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1. Introduction

As you know it has been published many papers about fractional differential equations

and inclusions which have been applied in modeling of many problems of engineering sciences,

physics, nano technology, etc. Some researchers have been investigated the existence of

solutions for some singular fractional differential equations (see for example, [4], [5], [7]

and [10]). In 2010, the fractional problem Dαu(t) + f(t, u(t), Dµu(t)) = 0 with boundary

conditions u(0) = u(1) = 0 investigated, where 0 < t < 1, 1 < α < 2, 0 < µ ≤ α − 1, Dα is

the standard Riemann-Liouville fractional derivative, f satisfies the Carateodory conditions

on [0, 1]×(0,∞)×R, f is positive and f(t,x,y) is singular at t = 0 ([1]). In 2012, the fractional

differential equation Dαu(t) + f(t, u(t)) = 0 with boundary conditions u(0) = u′′(0) = 0

and u(1) = λ
∫ 1

0
u(s)ds investigated, where 0 < t < 1, 2 < α < 3, 0 < λ < 2, Dα is the

Caputo fractional derivative and f : [0, 1] × [0,∞) → [0,∞) is a continuous function ([2]).

In 2014, the singular fractional problem cDq
0+u(t) + f(t, u(t),c Dσ

0+u(t)) = 0 with boundary

conditions u(0) = u′(0) = 0 and u′(1) =c Dσ
0+u(1) investigated, where 0 < t < 1, 2 < q < 3,

0 < σ < 1, f : (0, 1] × R × R → R is continuous with f(t, x, y) may be singular at some

points of t ∈ [0, 1] and cDq
0+ is the Caputo derivative ([3]). By using main idea of the works,

we investigate the singular fractional integro-differential equation

Dαx(t) + f(t, x(t), x′(t), Dβx(t),

∫ t

0

h(ξ)x(ξ)dξ) = 0 (1.1)

with boundary conditions x(0) = 0 and x(1) = Dγx(µ), where 0 < t < 1, x ∈ C1[0, 1],

α ≥ 2, 0 < β < 1, 0 < γ < 1, 0 < µ < 1, h ∈ L1[0, 1] is nonnegative with ∥h ∥1 = m , Dq is
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the Caputo fractional derivative of order q and f(t, x1, x2, x3, x4) is singular at some points

t ∈ [0, 1]. In this paper, we use ∥.∥1 as the norm of L1[0, 1], ∥.∥ as the norm Y = C[0, 1] and

∥.∥∗ as the norm ofX = C1[0, 1]. As we know, Riemann-Liouville integral of order p with the

lower limit a ≥ 0 for a function f : (a,∞) → R is defined by Ipa+f(t) =
1

Γ(p)

∫ t

a
(t−s)p−1f(s)ds

whenever the right-hand side is pointwise define on (a,∞) ([6]). we denote Ip0+f(t) by Ipf(t).

Also, the Caputo fractional derivative of order α > 0 of a function f : (a,∞) → R is defined

by cDαf(t) = 1
Γ(n−α)

∫ t

0

fn(s)

(t− s)α+1−n
ds, where n = [α] + 1 ([6]). We need the following

results.

Lemma 1.1. ([8]) Suppose that 0 < n − 1 ≤ α < n and x ∈ C(0, 1) ∩ L1(0, 1). Then

IαDαx(t) = x(t) +
∑n−1

i=0 cit
i for some constants c0, . . . , cn−1 ∈ R.

Lemma 1.2. ([9]) If E is a closed, bounded and convex subset of a Banach space X and

F : E → E is completely continuous, then F has a fixed point in E.

Lemma 1.3. ([11]) Let X be a Banach space, C a closed and convex subset of X, Ω a

relatively open subset of C with 0 ∈ Ω and F : Ω → C a continuous and compact map. Then

either F has a fixed point in Ω̄ or there exist y ∈ ∂Ω and lambda ∈ (0, 1) such that y = λFy.

2. Main Results

We first prove the following key result.

