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A NEW COLLECTIONS FRAMEWORK FOR THE D
PROGRAMMING LANGUAGE STANDARD LIBRARY

Eduard Stăniloiu1, Răzvan Niţu2, Răzvan Deaconescu3, Răzvan Rughiniş4

D is a general purpose, high level and high performance, program-
ming language capable of interfacing with the operating system API and
system’s hardware. One of the core features of D is represented by ranges,
a powerful and new approach of iterating through a set of elements. How-
ever, being a state of the art feature, ranges are not used in the D ecosystem
at their full potential.

In this work we provide a new collections framework for the D Standard
Library that is compatible with the existing algorithms and that provides an
API similar to the one provided by ranges. Our implementation enables
the collections to infer the safety of the operations from the contained, user
provided, type.

We show that our implementation may provide performance benefits of
up to 2x compared to the existing standard library implementations, when
used in conjunction with a custom allocator.
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1. Introduction

The D programming language [4] aims to provide a fast and effective
way of writing correct, fast and maintainable programs. D implements modern
and powerful features, such as memory safety, function purity and improved
code readability, to satisfy the needs of the continuously growing software
engineering industry.

Ranges, as we will elaborate in the next chapter, are the D way of iterat-
ing through a set of elements. A range is capable of the following operations:
accessing elements, testing for emptiness and modifying elements. Ranges pro-
vide a great access adaptor for the algorithms in the standard library. This
is due to the fact that having a common interface is simplifying the use of
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the data structures and allows the user to have reasonable expectations about
collections.

Currently, the D standard library provides users with a set of collections
to use, but the implementation of those predates some of the existing language
features. The existing collections use the builtin Garbage Collector [12], as-
sume that the underlying user type is unsafe and don’t work well with the
language’s const and immutable type qualifiers.

In this work, propose a set of general purpose collections (vector, list,
map, hashtables, heaps etc.) that are fast, reliable and compatible with the
existing algorithms, while leveraging the powerful features of the language.
The collections allow the user to choose the desired allocation scheme, by
providing a custom allocator to be used by the data structure. They do not
make assumptions about the underlying user type, instead they infer the safety
and purity of it, all while being able to work in an immutable environment.
The end result of our work is a collections library that has been integrated in
the D standard library that is more efficient, more flexible and safer in terms
of memory usage than the existing alternative solutions.

The remainder of this paper is organized as follows: Section 2 presents
the background, Section 3 highlights the design of our collections and the
problems encountered, Section 4 discusses the implementation and Section 5
presents the evaluation. We conclude with Section 6.

2. Background

In this section we will present the de facto approach of iterating over a
container through iterators and its disadvantages. Next we will discuss the
benefits that ranges bring over traditional iterators and how ranges have been
implemented in D. Finally we present a few core D concepts: memory safety,
purity and type qualifiers.

2.1. Iterators

An iterator represents a way of providing access to the elements of a
container. Because pointers represent the fundamental abstraction model used
in STL [7], there aren’t many use cases for a single iterator; you need both the
beginning and the ending iterators of the container in order to safely traverse
it. This approach suffers from two shortcomings:

• When working with iterators, the user needs to be careful with the pairing
of the begin and end iterators. Wrongfully pairing two iterators is both
a frequent mistake and a hard bug to discover.

• When implementing algorithms, a user, essentially, needs to provide both
iterators in order to define the range of his container. This leads to
clunkier, error-prone and less maintainable code.
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Ranges represent an alternative to iterators that offer all of the benefits,
but do no suffer of any of the shortcomings. The next section will present in
detail how Ranges are defined and how they improve the existing iterators.

2.2. Ranges in D

Ranges are an abstraction of element access and a core part of D. They
provide a new approach to the problem of accessing the elements of a con-
tainer. Ranges were introduced by Andrei Alexandrescu in the On Iteration
[1] article, pointing out the weaknesses in the iterator design, used by the C++
Standard Template Library (STL), and demonstrating the advantages of the
range design.

The range design that was presented by Alexandrescu has been imple-
mented in the D programming language. For simplicity, we will present the
concept of ranges following the D implementation. Note that other imple-
mentations may be slightly different, however, the core concept remains the
same.

In D, any structure that provides access to the elements of a container,
in order to be considered a range, needs to implement three methods:

• empty() - acknowledges if the range is empty or not.
• front() - provides access to the first element of the range.
• popFront() - removes the first element of the range, shrinking it’s size
by one.
Those three operations define the basic range type, the InputRange.

The input range abstracts the sequential iteration of a container and it adapts
well to streams of data, such as reading from the standard input.

Some containers need to be iterated more than once. Such a scenario
makes the InputRange not suitable. The ForwardRange adds to the Inpu-
tRange interface the save() operation, which returns a copy of the range.

