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DETERMINING AND DISTINGUISHING NUMBER OF
HYPERGRAPHS
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In this paper, we extend the study of determining number and distin-
guishing number to hypergraphs. We give sharp lower bounds for the determining
and distinguishing number of hypergraphs in general and give exact values with
specified conditions.
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1. Introduction

An automorphism of a graph G is a permutation p of the vertex set V(G) of G
with the property that for any two vertices u and v, p(u) ~ p(v) (form an edge) in
G if and only if u ~ v (form an edge) in G. The set of all automorphisms of G, with
the operation of composition of permutations, is a permutation group on V(G) (a
subgroup of the symmetric group on V(G)). This is called the automorphism group
of G and is denoted by Aut(G). Every automorphism is also an isometry, that is,
for u,v € V(G) and ¢ € Aut(G), d(u,v) = d(¢(u), $(v)), where d(-,-) denotes the
length of a shortest path between two vertices in G.

A set of vertices D C V(G) is called a determining set if for p, ¢ € Aut(G), and
p(v) = ¢(v) for all v € D implies p = ¢. That is, the image of D under an arbitrary
automorphism determines the automorphism group completely. The determining
number is the size of a smallest determining set and is denoted by Det(G). The
concept of determining set was introduced by Boutin in [1]. Every graph has a
determining set, since any set containing all but one vertex is determining. The
complete graph K, is a graph for which such a determining set is minimal. Boutin
also proved that Det(P,) = 1,n > 2; Det(Cy,) = 2,n > 3; Det(P(5,2)) = 3, where
P,,C, and P(5,2) represent a path on n vertices, a cycle on n vertices and the
standard Petersen graph, respectively [1].

For v € G, the set {¢(v) : ¢ € Aut(G)} is the orbit of v under Aut(G) and
two vertices in the same orbit are similar. An automorphism p fizes v € V(G) if
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p(v) = v and p is said to fix the set D if for every v € D, we have p(v) = v. The set of
automorphisms that fix v is a subgroup of Aut(G) called the stabilizer of v, denoted
by Stab(v). The set of automorphisms that fix a set D is a subgroup of Aut(G)
and is called the point-wise stabilizer of D, denoted by Stab(D), and is defined as
follows:
Stab(D) = {g € Aut(G)| g(v) =v,¥ v € D} = (] Stab(v).
veD

Erwin and Harary, independently, studied the notion of determining set and
used the term fixing set [2], defined as follows: If D is a set of vertices for which
Stab(D) = S1, where S is the trivial group, then D fixes the graph G and we say
that D is a fizing set of G. The minimum cardinality of a set of vertices that fixes
G is called the fixing number of G, denoted by fiz(G).

Using the concept of point wise stabilizer of D, an equivalent definition of
determining set was provided by Boutin [1] as follows: a set D of vertices is a
determining set for G if and only if Stab(D) = Si. Thus form the definition of fixing
set, another equivalent definition is as follows: a set of vertices is a determining set
of a graph G if and only if it is a fixing set of G [3].

Notice that, by the definition, the images of the vertices in a determining set
under the trivial automorphism uniquely determine the positions of the remaining
vertices. Thus a determining set not only uniquely identifies each automorphism,
but also uniquely identifies each vertex in the graph by its graph properties and its
relationship to the determining set. The notion of determining set has its origin
in the idea of distinguishing the vertices in a graph, and more concretely, in the
concept of symmetry breaking which was introduced by Albertson and Collins [4]
and, independently, by Harary [5, 6]. Symmetry breaking has several applications;
among them those related to the problem of programming a robot to manipulate
objects [7]. Determining sets have been since then widely studied. There exists by
now an extensive literature on this topic. Besides the above mentioned references,
see for instance [8, 9].