Lemma 2.1. Let α ≥ 2, 0 < γ < 1, 0 < µ < 1, ∆ = 1 − µ1−γ

Γ(2−γ) and y ∈ L1[0, 1]. Then

unique solution of the problem Dαu(t) + y(t) = 0 with boundary conditions u(1) = Dγu(µ)

and u(0) = 0 is u0(t) =
∫ 1

0
G(t, s)y(s)ds, where

G(t, s) =



−∆(t−s)α−1Γ(α−γ)+tΓ(α−γ)(1−s)α−1−tΓ(α)(µ−s)α−γ−1

∆Γ(α)Γ(α−γ) 0 ≤ s ≤ t ≤ 1, s ≤ µ,

−∆(t−s)α−1+t(1−s)α−1

∆Γ(α) 0 ≤ µ ≤ s ≤ t ≤ 1,

tΓ(α−γ)(1−s)α−1−tΓ(α)(µ−s)α−γ−1

∆Γ(α)Γ(α−γ) 0 ≤ t ≤ s ≤ µ ≤ 1,

t(1−s)α−1

∆Γ(α) 0 ≤ t ≤ s ≤ 1, µ ≤ s.

Proof. Let u be a solution for the problem. By using Lemma 1.1, we get

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+ c1t.

Hence, Dγu(t) = − 1
Γ(α−γ)

∫ µ

0
(µ − s)α−γ−1y(s)ds + c1

µ1−γ

Γ(2−γ) and u(1) = − 1
Γ(α)

∫ 1

0
(1 −

s)α−1y(s)ds+ c1. Since u(1) = Dγu(µ), we conclude that

c1(1−
µ1−γ

Γ(2− γ)
) =

1

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds− 1

Γ(α− γ)

∫ µ

0

(µ− s)α−γ−1y(s)ds

and so c1 = 1
∆Γ(α)

∫ 1

0
(1 − s)α−1y(s)ds − 1

∆Γ(α−γ)

∫ µ

0
(µ − s)α−γ−1y(s)ds. Thus, we obtain

u(t) = − 1
Γ(α)

∫ t

0
(t−s)α−1y(s)ds+ t

∆Γ(α)

∫ 1

0
(1−s)α−1y(s)ds− t

∆Γ(α−γ)

∫ µ

0
(µ−s)α−γ−1y(s)ds.
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Hence,

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
t

∆Γ(α)
(

∫ t

0

+

∫ µ

t

+

∫ 1

µ

)((1− s)α−1y(s)ds)

− t

∆Γ(α− γ)
(

∫ t

0

+

∫ µ

t

)((µ− s)α−γ−1y(s)ds)

=

∫ t

0

−∆(t− s)α−1Γ(α− γ) + tΓ(α− γ)(1− s)α−1 − tΓ(α)(µ− s)α−γ−1

∆Γ(α)Γ(α− γ)
y(s)ds

+

∫ µ

t

tΓ(α− γ)(1− s)α−1 − tΓ(α)(µ− s)α−γ−1

∆Γ(α)Γ(α− γ)
y(s)ds+

∫ 1

µ

t(1− s)α−1

∆Γ(α)
y(s)ds

whenever t ≤ µ and

u(t) = − 1

Γ(α)
(

∫ µ

0

+

∫ t

µ

)((t− s)α−1y(s)ds)

+
t

∆Γ(α)
(

∫ µ

0

+

∫ t

µ

+

∫ 1

t

)((1− s)α−1y(s)ds)− t

∆Γ(α− γ)

∫ µ

0

(µ− s)α−γ−1y(s)ds

=

∫ µ

0

−∆(t− s)α−1Γ(α− γ) + tΓ(α− γ)(1− s)α−1 − tΓ(α)(µ− s)α−γ−1

∆Γ(α)Γ(α− γ)
y(s)ds

+

∫ t

µ

−∆(t− s)α−1 + t(1− s)α−1

∆Γ(α)
y(s)ds+

∫ 1

t

t(1− s)α−1

∆Γ(α)
y(s)ds

whenever t ≥ µ. This implies that, u(t) =
∫ 1

0
G(t, s)y(s)ds = u0(t) for all t. �

Define the map F : X → X by

Fx(t) =

∫ 1

0

G(t, s)f(s, x(s), x′(s), Dβx(s),

∫ s

0

h(ξ)x(ξ)dξ)ds

= − 1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s), x′(s), Dβx(s),

∫ s

0

h(ξ)x(ξ)dξ)ds

+
t

∆Γ(α)

∫ 1

0

(1− s)α−1f(s, x(s), x′(s), Dβx(s),

∫ s

0

h(ξ)x(ξ)dξ)ds

− t

∆Γ(α− γ)

∫ µ

0

(µ− s)α−γ−1f(s, x(s), x′(s), Dβx(s),

∫ s

0

h(ξ)x(ξ)dξ)ds. (2.1)

If x ∈ C1[0, 1], thenDβx(t) = 1
Γ(1−β)

∫ t

0
x′(s)ds
(t−s)β

and so

|Dβx(t)| ≤ ∥x′ ∥
Γ(1− β)

∫ t

0

(t− s)−βds =
∥x′ ∥

Γ(2− β)
t1−β .

