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ANALYSIS OF RING SOURCED DIFFRACTION WITH RIGID AND

IMPEDANCE BOUNDARY CONDITION

Burhan Tiryakioglu1

The diffraction of sound waves emanating from a ring source is investigated
rigorously by using the Wiener-Hopf technique. Two different geometry is considered

which are semi-lined and full-lined with different linings. An exact solution is obtained

based on the boundary condition. At the end of the analysis, the influence of the problem
parameters and comparison of geometries are presented graphically.
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1. Introduction

The diffraction of acoustic waves along duct systems is an important topic in diffrac-
tion theory and relevant to many applications including reduction of noise in exhaust sys-
tems, in modern aircraft jet and turbofan engines, etc. For this reason, a rigorous analysis
of such engineering problems is required.

The reduction of noise in duct systems is generally achieved by silencers. The most
well-known of such silencers is acoustically absorbent linings, which have been widely ana-
lyzed in literature [6], [11], [12], [14]. Rawlins proved the effectiveness of absorbing lining
who considered the radiation of sound from an unfanged rigid cylindrical duct with an
acoustically absorbing internal surface [12].

When analysing sound diffraction in a duct system with an absorbing lining, two
possible linings are commonly used which are classified as locally reacting lining or bulk
reacting lining. The more completely investigated case is that the liner may be treated as
locally reacting and this case results in a simplification of the analysis. In this case, the
liner is treated as though it may be characterised by a local impedance that is independent
of whatever occurs at any other part of the liner and the assumption is implicit that sound
propagation does not occur in the material in any other direction than normal to the surface
[2]. Bulk reacting liner is one where sound can propagate in all directions, and therefore
sound can propagate in the liner parallel to the axis of the duct. It is not easy to perform
acoustic analyses of this type of liner [5], [8]. This paper focuses on the local reacting lining.

The aim of this work is to consider the diffraction of acoustic waves emanating from
a ring source by an infinite semi-lined and full-lined duct. Duct walls are assumed to be
infinitely thin and rigid from inside. This geometry can be considered as a model of an
acoustic waveguide for use in noise reduction. The ring source provides the total field to
have angular symmetry which makes the problem simpler than the asymmetric case [3],
[15]. In this study, an analytical solution is obtained based on the Wiener-Hopf technique
[7]. By applying direct Fourier transform, the problem is reduced into the solution of
a Wiener-Hopf equation. Then, numerical solution is obtained for various values of the
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problem parameters such as frequency, impedance etc. The effect of these parameters on
the diffraction phenomenon is presented graphically by using the MATLAB programming.

2. Semi-Lined Duct

We consider the diffraction of sound waves by circular cylindrical duct. Duct walls are
assumed to be infinitely thin and they occupy the region {r = a, z ∈ (−∞,∞)} illimunated
by a ring source located at {r = b > a, z = −c, c > 0} (see Fig. 1). The inner surface of
cylinder (z ∈ (−∞,∞)) and the outer surface of cylinder (z < l) are assumed to be rigid,
while the outer surface for z > l is assumed to be lined with acoustically absorbent material.
The liner impedance is characterized by Z. From the symmetry of the geometry of the
problem and of the ring source, the total field will be independent of azimuth θ everywhere
in circular cylindrical coordinate system (r, θ, z). The velocity potential ψ will be used to
obtain acoustic pressure p and velocity v via p = −ρ0(∂/∂t)ψ and −→v = gradψ, where ρ0 is
the density of the undisturbed medium.

Fig. 1. Semi-lined geometry.

For analysis purposes, it is convenient to express the total field as follows:

ψT (r, z, t) =

{
ψ1 (r, z) exp (iωt)
ψ2 (r, z) exp (iωt)

;
;

r > b
a < r < b

(1)

where ω = 2πf is the angular frequency. Time dependence is assumed to be eiωt and
suppressed throughout this work.