To see some uses of the determining set, Albertson and Collins [4] intro-
duced the concept of distinguishing labeling (coloring) defined as follows: A labeling
A V(G) = {1,2,...,1} is called [-distinguishing if it is invariant only under the
trivial automorphism. The distinguishing number of a graph G, dist(G), is the least
integer ! such that G has a [l-distinguishing labeling. Recent work shows that, in
many infinite families, all large graphs are 2-distinguishable. These include hyper-
cubes @y, with n > 4 [10], 3-connected planar graphs [11] and nontrivial cartesian
powers of a connected graph, G # Ko, K3 [12]. Since distinguishing labelings involve
graph automorphisms, determining sets provide a useful tool for studying them. Al-
bertson and Boutin used determining sets to show that certain types of geometric
cliques [13] and the Kneser graphs K,,.; with n > 6,k > 2 [8] belong to the list of
2-distinguishable graphs. Boutin used determining sets to answer a question of Wil-
fried Imrich regarding the size of a smallest label class in a 2-distinguishing labeling
of @, [14].

A hypergraph H is a triple (V(H), E(H),I(H)), where V(H) is a finite set
of elements called vertices, E(H) is a finite set of elements called hyperedges, and
I(H) C V(H) x E(H) is the incidence relation. |V (H)| and |E(H)| are called the
order and the size of H, denoted by m and k, respectively. A subhypergraph K
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of a hypergraph H is a hypergraph with vertex set V(K) C V(H) and edge set
E(K) C E(H). A hypergraph H is linear if for two hyperedges E;, E; € E(H),
|E; N Ej| <1, so for a linear hypergraph there may be no repeated hyperedges of
cardinality greater than one. A hypergraph H with no hyperedge is a subset of any
other is called Sperner.

Hypergraphs are used in clustering the data of high dimensional spaces. In a
hypergraph model, each data item is represented as a vertex and related data items
are connected with weighted hyperedges. A hyperedge presents a relationship (affin-
ity) among subsets of data and the weight of the hyperedge reflects the strength of
this affinity. Then a hypergraph partitioning algorithm is used to find a partitioning
of the vertices such that the corresponding data items in each partition are highly
related and the weight of the hyperedges cut by the partitioning is minimized [15].
Inspired by such an application of hypergraphs, we study the determining sets of
hypergraphs which, in view of the above mentioned application, uniquely identifies
each data item in hypergraphs by its graph properties and its relationship to the
determining set.

A vertex v € V(H) is incident with a hyperedge E of H if v € E. If v is
incident with exactly n hyperedges, then we say that the degree of v is n; if all the
vertices v € V(H) have degree n, then H is n-regular. Similarly, if there are exactly
n vertices incident with a hyperedge E, then we say that the size of F is n; if all
the hyperedges E € E(H) have size n, then H is n-uniform. A graph is simply a
2-uniform hypergraph. A path from a vertex v to another vertex w, in a hypergraph,
is a finite sequence of the form v, K1, wy, Fa,wa, ..., Ej_1,w;_1, B, u, having length
[ such that v € By, w; € E;N Fipq fori=1,2,...01—1 and v € E;. A hypergraph
H is called connected if there is a path between any two vertices of H. All the
hypergraphs considered in this paper are connected Sperner hypergraphs.

The primal graph, prim(H), of a hypergraph H is a graph with vertex set

V(H) and vertices x and y of prim(H) are adjacent if and only if x and y are con-
tained in a hyperedge. The middle graph, M(H), of H is a subgraph of prim(H)
formed by deleting all loops and parallel edges. The dual of H = ({v1,v2,...,Um},
{Er, Ea,. ..,
Ey}), denoted by H*, is the hypergraph whose vertices are {ej,ea,...,ex} corre-
sponding to the hyperedges of H and with hyperedges V; = {e; : v; € E; in H},
wherei =1,2,...,m. In other words, the dual H* swaps the vertices and hyperedges
of H.