Thus, Dβx ∈ C[0, 1] and |Dβx| ≤ ∥x′ ∥
Γ(2−β) . Since

∫ 1

0
h(z)dz = m > 0, we get |g(t)| ≤

∥x∥
∫ t

0
h(z)dz ≤ m∥x∥, where g(t) =

∫ t

0
h(z)x(z)dz. Now, we give our main result.
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Theorem 2.1. Suppose that there exist the maps a1, a2, a3, a4 : [0, 1] → R with
∫ 1

0
ai(t)dt <

∞ for all i = 1, 2, 3, 4 such that

|f(t, x1, y1, z1, w1)− f(t, x2, y2, z2, w2)|

≤ a1(t)|x1 − x2|+ a2(t)|y1 − y2|+ a3(t)|z1 − z2|+ a4(t)|w1 − w2|

for all (x1, y1, z1, w1), (x2, y2, z2, w2) ∈ R4 and t ∈ [0, 1]. Assume that there exist b ∈ L1[0, 1]

and H ∈ Y 4 such that |f(t, x1, x2, x3, x4)| ≤ b(t)H(x1, x2, x3, x4) for all (x1, x2, x3, x4) ∈ R4

and almost all t ∈ [0, 1] and ∥H∥Y := Sup{|H(x1, x2, x3, x4)| : (x1, x2, x3, x4) ∈ R4} < ∞.

Then the singular problem (1.1) has a solution.

Proof. If x1, x2 ∈ X, then

|Fx1(t)− Fx2(t)| ≤
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, x1(s), ...,

∫ s

0

h(ξ)x1(ξ)dξ)

−f(s, x2(s), ...,

∫ s

0

h(ξ)x2(ξ)dξ)|ds+
t

Γ(α)

×
∫ 1

0

(1− s)α−1|f(s, x1(s), ...,

∫ s

0

h(ξ)x1(ξ)dξ)− f(s, x2(s), ...,

∫ s

0

h(ξ)x2(ξ)dξ)|ds

+
t

∆Γ(α− γ)

∫ µ

0

(µ− s)α−γ−1|f(s, x1(s), ...,

∫ s

0

h(ξ)x1(ξ)dξ)

−f(s, x2(s), ...,

∫ s

0

h(ξ)x2(ξ)dξ)|ds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1(a1(s)|x1 − x2|+ a2(s)|x′
1 − x′

2|+ a3(s)|Dβx1 −Dβx2|

+a4(s)|
∫ s

0

h(ξ)(x1(ξ)− x2(ξ))dξ|)ds

+
t

Γ(α)

∫ 1

0

(1− s)α−1(a1(s)|x1 − x2|+ a2(s)|x′
1 − x′

2|+ a3(s)|Dβx1 −Dβx2|

+a4(s)|
∫ s

0

h(ξ)(x1(ξ)− x2(ξ))dξ|)ds

+
t

∆Γ(α− γ)

∫ µ

0

(µ− s)α−γ−1(a1(s)|x1 − x2|+ a2(s)|x′
1 − x′

2|

+a3(s)|Dβx1 −Dβx2|+ a4(s)|
∫ s

0

h(ξ)(x1(ξ)− x2(ξ))dξ|)ds

≤ ∥x1 − x2∥(
1

Γ(α)

∫ t

0

(t− s)α−1(a1(s) + a4(s).m)ds)

+∥x′
1 − x′

2∥(
1

Γ(α)

∫ t

0

(t− s)α−1(a2(s) +
a3(s)

Γ(2− β)
)ds)

+∥x1 − x2∥(
t

Γ(α)

∫ 1

0

(1− s)α−1(a1(s) + a4(s).m)ds)

+∥x′
1 − x′

2∥(
t

Γ(α)

∫ 1

0

(1− s)α−1(a2(s) +
a3(s)

Γ(2− β)
)ds)