2.1. Derivation of the Wiener-Hopf Equation

The unknown fields ψ1 (r, z) and ψ2 (r, z) satisfy the wave equation for z ∈ (−∞,∞)[
1

r

∂

∂r

(
r
∂

∂r

)
+

∂2

∂z2
+ k2

]
ψj(r, z) = 0 , j = 1, 2 (2)

with wave number k = ω/c0 and speed of the sound c0. By taking Fourier transform of
these two equations we obtain the following integral representations

ψ1 (r, z) =
k

2π

∫
Υ

A (u)H
(2)
0 (λkr) e−iukzdu (3)

ψ2 (r, z) =
k

2π

∫
Υ

[B (u) J0 (λkr) + C (u)Y0 (λkr)] e−iukzdu (4)

where Υ is a suitable inverse Fourier transform integration contour along or near the real
axis in the complex u-plane (see Fig. 2). J0 and Y0 are the Bessel and Neumann functions

of order zero, H
(2)
0 = J0 − iY0 is the Hankel function of the second type. λ is square root

function which is defined as λ (u) =
√

1− u2, Im (λ) ≤ 0
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Fig. 2. Complex u plane.

Branch cuts for λ is taken on the line from 1 to ∞ and from −∞ to −1. As usual in 
this kind of Wiener-Hopf problem, we will assume that the surrounding medium is slightly 
lossy and k has a small negative imaginary part. The lossless case can be obtained by letting 
Im k → 0 at the end of the analysis. The spectral coefficients A (u) , B (u) and C (u) , which 
are introduced in the solution of velocity potential function, are to be determined with the 
aid of the following boundary and continuity relations valid along r = a and r = b.

∂

∂r
ψ2 (a, z) = 0 , z < l (5)

∂

∂r
ψ2 (a, z) =

ik

Z
ψ2 (a, z) , l < z (6)

∂

∂r
ψ1 (b, z)− ∂

∂r
ψ2 (b, z) = δ (z + c) , −∞ < z <∞ (7)

ψ1(b, z) = ψ2(b, z) , −∞ < z <∞ (8)

A (u), B (u) and C (u) are related to each other by the definition of the ring source given in
(7,8), application of the boundary conditions on r = b yields

λkA (u)H
(2)
1 (λkb) = λkB (u) J1 (λkb) + λkC (u)Y1 (λkb)− e−iukc (9)

A (u)H
(2)
0 (λkb) = B (u) J0 (λkb) + C (u)Y0 (λkb) (10)

From the relations (9) and (10), we obtain

B (u) = A (u) + e−iukc
πb

2
Y0 (λkb) (11)

C (u) = −iA (u)− e−iukcπb
2
J0 (λkb) (12)

Applying the boundary conditions on r = a and taking Fourier transforms gives

−λkB (u) J1 (λka)− λkC (u)Y1 (λka) =
ik

Z
eiuklΦ+

1 (u) (13)

k [B (u) J(Z, u) + C (u)Y (Z, u)] =
ik

Z
eiuklΦ−1 (u) (14)

where

J(Z, u) = iJ0 (λka) /Z + λJ1 (λka) (15)

Y (Z, u) = iY0 (λka) /Z + λY1 (λka) (16)
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Φ±1 are a function analytic at the upper and lower half plane respectively, and defined as

Φ+
1 (u) =

∞∫
l

ψ2 (a, z) eiuk(z−l)dz (17)

Φ−1 (u) =

l∫
−∞

ψ2 (a, z) eiuk(z−l)dz (18)

The substitution of B (u) and C (u) into (13), (14) yields

A (u) = − i

Z

eiukl

λH
(2)
1 (λka)

Φ+
1 (u)− e−iukcπb

2H
(2)
1 (λka)

[Y0 (λkb) J1 (λka)− J0 (λkb)Y1 (λka)] (19)

A (u) =
i

Z

eiukl

H(Z, u)
Φ−1 (u)− e−iukcπb

2H(Z, u)
[Y0 (λkb) J(Z, u)− J0 (λkb)Y (Z, u)] (20)

where

H(Z, u) = iH
(2)
0 (λka) /Z + λH

(2)
1 (λka) (λka) (21)