A connected hypergraph H with no hypercycle is called a hypertree. A sub-
hypertree of a hypertree H with edge set, say {E,,, Ep,, ..., Ep} C E(H), is called
a branch of H if E, (say) is the only hyperedge such that, for E;, E; € E(H) \
{Ep.,Epy,....Ep}, EpyNE; # 0 and E, NE; # () implies (Ep, NE;)N(Ep, NE;) # 0.
The hyperedge E,, is called the joint of the branch.

A hypergraph H is said to be a hyperstar if E;NE; = C # (), for any E;, E; €
E(H). We will call C, the center of the hyperstar. If there exist a sequence of
hyperedges E1, Fs,. .., Fy in a hypergraph H, then H is said to be (1) a hyperpath
if B; N E; # 0 if and only if |i — j| = 1; (2) a hypercycle if, E; N E; # ( if and
only if |i — j| = 1 (mod k). A hyperedge E of H is called a pendant hyperedge if for
Ei,E; € E(H), ENE; # 0 and ENE; # 0 implies (EN E;) N (ENE;) # 0. Let
v € (;er Ei then v is called a supporting verter of Ej if and only if some Ej is a
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pendant hyperedge. Set of all supporting vertices of E; is called the supporting set
of Ej.

An automorphism of a hypergraph H is a pair (¢,1), where ¢ is a permuta-
tion of V/(H) and v is a permutation of F(H) such that (v, E') € I(H) if and only if
(¢p(v),y¥(F)) € I(H) for all v € V(H) and for all E € E(H). The set of all the auto-
morphisms of H forms a group under composition of functions, denoted by Aut(H).
The image of the projection (¢, 1) — ¢ is denoted by Auty (H), while the image of
the projection (¢, 1) — 1 is denoted by Autp(H). The members of Auty (H) and
Autp(H) are called vertex automorphisms and edge automorphisms, respectively.
Any automorphism (¢,v) fixes (v, E) € I(H) if (¢(v),¥(E)) = (v, E). The set of
automorphisms that fix (v, E) € I(H) is a subgroup of Aut(H) called stabilizer of
(v, E), denoted by Stab{(v, E)}. We say that a vertex v is fixed if ¢(v) = v under
all vertex automorphisms of H. Similarly, an edge E is fixed if ¢)(E) = F under all
edge automorphisms of H. In a hypercycle H, an edge automorphism ¢ € Autg(H)
such that ¥(E;) = Ej;;,1 < j < k and for all E; is called a rotation. A vertex
automorphism ¢ € Auty (H) such that ¢(vj) = vj, p(vj—1) = vj41,...,0(v1) = vp,
is called a flipping. Definition of hypergraph and some of the relevant terminology
is taken from [16, 17, 18].

In this paper, we study the determining and distinguishing number of hy-
pergraphs. We give the sharp lower bounds for the determining and distinguishing
number of hypergraphs. Also, we study the determining number of some well-known
families of hypergraphs such as hyperpaths, hypertrees and n-uniform linear hyper-
cycles. Further, we study the distinguishing number of hyperpaths, n-uniform linear
hypercycles and n-uniform linear hypertrees.

2. Determining Number of Hypergraphs

If we denote the set of all vertices of degree d in F; N FE;, N...NE;, by
C(i1,12,...,14), then the collection of all such sets gives a partition of V(H) We
denote n(zl,zQ, coyig) = |Clivyig, ... ig)| — 1 if C(i1, 2, ...,iq) # (), otherwise take

(Zl,ZQ,..., ) =0.
From the definition of C(i1,42,...,i4), we see that for any two vertices u,v €
C(iy,i2,...,1q), there exists a non-trivial vertex automorphism ¢ € Auty (H) such
that ¢(u) = v. Thus, we have the following lemma:

Lemma 2.1. If u,v € C(i1,42,...,iq) and D C V(H) be a determining set of H,
then either w or v is in D. Moreover, if u € D and v € D, then (D \ {u}) U{v} is
also a determining set of H.