+∥x1 − x2∥(
t

∆Γ(α− γ)

∫ µ

0

(µ− s)α−γ−1(a1(s) + a4(s).m)ds)
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+∥x′
1 − x′

2∥(
t

∆Γ(α− γ)

∫ µ

0

(µ− s)α−γ−1(a2(s) +
a3(s)

Γ(2− β)
)ds)

≤ ∥x1 − x2∥
∫ 1

0

(1− s)α−γ−1(
2a1(s) + 2ma4(s)

Γ(α)
+

a1(s) +ma4(s)

∆Γ(α− γ)
)ds

+∥x′
1 − x′

2∥
∫ 1

0

(1− s)α−γ−1(
2a2(s)

Γ(α)
+

a2(s)

∆Γ(α− γ)

+
2a3(s)

Γ(α)Γ(2− β)
+

a3(s)

∆Γ(α− γ)Γ(2− β)
)ds

≤ θ1(∥x1 − x2∥+ ∥x′
1 − x′

2∥) = θ1∥x1 − x2∥∗,

where

θ1 = max{
∫ 1

0

(1− s)α−γ−1(
2a1(s) + 2ma4(s)

Γ(α)
+

a1(s) +ma4(s)

∆Γ(α− γ)
)ds,∫ 1

0

(1− s)α−γ−1(
2a2(s)

Γ(α)
+

a2(s)

∆Γ(α− γ)
+

2a3(s)

Γ(α)Γ(2− β)
+

a3(s)

∆Γ(α− γ)Γ(2− β)
)ds} < ∞.

On the other hand, we have

|F ′
x1
(t)− F ′

x2
(t)|

≤
∫ 1

0

∂G(t, s)

∂t
|f(s, x1(s), ...,

∫ s

0

h(ξ)x1(ξ)dξ)− f(s, x2(s), ...,

∫ s

0

h(ξ)x2(ξ)dξ)|ds

≤ ∥x1 − x2∥
∫ 1

0

(1− s)α−2(
a1(s)

Γ(α− 1)
+

a1(s)

Γ(α)
+

a1(s)

∆Γ(α− γ)

+
ma4(s)

Γ(α− 1)
+

ma4(s)

Γ(α)
+

ma4(s)

∆Γ(α− γ)
)ds

+∥x′
1 − x′

2∥
∫ 1

0

(1− s)α−2(
a2(s)

Γ(α− 1)
+

a2(s)

Γ(α)
+

a2(s)

∆Γ(α− γ)
+

a3(s)

Γ(α− 1)Γ(2− β)

+
a3(s)

Γ(α)Γ(2− β)
+

a3(s)

∆Γ(α− γ)Γ(2− β)
)ds ≤ θ1(∥x1 − x2∥+ ∥x′

1 − x′
2∥) = θ2∥x1 − x2∥∗,

where

θ2 = max{
∫ 1

0

(1− s)α−2(
a1(s)

Γ(α− 1)
+

a1(s)

Γ(α)
+

a1(s)

∆Γ(α− γ)

+
ma4(s)

Γ(α− 1)
+

ma4(s)

Γ(α)
+

ma4(s)

∆Γ(α− γ)
)ds,∫ 1

0

(1− s)α−2(
a2(s)

Γ(α− 1)
+

a2(s)

Γ(α)
+

a2(s)

∆Γ(α− γ)

+
a3(s)

Γ(α− 1)Γ(2− β)
+

a3(s)

Γ(α)Γ(2− β)
+

a3(s)

∆Γ(α− γ)Γ(2− β)
)ds} < ∞.

If θ0 = max{θ1, θ2}, then we obtain ∥Fx1−Fx2∥∗ ≤ θ0∥x1−x2∥∗ and so ∥Fx1−Fx2∥∗ → 0

as ∥x1−x2∥∗ → 0. Now, put M1 = 1
Γ(α)+

1
∆Γ(α)+

1
∆Γ(α−γ) , M2 = 1

Γ(α−1)+
1

∆Γ(α)+
1

∆Γ(α−γ) ,

m0 =
∫ 1

0
(1− s)α−γ−1b(s)ds and r0 = max{∥H∥Y .M1.m0, ∥H∥Y .M2.m0}. Note that, m0 <

∞ because b ∈ L1. Let x ∈ X and E = {x ∈ X : ∥x∥∗ ≤ r0}. Then, we have

|Fx(t)| ≤
1

Γ(α)

