assumption 3.1.
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Using (25)-(28), we have

∥un+1 − u∥ ≤ (1− λ) ∥un − u∥+ λ
√

1− 2σ2 + δ22 ∥un − u∥

+λν ∥un − u∥+ λ
√
1− 2σ1 + δ21 ∥un − u∥

+λ
√
1− 2ρα+ ρ2β2µ2 ∥un − u∥+ λρηξ ∥un − u∥

= [(1− λ) + λθ] ∥un − u∥ = [1− λ (1− θ)] ∥un − u∥ , (34)

where θ is defined in (19). Thus

∥un+1 − u∥ ≤ θ1 ∥un − u∥ , (35)

where θ1 = 1− λ (1− θ).
Since from (19), we have 0 < θ < 1, therefore θ1 < 1.
Hence from (35), we know that the sequence {un} is a Cauchy sequence in H, so there

exists u ∈ H with un+1 → u.
Now since N (·, ·) is Lipschitz continuous with respect to the second argument with

constant η > 0 and V is M-Lipschitz continuous with constant ξ > 0, we have that, by using
Lemma 2.2, an y ∈ V (u) exists such that ∥yn+1 − y∥ ≤ M (V (un+1) , V (u)), then

∥N (w, yn+1)−N (w, y)∥ ≤ η ∥yn+1 − y∥
≤ ηM (V (un+1) , V (u))

≤ ηξ ∥un+1 − u∥ ,

which implies that the sequence {yn} is also a Cauchy sequence in H, so there exists y ∈ H
such that yn+1 → y.

Similarly for the first argument of N (·, ·),we have

∥N (wn+1, y)−N (w, y)∥ ≤ βµ ∥un+1 − u∥ ,

which shows that the sequence {wn} is also a Cauchy sequence in H, so there exists w ∈ H
such that wn+1 → w.

Thus by Lemma 3.1, it follows that u, w, y ∈ H such that w ∈ T (u) , y ∈ V (u)
and h1 (u) , h2 (u) ∈ Ω (u) satisfies the the multivalued extended general quasi-variational
inequality (1) and un → u, wn → w and yn → y strongly inH. This completes the proof. �

If Ω (u) = m (u) + Ω, where m is a point-to-point Lipschitz continuous with constant
ν > 0 and Ω is a closed and convex set in the real Hilbert space H in the Theorem 4.1, then
we have the following result.

Corollary 4.1. Let N, T, V, h1, and h2 be the same as defined in Theorem 4.1. Assume
that the point-to-point mapping m is Lipschitz continuous with constant γ > 0 and a relation
(19) with k = 2γ +

√
1− 2σ1 + δ21 +

√
1− 2σ2 + δ22 hold. Then problem (1) has a solution

u, w, y ∈ H : w ∈ V (u) , h1 (u) ∈ Ω(u) , h2 (u) ∈ Ω(u) and un → u, wn → w, yn → y
strongly in H, where the sequences {un} , {wn} , {yn} are generated by Algorithm 4.4.

5. Wiener-Hopf Equations Technique

In this section, we introduce a new class of Wiener-Hopf equations, which is called the
multivalued extended general implicit Wiener-Hopf equations. We establish the equivalence
between the multivalued extended general implicit Wiener-Hopf equations and problem (1).
By using this equivalence, we suggest a number of new iterative methods for solving the
different classes of problem (1) and its variant forms.
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For given nonlinear multivalued operators T, V : H → C (H) and single valued oper-
ators N (·, ·) : H ×H → H, and h1, h2 : H → H. Suppose that inverse of the operator h2

exists, we consider problem of finding z, u, w, y ∈ H : w ∈ T (u) , y ∈ V (u), and

N (w, y) + ρ−1QΩ(u) [z] = 0, (36)

where QΩ(u) = I − h1

(
h−1
2 PΩ(u)

)
, I is the identity operator and ρ > 0 is a constant. The

equation (36) is known as multivalued extended general implicit Wiener-Hopf equations.
We now discuss some special cases of problem (36).

I. If h2 = h1, then problem (36) reduces to problem of finding z, u, w, y ∈ H : w ∈ T (u) ,
y ∈ V (u), and

N (w, y) + ρ−1QΩ(u) [z] = 0,

where QΩ(u) = I − PΩ(u), I is the identity operator and ρ > 0 is a constant. These
problems are known as the multivalued general implicit Wiener-Hopf equations.

II. If h2 = h1, and Ω (u) = Ω, then problem (36) reduces to problem of finding z, u, w,
y ∈ H : w ∈ T (u) , y ∈ V (u), and

N (w, y) + ρ−1QΩ [z] = 0,

where QΩ = I−PΩ, I is the identity operator, and ρ > 0 is a constant. These problems
are known as the generalized multivalued Wiener-Hopf equations.

III. If h2 = h1 = I, the identity operator, T, V : H → H are single valued operator, and
Ω (u) = Ω, then problem (36) is equivalent to finding z ∈ H such that

TPΩ [z] + ρ−1QΩ [z] = 0,

which are known as Wiener-Hopf equations. These equations were introduced and
studied by Shi [42] and Robinson [41], independently.