Proposition 2.1. For any hypergraph H with k hyperedges,

k k
D@t(H)ZZ Z n(’il,ig,...,ij).

J=1lu1<..<ey

Proof. It follows from the fact that, if there are |C(iy, 12, ...,74)| number of vertices
of degree d in E;; N E;, N...N E;,, then by Lemma 2.1, at least n(iy,2,...,q)
vertices should belong to a determining set D.

Remark 2.1. By Proposition 2.1, it is clear that in order to obtain a determining
set of any hypergraph H, we need |C(i1,ia,...,iq)| — 1 wvertices from each class
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C(i1,i2,...,1q), if C(i1,ia,...,1q) # 0, that is, we can left one vertex from each
class C(i1,i2,...,1q). We call this vertex a representative vertex of C(iy,ia,...,1q)
and denote the set of all representative vertices in a hypergraph H by R(H). Hence
we always have V(H) \ R(H) C D for any determining set D.

At first we are interested to discuss only those hypergraphs H for which the
equality holds in Proposition 2.1.

Theorem 2.1. For any hypergraph H with k hyperedges, if n(i) # 0 for all E; €
k k
E(H) except one, then Det(H) = >, > n(i,iz,...,i;). Moreover, there are

j=1li1<..<ij

ko k
[T II (n(i,ie,...,i;) + 1) determining sets of cardinality Det(H) of H.
j=1i1<..<i;
Proof. Consider D = V(H)\ R(H), we have to show that D is a determining set for
H. For any non-trivial vertex automorphism ¢, there exist representative vertices
v; and v; such that ¢(v;) = v;. But one of n(i) or n(j) is non-zero, say n(i) # 0, by
Lemma 2.1, we must have at least one vertex v € E; N D and hence E; is fixed, a
contradiction. i i

Further, by Lemma 2.1, there are [ [[ (n(i1,42,...,4;) + 1) such deter-

j=1i1<..<ij

mining sets.

For all n > 4, if H is an n-uniform linear hypergraph with k& hyperedges, then
n(i) # 0 for all E; € E(H) and n(i,i+ 1) = 0 for all . Thus, we have the following
corollary:

Corollary 2.1. Forn > 4, let H be an n-uniform linear hypergraph with k hyper-
k
edges. Then Det(H) = > n(i).
i=1
We give a simple example which shows that the condition in Theorem 2.1
cannot be relaxed generally.

Example 2.1. Let H be a hypergraph with vertex set V(H) = {v1,va, v3, vy,

vs,v6} and edge set E(H) = {Ey = {vi,v2}, Ea = {vo,v3,v4,v5}, B3 = {vs,v6}} .
Clearly, n(1) = n(3) = 0 and n(2) = 1. Without loss of generality, we can take
R(H) = {v1,v2,v3,v5,v6} and hence D = {vs4}. But D is not a determining set for
H, since there exists ¢ € Auty (H) such that ¢(v1) = vg. In fact Det(H) =2 > 1.

However, the condition in Theorem 2.1 can be reduced in some special cases
as shown in the following results.
Lemma 2.2. Let H be a hyperpath with k hyperedges, say, E1, Es, ... E} in a canon-
k k-1
ical way. Then Det(H) = > n(i)+ > n(i,i + 1), when
i=1 i=1
(1) k is even and n(i) # 0 for some 1 < i <k orn(i,i+1) #0 for somel <i <k
except 1 = %
(2) k is odd and n(i) # 0, for any 1 <i < k except i = [5] orn(i,i+ 1) £ 0, for
any 1 <i<k.
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Proof. It is easy to see that the only possible non-trivial vertex automorphism for
any hyperpath is, ¢(v;) = vg_ij41, for all 1 < i < k and ¢(vj 1) = Vg—ik—it1 for
all 1 <14 < k, where v; and v; ;41 are representative vertices. If k is even, then this
automorphism is possible only when n(i) =0, for all 1 < i < k and n(¢,i+ 1) =0,
for all 1 < ¢ < k except 1 = %, since ¢(U§,§+1) = Uk kiq- If k is odd, then this
automorphism is possible only when n(i,i+ 1) =0, for any 1 <i < k, and n(i) = 0,
for all 1 <i <k, except i = (%], since ¢(U[§1) = Uy