∫ t

0

(t− s)α−1b(s)H(s, x(s), x′(s), Dβx(s),

∫ s

0

h(ξ)x(ξ)dξ)ds

+
1

∆Γ(α)

∫ 1

0

(1− s)α−1b(s)H(s, x(s), x′(s), Dβx(s),

∫ s

0

h(ξ)x(ξ)dξ)ds



114 M. Shabibi, Sh. Rezapour, S. M. Vaezpour

+
1

∆Γ(α− γ)

∫ µ

0

(µ− s)α−γ−1b(s)H(s, x(s), x′(s), Dβx(s),

∫ s

0

h(ξ)x(ξ)dξ)ds

≤ ∥H∥Y (
1

Γ(α)
+

1

∆Γ(α)
+

1

∆Γ(α− γ)
)(

∫ 1

0

(1− s)α−γ−1b(s)ds) = ∥H∥Y M1m0

for all t ∈ [0, 1]. Note that, m0 ≥
∫ 1

0
(1− s)α−1b(s)ds. Also, we have

F ′
x(t) =

∫ 1

0

∂G(t, s)

∂t
f(s, x(s), x′(s), Dβx(s),

∫ s

0

h(ξ)x(ξ)dξ)ds

=
−1

Γ(α− 1)

∫ t

0

(t− s)α−2f(s, x(s), x′(s), Dβx(s),

∫ s

0

h(ξ)x(ξ)dξ)ds

+
1

∆Γ(α)

∫ 1

0

(1− s)α−1f(s, x(s), x′(s), Dβx(s),

∫ s

0

h(ξ)x(ξ)dξ)ds

+
1

∆Γ(α− γ)

∫ µ

0

(µ− s)α−γ−1f(s, x(s), x′(s), Dβx(s),

∫ s

0

h(ξ)x(ξ)dξ)ds

and so |F ′
x(t)| ≤ ∥H∥Y ( 1

Γ(α−1) +
1

∆Γ(α) +
1

∆Γ(α−γ) )(
∫ 1

0
(1 − s)α−γ−1b(s)ds) = ∥H∥Y M2m0.

Hence, ∥Fx∥∗ = max{∥Fx∥, ∥F ′
x∥} ≤ r0. Thus, F maps E into E. Similarly one can check

that F maps bounded sets into bounded sets. Let t1, t2 ∈ [0, 1] with t1 ≤ t2. Then, we have

|Fx(t1)− Fx(t2)|

≤ 1

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]|f(s, x(s), x′(s), Dβx(s),

∫ s

0

h(ξ)x(ξ)dξ)|ds

+
1

Γ(α)

∫ t2

t1

(t1 − s)α−1|f(s, x(s), x′(s), Dβx(s),

∫ s

0

h(ξ)x(ξ)dξ)|ds

+
|t2 − t1|
∆Γ(α)

∫ 1

0

(1− s)α−1|f(s, x(s), x′(s), Dβx(s),

∫ s

0

h(ξ)x(ξ)dξ)|ds

+
|t2 − t1|

∆Γ(α− γ)

∫ µ

0

(µ− s)α−γ−1|f(s, x(s), x′(s), Dβx(s),

∫ s

0

h(ξ)x(ξ)dξ)|ds

≤ ∥H∥Y (
1

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]b(s)ds+
1

Γ(α)

∫ t2

t1

(t1 − s)α−1b(s)ds

+|t2 − t1|(
1

∆Γ(α)
+

1

∆Γ(α− γ)
)(

∫ 1

0

(1− s)α−γ−1b(s)ds)).

Since b ∈ L1[0, 1],
∫ 1

0
(1− s)α−γ−1b(s)ds < ∞. Also, we have

sup{
∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]b(s)ds : t1, t2 ∈ [0, 1]} ≤
∫ 1

0

(1− s)α−1b(s)ds < ∞.