For situations where a reversed traversal is required, the Bidirectional-
Range adds two more operations to the ForwardRange interface:

• back() - provides access to the last element of the range
• popBack() - removes the last element of the range

Lastly, the most powerful range there is, the RandomAccessRange is
providing the opIndex(size t i) operator, which provides access to the i’th
element of the container.

2.3. Memory safety

In computer science, a program is being defined as memory safe if, for any
possible input, it cannot produce memory corruption. For decades, memory
safety has been a struggle [11][9][10] that was enforced by manual code auditing
and third party code analyzers. However, in recent years, safe languages that
automatically check for unsafe operations have been developed, such as D and
Rust.
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In D, all unsafe operations, such as taking the address of a local variable
or doing pointer arithmetic, are forbidden. Safety checks are enabled by the
user by annotating function declarations with the @safe keyword. For ex-
ceptional use cases where the programmer takes responsibility for any unsafe
action, an escape hatch is provided: the@trusted keyword. When annotating
functions with it, the body is exempted from safety checks.

2.4. Functional Purity

The concept of pure functions comes from functional programming [2].
A pure function has two main characteristics that are detailed below.

Firstly, a pure function will produce the same result for the same set of
parameters. As a result, a pure function’s result may be cached and used to
elide subsequent calls of the same function with the same parameters. Sec-
ondly, a pure function is not allowed to access global mutable data. As a
consequence, pure functions don’t have side effects. Such functions may be
formally proven to be correct or not.

Purity both helps the user to reason about code logic and represents a
powerful optimization enabler for the compiler.

2.5. Type Qualifiers

In D, there are three type qualifiers: immutable, const and shared.
An immutable object will not change after it was successfully constructed.
const means that the object cannot be changed through this const reference,
but the data may be referred from somewhere else through a mutable reference.

In D, type qualifiers are transitive. This means that for an object quali-
fied as immutable, not only the reference but also the data that it refers to
are immutable.

An object is not implicitly shared among threads. In order to share an
object, it needs to be annotated with the shared qualifier. A const reference
can be a reference to either a mutable or an immutable object. Figure 1
highlights the qualifier conversion rules in D.

3. Design

This section discusses the goals of our work and the means to achieve
them.

3.1. Ease of use

Ranges represent a core feature of the D language. Any user will even-
tually become familiar with the range interface. As a consequence, we want
to leverage this familiarity and benefit from a uniform interface for all of the
data structures defined in the collections library.
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Figure 1. Qualifier conversions in D [6]

3.2. Dangling Ranges

As shown in Listing 1, the dangling range problem consists of returning
a range to a collection that no longer exists.

This problem is elegantly solved by our design. A collection is defined as
a range + optional primitives. Because we don’t have two distinct pieces,
the collection and the range over the collection, the dangling range problem
vanishes.

1 int[] foo()

2 {

3 int [5] bar = [1, 2, 3, 4, 5];

4 int[] oops = bar[];

5 return oops;

6 }

Listing 1. Dangling Range Example

3.3. Speed

We want our collections framework to be as fast as possible, given the
user constraints. To achieve this goal we track the lifetime of a collection using
reference counting and enable the user to use custom allocators [3].

3.4. Memory Safety

The type systems guarantees that code annotated with @safe does not
cause memory corruption. However, a collection will interact with user defined
types that may call unsafe functions. As a consequence, no matter how safe
the collections code is, the safety of the whole will be determined by the safety
of the contained type.
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In order to achieve safety, the following two observations need to be taken
into account: (1) Memory allocation is a safe operation. There should not be
anything unsafe here. We just ask the allocator for a chunk of memory, which
he will provide if he has any more left. (2) Deallocation is an unsafe operation
from the allocator’s point of view because it can not know it there are any more
references left to the memory buffer he is about to free. Deallocations made
by the collections, on the other hand, are safe because the reference counting
provides the guarantee that there are no more references to the buffer at the
point of freeing it.

3.5. Functional style

D provides the const and immutable type qualifiers, immutability being
an essential part of the functional programming paradigm. Prior to our work,
the container module did not support the use of such qualifiers.

The new collections, on the other hand, supports such qualifiers. This
enables the implementation of multithreading algorithms and the use of func-
tional style idioms.

3.6. Collection properties

The collections defined in our library have the following properties:
• Provide at least the following methods: empty(), front(), popFront(),
save().