Example 2.2. Let H be a hypergraph with vertex set V(H) = {v1,va, v3, vy,

U5, Vg, U7, U8, Vg, V10 } and edge set E(H) = {E1 = {v1,v2}, Fa = {va,v3,v4}, F3

= {vg,v5,v6, 07}, B4 = {v7,v8,v9}, E5 = {vg,v10}}. Clearly, n(3) # 0. Without
loss of generality, we can take R(H) = {v1,v2,vs,v4,v5, 07,08, 09,010} and hence
D = {vg}. But D is not a determining set for H, since there exists ¢ € Auty (H)
such that ¢(v1) = v1g, ¢(v2) = vy, P(v3) = vs, P(va) = v7. In fact, Det(H) =2 > 1.

Theorem 2.2. Let H be a hypertree. Let Sy,S9,...,Ss be the supporting sets and

Epj,Epj, e ,Epj be the pendant hyperedges with respect to supporting set S;(1 <
1 2 7
k k .
j<s). Then Det(H) =% Y. n(i1,i2,...,15), if n(p]) # 0 for all j and for all
j=li1<..<ij
[=1,2,...,1 except one.

Proof. Consider D =V (H)\ R(H), we have to show that D is a determining set for
H. For any non-trivial vertex automorphism ¢, there exist representative vertices v;
and v; such that ¢(v;) = v;. Consider a hyperpath containing hyperedges, say, E;
and E; together with pendant hyperedges say, E,, and E,,, respectively. But one
of n(p1) and n(p2) is non-empty and hence proof follows by Theorem 2.1.

An n-uniform linear hyperstar (n > 3) is a special case of the hypertree in
which n(i) # 0 for all E; € E(H), so we have the following corollary:

Corollary 2.2. For n > 3, let H be an n-uniform linear hyperstar with k (> 3)
hyperedges. Then Det(H) = k(n — 2).

Consider an n-uniform linear hypercycle Gy, with k hyperedges. When n > 4,
then Det(Cy, ) = k(n — 3), by Corollary 2.1.

For the case n = 3, we have n(i) = 0 for all E; € E(H ), hence the lower bound
given in Proposition 2.1 is zero and every vertex in Cy 3 is the representative vertex.
We discuss this case in the following result:

Theorem 2.3. Let Cp 3 be a 3-uniform linear hypercycle with k hyperedges. Then
Det (Cr3) =2 for all k > 3.

Proof. Let V(Cr3) = {vi, viiy1; 1 <i <k} and edge set E(Cy3) = {E1, Ea, ...,
E}}, where v; € E; is a vertex of degree one and v; ;41 € E; N E;jq is a vertex of
degree two with vy p41 = vi1 € By N B4 = Ej N Ep. Then one can easily see that
if we fix only one vertex in €y 3, then all the rotations are destroyed and the fixing
of one more vertex destroys the flipping. Hence the proof follows.

From the definition of the primal graph of a hypergraph H, we note that
Aut(H) is automorphism group of H if and only if Aut(H) is an automorphism
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group for the primal graph of H. Thus, we have the following straightforward
result:

Theorem 2.4. Let H be a hypergraph and prim(H) be the primal graph of H. Then
Det(H) = Det(prim(H)).

The primal graph of a hypergraph H is a simple graph (without loops and
parallel edges), which is also the middle graph. But, the primal graph of the dual
hypergraph H* of H is not a simple graph, in this case, the middle graph of H* is
a simple graph. We discuss the determining number of dual hypergraphs separately
in the following result:

Theorem 2.5. Let H* be the dual of a hypergraph H and let M (H*) be the middle
graph of H*. Then Det(H*) = Det(M(H*)).