Since (t2 − s)α−1 − (t1 − s)α−1 → 0 as t2 → t1, for each ϵ > 0 there exists δ > 0 such that

|t2 − t1| < δ implies (t2 − s)α−1 − (t1 − s)α−1 < ϵ. If 0 < δ < ϵ and |t2 − t1| < δ, then∫ t1
0
[(t2 − s)α−1 − (t1 − s)α−1]b(s)ds ≤ ϵ

∫ 1

0
b(s)ds and so∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]b(s)ds → 0

as t2 → t1. Similarly we conclude that
∫ t2
t1
(t1 − s)α−1b(s)ds and

|t2 − t1|
∫ 1

0

(1− s)α−γ−1b(s)ds → 0
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tend as t2 → t1. Thus, |Fx(t2)− Fx(t1)| → 0 as t2 → t1 and so F is equi-continuous on E.

Hence, F : E → E is completely continuous. Now by using Lemma 1.2, F has a fixed point

on E and so the problem (1.1) has a solution. �

Note that in Theorem 2.1, the map f(t, ., ., ., .) could be discontinuous at points of a

subset of [0, 1] of measure zero. One can obtain solutions of the problem (1.1) under some

different conditions. For example in next result, the map f(t, ., ., ., .) could be discontinuous

at t = 0.

Theorem 2.2. Suppose that f : [0, 1] × X4 → R is a map such that f(t, x1, ., ., x4) ≥ 0

for all (x1, ., ., x4) ∈ X4 and almost all t ∈ [0, 1], f(t, ., ., ., .) : [0, 1] → R is continuous for

almost all t ∈ [0, 1], there exist b ∈ L1[0, 1] and H,K : R4 → [0,∞) such that H and K are

nondecreasing in all components, limx→∞
H(x,x,x,x)

x = 0, limz→∞ K(z, z, z, z) = Λ < ∞ and

f(t, x1, ., ., x4) ≤ b(t)H(x1, ., ., x4) +K(x1, ., ., x4)

for all (x1, ., ., x4) ∈ X4 and t ∈ [0, 1]. Then the problem (1.1) has a solution.

Proof. For each x ∈ X and n ≥ 1 define (x)n(t) = max{ 1
n , x(t)} whenever x(t) ≥ 0 and

(x)n(t) = min{−1
n , x(t)} whenever x(t) < 0. Put fn(t, x1, x2, x3, x4) = f(t, (x1)n, ., ., (x4)n)

for all n, t and x1, x2, x3, x4. It is clear that (x)n(t) → x(t) and each fn is a regular function

on [0, 1]. For each n, consider the regular fractional differential equation

Dαx(t) + fn(t, x(t), x
′(t), Dβx(t),

∫ t

0

h(ξ)x(ξ)dξ) = 0 (2.2)

under the boundary condition of the problem (1.1). Suppose that ∥b∥1 > 0 and ϵ0 > 0.

Choose r1 > 0 such that |Λx | <
ϵ0
2 for all |x| > r1 and choose r2 > 0 such that H(x,x,x,x)

x <
ϵ0

2∥b∥1
for all |x| > r2. Thus,

Λ+∥b∥1H(x,x,x,x)
x < ϵ0 for all |x| > r0 := max{r1, r2}. Put

θ0 := max{ 1

Γ(α)
+

1

∆Γ(α)
+

1

∆Γ(α− γ)
,

1

Γ(α− 1)
+

1

∆Γ(α)
+

1

∆Γ(α− γ)
}

and ϵ0 = 1
θ0
. If r > max{r0, r0

Γ(2−β) ,m.r0}, then
Λ+∥b∥1H(r,r, r

Γ(2−β)
,m.r)

r < 1
θ0
. Now, consider

the set Ω = {x ∈ X : ∥x∥∗ < r}. For each n ≥ 1, define Fn : Ω̄ → X as (2.1) in which we

replaced f by fn. If {xk} is a convergent sequence in Ω̄, then xk → x and x′
k → x′ uniformly

on [0, 1]. Since ∥Dβxk −Dβx∥ ≤ ∥xk−x′∥
Γ(2−β) , D

βxk → Dβx. Also, we have

|
∫ t

0

h(ξ)xk(ξ)dξ −
∫ t

0

h(ξ)x(ξ)dξ| ≤
∫ t

0

h(ξ)|xk(ξ)− x(ξ)|dξ ≤ ∥xk − x∥.m

and so limk→∞
∫ t

0
h(ξ)xk(ξ)dξ =

∫ t

0
h(ξ)x(ξ)dξ. Thus,

lim
k→∞

fn(t, xk(t), ...,

∫ t

0

h(ξ)xk(ξ)dξ) = fn(t, x(t), ...,

∫ t

0

h(ξ)x(ξ)dξ).