Using the technique of Noor et al. [37], one can prove the following result.

Lemma 5.1. The problem (1) has a solution u, w, y ∈ H : w ∈ T (u) , y ∈ V (u) , and h1 (u) ,
h2 (u) ∈ Ω (u), if and only if the problem (36) have a solution z, u, w, y ∈ H : w ∈ T (u) ,
y ∈ V (u), provided

h2 (u) = PΩ(u) [z] , (37)

and
z = h1 (u)− ρN (w, y) , (38)

where ρ > 0 is a constant.

Lemma 5.1 implies that problem (1) and problem (36) are equivalent. This equivalent
formulation is used to suggest and analyze some iterative methods for solving (1).

I. Equation (36) can be written as:

ρN (w, y) = −QΩ(u) [z]

= h1

(
h−1
2 PΩ(u)

)
[z]− z = h1 (u)− z,

which implies that
z = h1 (u)− ρN (w, y) . (39)

This fixed point formulation enables us to suggest the following iterative method for
solving problem (1).

Algorithm 5.1. For given z0, u0, w0, y0 ∈ H : w0 ∈ T (u0) , y0 ∈ V (u0), compute the
sequences {zn} , {un} , {wn} , and {yn} by the iterative schemes

h2 (un) = PΩ(un) [zn] (40)

wn ∈ T (un) : ∥wn+1 − wn∥ ≤ M (T (un+1) , T (un)) (41)

yn ∈ V (un) : ∥yn+1 − yn∥ ≤ M (V (un+1) , V (un)) (42)
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zn+1 = h1 (un)− ρN (wn, yn) , n = 0, 1, 2, . . . . (43)

We now discuss some special cases of Algorithm 5.1.

(i). If h2 = h1, then Algorithm 5.1 reduces to the following algorithm which is developed
and studied by Noor [24, 25] for solving the generalized multivalued quasi variational
problem (11).

Algorithm 5.2. For given z0, u0, w0, y0 ∈ H : w0 ∈ T (u0) , y0 ∈ V (u0), compute the
sequences {zn} , {un} , {wn} , and {yn} by the iterative schemes

h1 (un) = PΩ(un) [zn]

wn ∈ T (un) : ∥wn+1 − wn∥ ≤ M (T (un+1) , T (un))

yn ∈ V (un) : ∥yn+1 − yn∥ ≤ M (V (un+1) , V (un))

zn+1 = h1 (un)− ρN (wn, yn) , n = 0, 1, 2, . . . .

(ii). If h2 = h1, and Ω (u) = Ω, then Algorithm 5.1 reduces to the following algorithm.

Algorithm 5.3. For given z0, u0, w0, y0 ∈ H : w0 ∈ T (u0) , y0 ∈ V (u0), compute the
sequences {zn} , {un} , {wn} , and {yn} by the iterative schemes

h1 (un) = PΩ [zn]

wn ∈ T (un) : ∥wn+1 − wn∥ ≤ M (T (un+1) , T (un))

yn ∈ V (un) : ∥yn+1 − yn∥ ≤ M (V (un+1) , V (un))

zn+1 = h1 (un)− ρN (wn, yn) , n = 0, 1, 2, . . . .

II. Equation (36) can be written as:

ρ−1QΩ(u) [z] = −N (w, y) ,

which implies that

N (w, y)−
(
1− ρ−1

)
QΩ(u) [z] = −QΩ(u) [z]

= h1

(
h−1
2 PΩ(u)

)
[z]− z = h1 (u)− z.

This implies

z = h1 (u)−N (w, y) +
(
1− ρ−1

)
QΩ(u) [z] . (44)

Using this fixed point formulation, we can suggest the following iterative scheme for
solving problem (1) .

Algorithm 5.4. For given z0, u0, w0, y0 ∈ H : w0 ∈ T (u0) , y0 ∈ V (u0), compute the
sequences {zn} , {un} , {wn} , and {yn} by the iterative schemes

h2 (un) = PΩ(un) [zn]

wn ∈ T (un) : ∥wn+1 − wn∥ ≤ M (T (un+1) , T (un))

yn ∈ V (un) : ∥yn+1 − yn∥ ≤ M (V (un+1) , V (un))

zn+1 = h1 (un)−N (wn, yn) +
(
1− ρ−1

)
QΩ(un) [zn] , n = 0, 1, 2, . . . .

We now discuss some special cases of Algorithm 5.4 which were due to Noor [23, 25].

(i). If we take h2 = h1, then Algorithm 5.4 reduces to the following algorithm which is
studied by Noor [23, 25] for solving problem (11).
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Algorithm 5.5. For given z0, u0, w0, y0 ∈ H : w0 ∈ T (u0) , y0 ∈ V (u0), compute the
sequences {zn} , {un} , {wn} , and {yn} by the iterative schemes

h1 (un) = PΩ(un) [zn]

wn ∈ T (un) : ∥wn+1 − wn∥ ≤ M (T (un+1) , T (un))

yn ∈ V (un) : ∥yn+1 − yn∥ ≤ M (V (un+1) , V (un))

zn+1 = h1 (un)−N (wn, yn) +
(
1− ρ−1

)
QΩ(un) [zn] , n = 0, 1, 2, . . . .