A (u) can be eliminated from equations (19) and (20), we get the following Wiener-Hopf
equation:

L (u) Φ+
1 (u) = −Φ−1 (u)− b

a
e−iuk(c+l) H

(2)
0 (λkb)

λkH
(2)
1 (λka)

(22)

where

L (u) =
H(Z, u)

λH
(2)
1 (λka)

(23)

2.2. Solution of the Wiener-Hopf Equation

We consider equation (22). By using the classical factorization and decomposition
procedure, we get

L+ (u) Φ+
1 (u)−Q+

1 (u) = −L− (u) Φ−1 (u) +Q−1 (u) (24)

where the split functions L+(u) and L−(u), result from the factorization of L(u) as,

L(u) =
L+(u)

L−(u)
(25)

they are regular and free of zeros in the upper and lower half planes, respectively [13].
Decomposing Q1(u) we obtain split functions Q+

1 (u) and Q−1 (u) which are regular in the
upper and lower half planes, respectively.

Q1(u) = − b
a

H
(2)
0 (λkb)

λkH
(2)
1 (λka)

L− (u) e−iuk(c+l) = Q+
1 (u) +Q−1 (u) (26)

and Q+
1 (u) is defined by

Q+
1 (u) =

1

2πi

∫
Υ+

Q1(τ)

τ − u
dτ (27)

The explicit expression of the integral Q+
1 is given in the appendix. Now both sides of (24)

are analytical functions on upper and lower regions, but they are equal to each other on
the strip Im k < Imu < Im (−k) . From analytical continuation principle and Liouville’s
theorem, we get the Wiener Hopf solution

L+ (u) Φ+
1 (u) = Q+

1 (u) (28)
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2.3. Far Field

The total field in the region r > b can be evaluated from (3)

ψ1 (r, z) =
k

2π

∫
Υ

A (u)H
(2)
0 (λkr) e−iukzdu (29)

Using (19) we may write the total field as follows

ψ1 (r, z) = − ik
Z

1

2π

∫
Υ

Φ+
1 (u)

λH
(2)
1 (λka)

H
(2)
0 (λkr) e−iuk(z−l)du

− kb

4

∫
Υ

Y0 (λkb)J1 (λka)− J0 (λkb)Y1 (λka)

H
(2)
1 (λka)

H
(2)
0 (λkr) e−iuk(z+c)du (30)

Taking into account the asymptotic expression of the Hankel function H
(2)
0 (λkr) for large

arguments (kr � 1) and applying the saddle point technique [9], we get,

ψ1 (r, z) ∼ − ik
Z

i

π

Φ+(cos θ1)

sin θ1H
(2)
1 (sin θ1ka)

e−ikR1

kR1

− ikb

2

Y0 (sin θ2kb) J1 (sin θ2ka)− J0 (sin θ2kb)Y1 (sin θ2ka)

H
(2)
1 (sin θ2ka)

e−ikR2

kR2
(31)

where R1, θ1 and R2, θ2 are spherical coordinates.

r = R1 sin θ1 , z − l = R1 cos θ1 (32)

and
r = R2 sin θ2 , z + c = R2 cos θ2 (33)

3. Full-Lined Duct

We now consider the same geometry with different lining. The inner surface of cylinder
is assumed to be rigid, while the outer surface is assumed to be lined with acoustically
absorbent material. The liner impedances are characterized by Z1 (z < l) and Z2 (z > l)
(see Fig.3).

Fig. 3. Different lined geometry.