Note that,

|Fnxk(t)− Fnx(t)| ≤
∫ 1

0

[
(t− s)α−1

Γ(α)
+

t(t− s)α−1

∆Γ(α)

+
t(µ− s)α−γ−1

∆Γ(α− γ)
]|fn(s, xk(s), ...,

∫ s

0

h(ξ)xk(ξ)dξ)− fn(s, x(s), ...,

∫ s

0

h(ξ)x(ξ)dξ)|ds
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≤ (
1

Γ(α)
+

1

∆Γ(α)
+

1

∆Γ(α− γ)
)

×
∫ 1

0

|fn(s, xk(s), ...,

∫ s

0

h(ξ)xk(ξ)dξ)− fn(s, x(s), ...,

∫ s

0

h(ξ)x(ξ)dξ)|ds.

By using a similar method, we have

|F ′
nxk(t)− F ′

nx(t)| ≤ (
1

Γ(α− 1)
+

1

∆Γ(α)
+

1

∆Γ(α− γ)
)

×
∫ 1

0

|fn(s, xk(s), ...,

∫ s

0

h(ξ)xk(ξ)dξ)− fn(s, x(s), ...,

∫ s

0

h(ξ)x(ξ)dξ)|ds.

Thus, ∥Fnxk − Fnx∥∗ → 0 as xk → x. Hence, {Fn(xk)}∞k=1 is relatively compact in Ω̄ and

so Fn is a completely continuous operator on Ω̄ for all n. Suppose that n ≥ 1 be given and

there exist y ∈ ∂Ω and λ ∈ (0, 1) such that y = λFny. Since ∥y∥∗ = r, ∥y∥ ≤ r, ∥y′∥ ≤ r

and also ∥Dβy∥ ≤ ∥y′∥
Γ(2−β) ≤ r

Γ(2−β) and ∥
∫
h(z)y(z)dz∥ ≤ mr. By using the assumption,

we have

|y(t)| = |λFny(t)| = |λ
∫ 1

0

G(t, s)fn(s, y(s), ...,

∫ s

0

h(ξ)y(ξ)dξ)ds|

< [
1

Γ(α)
+

1

∆Γ(α)
+

1

∆Γ(α− γ)
]

×
∫ 1

0

K(r, r,
r

Γ(2− β)
,m.r)ds+

∫ 1

0

b(s)H(y(s), ...,

∫ s

0

h(ξ)y(ξ)dξ)ds

≤ (
1

Γ(α)
+

1

∆Γ(α)
+

1

∆Γ(α− γ)
)(Λ + ∥b∥1.H(r, r,

r

Γ(2− β)
,mr))

and

|y′(t)| = |λF ′
ny(t)| = |λ

∫ 1

0

∂G(t, s)

∂t
fn(s, y(s), ...,

∫ s

0

h(ξ)y(ξ)dξ)ds|

< [
1

Γ(α− 1)
+

1

∆Γ(α)
+

1

∆Γ(α− γ)
]

×(Λ + ∥b∥1.H(r, r,
r

Γ(2− β)
,mr)).

Hence,

∥y∥∗ < max{ 1

Γ(α)
+

1

∆Γ(α)
+

1

∆Γ(α− γ)
,

1

Γ(α− 1)
+

1

∆Γ(α)
+

1

∆Γ(α− γ)
}

×(Λ + ∥b∥1.H(r, r,
r

Γ(2− β)
,mr))

and so r < θ0(Λ + ∥b∥1.H(r, r, r
Γ(2−β) ,mr)). Thus, r

Λ+∥b∥1.H(r,r, r
Γ(2−β)

,m.r) < θ0 which is

a contradiction to (4.2). This implies that y ̸∈ ∂Ω. Now by using Lemma 1.3, Fn has a

fixed point xn ∈ Ω̄ for each n, that is the problem (2.2) has a solution. Let (x)n be the

solution of the problem (2.2). As we proved, {(x)n} is relatively compact and (x)n → x for

some x ∈ X. Thus, x ∈ Ω̄. Similar to last result, we can show that limn→∞Dβxn(t) =

Dβx(t), limn→∞x′
n(t) = x′(t) and limn→∞

∫ t

0
h(z)xn(z)dz =

∫ t

0
h(z)x(z)dz for all t ∈ [0, 1].