• Are usable in safe, pure, nogc, nothrow contexts.
• Are usable in conjunction with D’s transitive type qualifiers: const, im-
mutable and shared

• Are usable with existing algorithms that work on ranges
• Are optimal in terms of performance, provided that the user constraints
are met.
The new collections framework enables constraint driven choice: the user

can request a collection that satisfies certain constraints [5]. For example: if the
user desires a collection that has a key - value mapping with constant insertion
and retrieval time, he will be provided a hashtable. In order to achieve this,
the internal implementation of the collections uses D’s powerful compile-time
introspection.

4. Implementation

Collections should provide both speed and flexibility. As a consequence,
the user must be able to choose the memory allocation strategy. If the con-
straints permit it, the collection may use the garbage collector, but, if neces-
sary, the user may plug in the desired memory allocator to be used. In D, code
that does not use the garbage collector is annotated with the @nogc attribute.
Also, in order to be classified as memory safe, the collection needs to infer the
safety from the contained type. In order to support qualifiers, the collection
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needs to take into account race conditions and the special cases imposed by
the const qualifier.

Because we are not necessarily using the garbage collector, the collections
need to do their own memory management, which is achieved through reference
counting. Because we need to support type qualifiers we were faced with
the following problem: how can we reference count immutable objects? This
problem arises because in D, when a type is qualified as immutable it’s content
also becomes qualified as immutable. To solve this issue, we make use of D’s
standard library AffixAllocator. The advantage of using this allocator lies
in the fact that AffixAllocator fronts each allocation with an extra Prefix that
is independently typed. We will use the Prefix to store our reference count, as
shown in Figure 2.

Figure 2. Reference Counting with AffixAllocator

4.1. Reference counting dynamic allocator interfaces

Building a reference counted struct around the dynamic allocator inter-
face involves multiple steps.

The first step was to add the incRef() and decRef() methods to both
the IAllocator and ISharedAllocator interfaces. The concrete class that imple-
ments the interface is going to keep the reference counter inside its implemen-
tation; this means that we implement intrusive reference counting [8], meaning
that we are going to have good cache locality when accessing the object and
updating the reference count, and so we will have a good runtime performance.

The actions that the concrete class needs to take, for each reference
counting method, are:

• incRef() - Increase the internal reference count; For stateless allocators,
such as Malloc and GC, it does nothing.

• decRef() - Decrease the internal reference count, and when the reference
count reaches 0, the object self-destructs. As with incRef(), for stateless
allocators it does nothing.
The next step of the implementation was to update the concrete classes

from the module that implements the interfaces: CAllocatorImpl andCShar
edAllocatorImpl respectively. To achieve this, a technique is required to
enable an object to self-destruct when the reference count hits 0. To better
explain our technique, we first provide information on how an object is created.
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The module provides two helper functions, allocatorObject() and sharedAl-
locatorObject() that build a dynamic allocator from a static allocator, regard-
less if it’s stateful or stateless. We previously mentioned that we do not refer-
ence count stateless allocators, so we will concentrate our attention on stateful
allocators.

When allocatorObject() is called on a stateful allocator A, it uses it to
provide the memory required to hold the dynamic allocator B. Then B is built
in place (we call this operation emplace) and A is moved at the memory
location where B was constructed. Listing 2 highlights a schematic version of
our implementation.

1 // allocate memory for the dynamic allocator

2 auto state = a.allocate(stateSize !( CAllocatorImpl!A))

3

4 // emplace the dynamic allocator

5 auto dynAlloc = emplace !( CAllocatorImpl!A)(state);

6

7 // move the static allocator inside the dynamic one

8 move(a, dynAlloc.impl);

Listing 2. Creating a dynamic allocator

For such constructed objects, once the reference count reaches 0, the
concrete implementation will have to do the above steps backwords:

• move the initial static allocator, held by the impl field on the stack.
• get a reference to the memory chunk that it has initialized.
• use the static allocator, from the stack, to free the memory, thus prevent-
ing memory leaks.

• when the static allocator goes out of the function stack scope, it will have
his destructor called, thus finishing the self destruction phase.
The final step in the implementation of the reference counting of dynamic

allocators was implementing the structs that call the incRef() and decRef()
accordingly. Those structs, which now represent the API with which users
work, are RCIAllocator and RCISharedAllocator, the latter is being used
for shared allocators.

From this point on, the only entities that hold a reference to a raw
IAllocator, respectively ISharedAllocator, object are RCIAllocator and
RCISharedAllocator. These implement all the operations that require ref-
erence counting, such as constructor, destructor, copy-construction and as-
signment operations, and call incRef() and decRef() on the private IAlloca-
tor/ISharedAllocator object. Listing 3 provides a simplified high-level overview
of the implementation of RCIAllocator.