Due to different linig, equation (5,6) have to be modified as

∂

∂r
ψ2 (a, z) =

ik

Z1
ψ2 (a, z) , z < l (34)

∂

∂r
ψ2 (a, z) =

ik

Z2
ψ2 (a, z) , l < z (35)
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Applying the boundary conditions on r = a and taking Fourier transforms gives

k [B (u) J(Z1, u) + C (u)Y (Z1, u)] = eiuklΦ+
2 (u) (36)

k [B (u) J(Z2, u) + C (u)Y (Z2, u)] = eiuklΦ−2 (u) (37)

where

J(Zj , u) = iJ0 (λka) /Zj + λJ1 (λka) , j = 1, 2 (38)

Y (Zj , u) = iY0 (λka) /Zj + λY1 (λka) , j = 1, 2 (39)

Φ±2 are a function analytic at the upper and lower half plane and defined as

Φ+
2 (u) =

∞∫
l

[
ik

Z1
ψ2 (a, z)− ∂

∂r
ψ2 (a, z)

]
eiuk(z−l)dz (40)

Φ−2 (u) =

l∫
−∞

[
ik

Z2
ψ2 (a, z)− ∂

∂r
ψ2 (a, z)

]
eiuk(z−l)dz (41)

Similarly, one can obtain the following spectral coefficients

A (u) =
eiukl

kH(Z1, u)
Φ+

2 (u)− πb

2

M(Z1, u)

H(Z1, u)
e−iukc (42)

A (u) =
eiukl

kH(Z2, u)
Φ−2 (u)− πb

2

M(Z2, u)

H(Z2, u)
e−iukc (43)

where

H(Zj , u) = iH
(2)
0 (λka) /Zj + λH

(2)
1 (λka) , j = 1, 2 (44)

M(Zj , u) = Y0 (λkb) J(Zj , u)− J0 (λkb)Y (Zj , u) , j = 1, 2 (45)

A (u) can be eliminated from equations (42) and (43), we get the following Wiener-Hopf
equation:

M (u) Φ+
2 (u) = Φ−2 (u)− b

a

(
i

Z1
− i

Z2

)
e−iuk(c+l)H

(2)
0 (λkb)

H(Z1, u)
(46)

where

M (u) =
H(Z2, u)

H(Z1, u)
=
M+ (u)

M− (u)
(47)

The total field in the region r > b can be evaluated similarly

ψ1 (r, z) ∼ i

π

Φ+
2 (cos θ1)

H(Z1, cos θ1)

e−ikR1

kR1
− ikb

2

M(Z1, cos θ2)

H(Z1, cos θ2)

e−ikR2

kR2
(48)

where

Φ+
2 (u) = Q+

2 (u)/M+ (u) (49)

Q2(u) = − b
a

(
i

Z1
− i

Z2

)
H

(2)
0 (λkb)

H(Z1, u)
M− (u) e−iuk(c+l) = Q+

2 (u) +Q−2 (u) (50)
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4. Results

In this section some graphics displaying the effects of the parameters of the problem
on the diffracted field are presented. Numerical results are produced for the total diffracted
field as

20log|ψ1 (R1, θ1) |
with the observation angle θ1 changing from 0 to π. Some parameter values remain un-
changed in all examples are given below [4]

Speed of Sound
Far Radius
Duct Radius
Ring Source Radius
Ring Source Axis
Lining Length

(c0)
(R1)
(a)
(b)
(c)
(l)

= 340.17 m/s
= 46 m
= 0.1191 m
= 0.1985 m
= 0.2000 m
= 0.1191 m
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Fig. 4. Diffracted field for the frequency f1 = 1000 Hz.

Fig. 4 shows the variation of the amplitude of the diffracted field as a function of 
the observation angle θ1 for the frequency and surface impedance. The surface impedance 
is taken differently for hard wall (Z1, Z2 → ∞) and soft wall (Z1, Z2 ∼ finite) cases. It is 
observed that the diffracted field amplitude decreases with the lining impedance Z1 and Z2.

In figure 5, it can be seen that, especially for the main diffracted region, the diffracted 
field decreasing with lining for higher frequency.