Proof. By the definition of middle graph, Aut(H*) is automorphism group of H* if
and only if Aut(H*) is an automorphism group for the middle graph of H*. Thus a
set D C V(H") is a determining set for H* if and only if D is a determining set for

3. Distinguishing Number of Hypergraphs

In this section, we study the distinguishing number of hypergraphs.
From Lemma 2.1, we have the following result:

Lemma 3.1. Let A be a distinguishing labeling of the wvertices of H. If u,v €
C(i1,12,y...,1q), then A(u) is different from A(v).

The following result gives the lower bound for the distinguishing number of
hypergraphs.

Proposition 3.1. Let H be a hypergraph with k hyperedges. Then dist(H) > n,
where n = max |C(i1, 42, ...,iq)| in H.

Proof. Since n = max|C(iy,1i2,...,iq4)| in H, by Lemma 3.1, we have at least 1 dis-
tinct labels to distinguish the labeling of the hypergraph. Thus dist(H) > 7.

The lower bound given in Proposition 3.1 is sharp for an n-uniform linear
hyperpath with k& hyperedges (n,k > 3) as we have shown in the following result:

Theorem 3.1. Let H be an n-uniform linear hyperpath with k hyperedges. Then

. n when k=2,n>2 or n=2,k>2,
dlSt(H)_{ n—1 when n,k > 3.

Proof. When n = 2 and k > 2, then H is a simple path Py on k + 1 vertices and
dist(Pyy1) = dist(H) =2 =n.

When k£ = 2 and n > 2, then since there are only two hyperedges, say FE;
and FEs, in H having only one vertex in common. If we consider a labeling A
V(H) —{1,2,...,n — 1}, then there exists a non-trivial automorphism (¢, 1) of H
such that ¥(E1) = Es and ¢(A(v)) = A(é(v)) = A(u), for all v € E1, u € Fy. Thus
dist(H) = n.

When n,k > 3. Let us denote the vertices of a hyperedge E; (1 < j < k)
in H by v;; (1 <i < n) with v,j; =vi41 (1 <5 < k—1). Then the vertices
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V11, Un ks Vij (2 <1 <n—1; 1 < j < k) are of degree one and the vertices vy j41 (1 <
j < k —1) are of degree two. Consider a labeling A : V(H) — {1,2,...,n — 1}
defined as: v; j — 4 (for 1 <4 <n —1and for each j; 1 < j <k —1); vy 41— 1
(1<j<k-2)vp—n—1land v +—i—1(2<i<mn). Then one can easily see
that there is no non-trivial automorphism which preserves this labeling. It follows
that dist(H) =n — 1.

In the following example, we give a hypergraph with dist(H) > n.

Example 3.1. Consider a hypergraph H with vertex set V(H) = {v1,va, ...,

vie} and edge set E(H) = {Ey = {v1,v2,v3,v4}, B2 = {v4, v5, V6, 07},

E3 = {vr,v8,v9,v10}, B4 = {v10,v11,v12,v13}, E5 = {vi0,v14,v15,v16}}. Here Ey
and Es are the pendant hyperedges in H with one vertex in common and n = 3.
But dist(H) # n since otherwise there exists a non-trivial automorphism (¢,) of
H such that ¥(E4) = E5 and ¢(A(v)) = AM(¢(v)) = A(u), for all v € Eq,u € E5. In
fact, dist(H) =4 > n.

Theorem 3.2. Let H be a hyperpath with k hyperedges. Thenn < dist(H) <n+1,
where n = max |C(i1,l2,...,iq)| in H.

Proof. If H is an n-uniform linear, then the result follows from Theorem 3.1. If H
is not an n-uniform linear, then left hand side of the inequality follows from Propo-
sition 3.1. For the right side, consider a labeling A : V(H) — {1,2,...,n+ 1}.
Since n = max |C (i1, 12, ...,1q)|, so it is straightforward to see that there does not
exist any non-trivial vertex automorphism ¢ € Auty (H) such that ¢(A(v)) = Ap(v).
Thus dist(H) <n+ 1.