(ii). If we take h2 = h1, and Ω (u) = Ω, then Algorithm 5.4 reduces to the following
algorithm.

Algorithm 5.6. For given z0, u0, w0, y0 ∈ H : w0 ∈ T (u0) , y0 ∈ V (u0), compute the
sequences {zn} , {un} , {wn} , and {yn} by the iterative schemes

h1 (un) = PΩ [zn]

wn ∈ T (un) : ∥wn+1 − wn∥ ≤ M (T (un+1) , T (un))

yn ∈ V (un) : ∥yn+1 − yn∥ ≤ M (V (un+1) , V (un))

zn+1 = h1 (un)−N (wn, yn) +
(
1− ρ−1

)
QΩ [zn] , n = 0, 1, 2, . . . .

We now discuss the convergence analysis of Algorithm 5.1 and this is the main moti-
vation of our next result.

Theorem 5.1. With the same conditions as in Theorem 3.1, then there exists z, u, w,
y ∈ H : w ∈ T (u), and y ∈ V (u) satisfying problem (36) and the sequences {zn}, {un},
{wn}, and {yn} generated by Algorithm 5.1 converge to z, u, w, and y strongly in H,
respectively.

Proof. Using (39) and (43), we have

∥zn+1 − z∥ = ∥h1 (un)− h1 (u)− ρ {N (wn, yn)−N (w, y)}∥
≤ ∥(un − u)− {h1 (un)− h1 (u)}∥

+ ∥(un − u)− ρ {N (wn, yn)−N (w, yn)}∥
+ρ ∥N (w, yn)−N (w, y)∥ . (45)

Combining (25)-(28), and (45), we have

∥zn+1 − z∥ ≤ {k − ν −
√
1− 2σ2 + δ22 + ρηξ

+
√
1− 2ρα+ ρ2β2µ2} ∥un − u∥ . (46)

Now using (37) and (40), we have

∥un − u∥ =
∥∥(un − u)− {h2 (un)− h2 (u)}+

[
PΩ(un) [zn]− PΩ(u) [z]

]∥∥
≤ ∥(un − u)− {h2 (un)− h2 (u)}∥

+
∥∥PΩ(un) [zn]− PΩ(un) [z]

∥∥+
∥∥PΩ(un) [z]− PΩ(u) [z]

∥∥ ,
from (20) , (27) and using Assumption 3.1, we have

∥un − u∥ ≤
{
k − ν −

√
1− 2σ1 + δ21

}
∥un − u∥+ ∥zn − z∥+ ν ∥un − u∥ ,

which implies

∥un − u∥ ≤ 1

1− k +
√
1− 2σ1 + δ21

∥zn − z∥ . (47)

Thus from (46) ,and (47), we have

∥zn+1 − z∥ ≤ θ ∥zn − z∥ , (48)
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where

θ =
k − ν −

√
1− 2σ2 + δ22 + ρηξ +

√
1− 2ρα+ ρ2β2µ2

1− k +
√

1− 2σ1 + δ21
.

From (19), we see that θ < 1, and consequently, from (48) , it is clear that {zn} is a Cauchy
sequence in H, that is, zn+1 → z ∈ H as n → ∞. From (47) , we know that {un} is also a
Cauchy sequence in H, that is un+1 → u ∈ H as n → ∞. From (28), it follows that {yn} is
also a Cauchy sequence in H, that is yn+1 → y ∈ H as n → ∞.

Using the continuity of the operators N, h1, h2, and Algorithm 5.1, we have

z = h1 (u)− ρN (w, y) ∈ H.

From the technique of the Theorem 4.1, we can easily show that y ∈ V (u). From Lemma 5.1,
we see that z, u, w, y ∈ H, such that w,∈ T (u), and y ∈ V (u) is a solution of the multivalued
extended general implicit Wiener-Hopf equation (36), and consequently, zn+1 → z, un+1 →
u,wn+1 → w, and yn+1 → y strongly in H. �

6. Conclusion

In this paper, we have introduced and studied a new class of quasi variational in-
equalities, which is called multivalued extended general quasi variational inequalities. Using
the projection operator technique, it is shown that the multivalued extended general quasi
variational inequalities are equivalent to the fixed point problems. This alternative equiv-
alent fixed point formulation is used to discuss the existence of a solution of new class of
quasi variational inequalities. We have used this equivalent fixed point formulation to de-
velop several iterative methods for solving the multivalued extended general quasi variational
inequalities. We have also consider the convergence criteria of iterative method under suit-
able conditions. It has been shown that the multivalued extended general quasi variational
inequalities are also equivalent to the multivalued extended general implicit Wiener-Hopf
equations. This alternative equivalent formulation has been used to develop several itera-
tive methods for solving multivalued extended general quasi variational inequalities and its
variant forms. The convergence analysis of these methods is considered. We expect that
this work will motivate and inspire interested readers to explore the novel and innovative
applications of multivalued extended general quasi variational inequalities in various fields
of pure and applied science.
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