From figure 6, one can see the effect of the acoustic impedance (Z1) of the outer 
surface on the diffracted field amplitute. Diffracted field amplitude exhibits an oscillatory 
behaviour with increasing value of Im(Z1). The other result is that the diffracted field 
amplitude is insensitive to the variations of the outer surface impedance Z2. So it can be 
deduced that the diffracted field is affected merely by the variations in the outer surface 
impedance Z1.

Fig. 7 and Fig. 8 depict an excellent agreement both semi-lined and full-lined condi-
tion between the Fig. 1 and Fig. 3.

5. Conclusions

In this work, a rigorous Wiener-Hopf solution is presented for the diffraction of sound 
waves emanating from a ring source by a circular cylindrical duct whose exterior surface
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Fig. 5. Diffracted field for the frequency f1 = 1500 Hz.
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Fig. 6. Diffracted field with different values of Z1 for f = 1000 Hz,                                        
Z2 = 1 − 7.27i.

is treated by an acoustically absorbing lining. An analytical solution is derived for this
problem by solving the Wiener-Hopf equation. Numerical solution is obtained for various
values of the problem parameters. In Fig.3, when the exterior surface is rigid for z < l, the
geometry same as Fig. 1 (see Fig. 7-8). This can be considered a good check for the analysis
made in this paper.

6. Appendix

In this section we give explicit expressions for the integrals. Consider the asymptotic
evaluation of Q+

1 (u) for k (c+ l)� 1.

Q+
1 (u) = − b

a

1

2πi

∫
Υ+

H
(2)
0 (λkb)L− (u) e−iτk(c+l)

λkH
(2)
1 (λka) (τ − u)

dτ (A.1)
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Fig. 7. Comparison of the Fig.1 and Fig.3 for f = 1000 Hz.
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Fig. 8. Comparison of the Fig.1 and Fig.3 for f = 2500 Hz.

according to Jordan’s Lemma, the integration line Υ+ can be deformed onto the branch cut 
Υ1 + Υ2 through the branch point τ = 1.

Q+
1 (u) =

b

a

1

2πi

∫
Υ1

H
(2)
0 (λkb)L− (u) e−iτk(c+l)

λkH
(2)
1 (λka) (τ − u)

dτ +

∫
Υ2

H
(2)
0 (λkb)L− (u) e−iτk(c+l)

λkH
(2)
1 (λka) (τ − u)

dτ


(A.2)

Using the properties [1]

H
(2)
0

(
eiπz

)
= H

(2)
0 (z) + 2J0 (z) , (−λ)H

(2)
1

(
eiπz

)
= λH

(2)
1 (z) + 2λJ1 (z) (A.3)

and making the following substitution

−1 + τ = te−iπ/2 , t > 0 (A.4)

the integral in (A.2) can be reduced to the following equation

Q+
1 (u) =

b

πka
e−ik(c+l)

∞∫
0

L− (1− it)
1− it− u

P1 (t) e−tk(c+l)dt (A.5)
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P1 (t) =
J1 (λka)H

(2)
0 (λkb)− J0 (λkb)H

(2)
1 (λka)

λH
(2)
1 (λka)

(
H

(2)
1 (λka) + 2J1 (λka)

) (A.6)

If k (c+ l) is large, the main contribution to the integral in (A.5) comes from the end point
t = 0 [10].

Q+
1 (u) =

b

πka
e−ik(c+l)L− (1) ξ1 (u) (A.7)

where

ξ1 (u) =

∞∫
0

P1 (t) e−tk(c+l)

1− it− u
dt (A.8)

By proceeding similarly, we get the following approximate expressions for Q+
2 (u)

Q+
2 (u) =

b

πa

(
i

Z1
− i

Z2

)
e−ik(c+l)M− (1) ξ2 (u) (A.9)

where

ξ2 (u) =

∞∫
0

P2 (t) e−tk(c+l)

1− it− u
dt (A.10)

and

P2 (t) =
H

(2)
0 (λkb) J (Z1, 1− it)− J0 (λkb)H (Z1, 1− it)
H (Z1, 1− it) [H (Z1, 1− it) + 2J (Z1, 1− it)]

(A.11)
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