1 struct RCIAllocator

2 {

3 private IAllocator _alloc;
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4

5 private this(this _)(IAllocator alloc) {

6 assert(alloc);

7 _alloc = alloc;

8 }

9

10 @nogc @safe this(this) {

11 if (_alloc !is null) {

12 _alloc.incRef ();

13 }

14 }

15

16 @nogc ~this() {

17 if (_alloc !is null) {

18 bool isLast = !_alloc.decRef ();

19 if (isLast) _alloc = null;

20 }

21 }

22 /* ... */

23 }

Listing 3. RCIAllocator snippet

4.2. Pure allocators

From the type systems’ point of view, allocators are not pure as they
access and modify global state in order to acquire and release memory. From
a logical point of view, they must be pure, as they are just a handle to acquiring
system resources.

The Garbage Collector represents a special case with regards to purity.
The type system acknowledges its existence and therefore considers any call
to the GC as a pure function call. In contrast, when implementing a library
solution for allocators, calls to functions that allocate memory are not pure
since they rely on functions that modify the systems resources (which are in-
herently impure). However, as we mentioned above, from a logical standpoint,
these functions are pure. Therefore, we must treat such functions as pure
even though they are, technically, not. This can be achieved by faking purity.
Still, in this scenario, immutable collections that are also pure may have some
operations wrongfully optimized away, thus leading to incorrect behavior.

To solve this issue we have created a technique that avoids such opti-
mizations. The general idea is highlighted in Listing 4.

1 {

2 private union {

3 void *_;
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4 size_t _pMeta;

5 }

6 /* ... */

7 }

Listing 4. Break immutable transitivity

The compiler knows that we store either an address or a size t, both
of which are immutable. The compiler can’t assume anything regarding the
object that resides at that address, therefore it will not perform any optimiza-
tions.

5. Evaluation

To evaluate our work we have created a synthetic benchmark that is
designed to assess the performance implications of our implementation.

1 auto getSList(size_t steps , RCIAllocator alloc)

2 {

3 SList!size_t a = SList!size_t(alloc);

4 for (size_t i = 0; i < steps; ++i) {

5 a.insert(i);

6 }

7 return a;

8 }

9

10 void benchmark(size_t steps , RCIAllocator alloc)

11 {

12 for (size_t i = 0; i < 10; ++i) {

13 auto a = getSList(steps , alloc);

14 auto b = getSList(steps , alloc);

15 auto c = a ~ b;

16 }

17 }

Listing 5. Benchmark sample

Listing 5 highlights a high-level overview of the benchmarking code. We
create two singly-linked lists using a custom allocator. We insert a number
of elements (ranging from 10K to 40M) to analyze the implications of using
different allocators.

Figure 3 exhibits the results of running our benchmark in 3 separate
scenarios: (1) using the standard library implementation of a singly-linked list
that uses the garbage collector, our singly-linked list implementation (tagged
as exp) using both (2) the garbage collector and (3) the malloc-based allocator.
Our observations show that as the number of allocated elements increase, our
implementation that uses malloc is the fastest (with a maximum speed-up
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Figure 3. Performance evaluation of singly-linked list
using different allocators: stdSlist is the Standard Library
implementation that uses the GC; expSlist is the experimental
framework implementation that uses the GC; expSlistMalloc is
the experimental framework implementation that uses the MAl-
locator (malloc based allocator). expSlistMalloc shows the ben-
efits of using a custom allocator

factor of 2, given our experimental setup). The difference is explained by
the fact that malloc is a lighter alternative to the garbage collector. What
is surprising, however, is that the standard library implementation is faster
than the experimental singly-linked list implementation that uses the garbage
collector. The explanation lies in the fact that in the first case, the garbage
collector has the freedom to decide when memory is allocated and freed and
therefore can optimally apply its memory allocation strategy, whereas, in the
second scenario, calls to the garbage collector are inserted by the collection
framework. This forces the garbage collector to act upon command, without
taking into account its formal metrics.

Our results demonstrate that our singly-linked list implementation can
be used in conjunction with a custom allocator to obtain better performance
than the standard garbage collected implementation.

6. Conclusions

D is a growing language that needs to provide a strong suite of collections.
Using the benefits provided by adhering to the ranges interface, the collections
will fit right in with the algorithms in the standard library without any extra
effort.
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We have developed a new collections framework that brings together all
the important features of the D Language, while being easy to use and intuitive
for the user.

This novel approach of designing collections as ranges with optional prim-
itives has proven to deliver better performance than the standard garbage col-
lected alternative. Moreover, it offers flexibility to the user to choose the most
suitable allocation strategy.

Additionally, we have successfully updated the allocators module to a
safer API without impacting performance and improved the function attributes
of the allocators API. This has improved the compile time type inference of
the system. We have released the collections framework as a dub package and
at the time of this writing the library has been downloaded 1293915 times.
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