Let Cj 5, be an n-uniform linear hypercycle with k£ > 3 hyperedges. We denote
the vertices of Cj,, by v;;, where j (1 < j < k) represents the hyperedge number
of Gy and i (1 <4 < n) represents the vertex number of the jth hyperedge. Each
v;j € E;, 2 < i < n— 1, represents a vertex of degree one and v, ; = v1 41 €
E; N E;1 represents the vertex of degree two with vy, x = vy 1.

Theorem 3.3. Let Cp, be an n-uniform linear hypercycle with k > 3 hyperedges.
Then for n > 5, we have dist(Cy,) =n —2 and

{ 3 when n =24,

dist (ek;7n) = 9 when n =35.

Proof. When n = 2, then €9 is a simple cycle C}, on k vertices and dist(Cp2) =
dist(Cy) = 3 [4].

When n = 3 and 4, then it is straightforward to see that there is no automor-
phism of €, 3 and of Cj 4 which preserves the following labeling respectively:
At V(Crs3) — {1,2} defined as: vy ; — j for all j =1,2; va3 — 2; v2; — 1 for all
4<j<kuvi—1liviz2—2;vi3—2and v 1~ 1lforall 3<j<k-1,and
po: V(Cra) = {1,2,3} defined as: for all 1 < j <k, vy — 1, v3; — 2 when j
is odd and v3; — 3 when j is even; vi1 — 1; v12 = 2; v13 — 2; v14 — 3 and
vLjH»—)lforallnggk—l.

When n > 5, then since max |C(i1, i2, . . ., iq)| = n—2in €y, so, by Proposition
3.1, dist(Cf ) > n—2. Now, if we consider a labeling v : V(Cyp) — {1,2,...,n—2}
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defined as: v;j—»i—1foralll1<j<kand2<i<n-—1;vi1= ;v 41— Jj+1
for1<j<n-3;v1 41+ Lforalln—2 < j < k-1, then there is no automorphism
of €, which preserves this labeling. This implies that dist(Cy,) < n — 2.

The following result gives the distinguishing number of an n-uniform linear
hypertree.

Theorem 3.4. Let H be an n-uniform linear hypertree with k hyperedges (n,k >

3). Let s1,52,...,84 be the supporting vertices in H and n, denotes the number
of pendant hyperedges with respect to the supporting vertex s, (1 < p < q). If
r =max(ni,na,...,ng), then H is l-distinguishing, where
n—1 if r=1,
| = n Zf 2 S r S n,
r if r>n.

Proof. Suppose that Eptl , Epg ;-5 Ept be the pendant hyperedges with respect to the
supporting vertex s;. If A : V(H) — {1,2,...,1 — 1} be a labeling of the vertices
of H, then there exists a non-trivial automorphism (¢, ) of H such that for two
pendant hyperedges, say Epg and Ep§_ , with respect to the supporting vertex s;, we

have ¢ (E,;) = EP§ and ¢(A(u)) = A(¢(u)) = A(v) for all u € B, v € Ep§.

4. Conclusion

In this paper, we have studied the determining and distinguishing number of
hypergraphs. We gave the sharp lower bounds for the determining and distinguishing
number of hypergraphs. Also, we studied the determining number of some well-
known families of hypergraphs such as hyperpaths, hypertrees and n-uniform linear
hypercycles. Moreover, we have computed the distinguishing number of hyperpaths,
n-uniform linear hypercycles and n-uniform linear hypertrees.

Future work can be directed towards obtaining the determining and distin-
guishing number of some other challenging classes of graphs and hypergraphs. More-
over, it can be interesting (like as in the simple graphs) to study the difference be-
tween metric dimension (studied in [18]) and determining number of hypergraphs.
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