Consequently, we get

limn→∞fn(t, x(t), ...,

∫ t

0

h(z)x(z)dz) = f(t, x(t), ...,

∫ t

0

h(z)x(z)dz)
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and

|G(t, s)fn(t, x(t), ...,

∫ t

0

h(z)x(z)dz)

≤ (
1

Γ(α)
+

1

∆Γ(α)
+

1

∆Γ(α− γ)
)[b(t)K(r, r,

r

Γ(2− β)
,m.r)] < ∞

for almost all t ∈ [0, 1]. By using the Lebesgue dominated theorem, we obtain

x(t) =

∫ 1

0

G(t, s)f(s, x(s), ...,

∫ s

0

h(ξ)x(ξ)dξ)ds

for all t ∈ [0, 1]. This completes the proof. �

Now we give the following examples to illustrate our results.

Example 2.1. Let α ≥ 2, µ, γ, β ∈ (0, 1), k ≥ 1, q1, . . . , qk+1 ∈ (0, 1), δ1, δ2, ..., δk be real

numbers such that 0 < δ1 < δ2 < ... < δk < 1 and h ∈ L1[0, 1]. Put b(t) = 1
tq1

whenever

t ∈ (0, δ1), b(t) = 1
(t−δ1)

q
2

whenever t ∈ (δ1, δ2) and finally b(t) = 1
(t−δk)

q
k+1

whenever

t ∈ (δk, 1). Also, let K(x1, x2, x3, x4) =
∑4

i=1
|xi|

1+|xi| and yx(t) =
∫ t

0
h(ξ)x(ξ)dξ. By using

Theorem 2.2, the fractional deferential equation

Dαx(t) + b(t)(
|x(t)|

1 + |x(t)|
+

|x′(t)|
1 + |x′(t)|

+
|Dβx(t)|

1 + |Dβx(t)|
+

|yx(t)|
1 + |yx(t)|

) = 0

with boundary condition x(0) = 0 and x(1) = Dγx(µ) has a solution.

Example 2.2. Let α ≥ 2, µ, γ, β, q ∈ (0, 1), p1, . . . , p4 ∈ [0, 1) , α1, . . . , α4 ∈ [0,∞) and

h ∈ L1[0, 1]. Consider the problem

Dαx+
1

tq
[α1|x|p1 + α2|x′|p1 + α3|Dβx|p3 + α1|yx|p1 ]

+
1

1 + x2(t)
+

1

1 + (x′)2
+

1

1 + (Dβx)2
+

1

1 + (yx)2
= 0, (2.3)

with boundary conditions x(0) = 0 and x(1) = Dγx(µ), where yx =
∫ t

0
h(ξ)x(ξ)dξ. Put

H(x1, x2, x3, x4) =
∑4

i=1 αi|xi|pi , K(x1, x2, x3, x4) =
∑4

i=1
1

1+x2
i
and b(t) = 1

tq . One can

check that H, K and b satisfy the conditions of Theorem 2.3. Thus, the problem (2.3) has

a solution.

REFERENCES

[1] R. P. Agarwal, D. O’regan, S. Stanek, Positive solutions for Dirichlet problem of singular nonlinear

fractional differential equations, J. Math. Anal. Appl. 371 (2010) 57–68.

[2] A. Cabada, G. Wang, Positive solution of nonlinear fractional differential equations with integral bound-

ary value conditions, J. Math. Anal. Appl. 389 (2012) 403–411.

[3] R. Li, Existence of solutions for nonlinear fractional equation with fractional derivative condition, Adv.

Diff. Eq. (2014) 2014:292.

[4] Y. Liu, P. J. Y. Wong, Global existence of solutions for a system of singular fractional differential

equations with impulse effects, J. Appl. Math. Inform. 33 (2015) No. 3-4, 327–342.

[5] N. Nyamoradi, T. Bashiri, S. M. Vaezpour, D. Baleanu, Uniqueness and existence of positive solutions

for singular fractional differential equations, Electron. J. Diff. Eq. (2014) No. 130, 13 pages.

[6] I. Podlubny, Fractional differential equations, Academic Press (1999).



118 M. Shabibi, Sh. Rezapour, S. M. Vaezpour

[7] Sh. Rezapour, M. Shabibi, A singular fractional differential equation with Riemann-Liouville integral

boundary condition, J. Adv. Math. Stud. 8 (2015) No. 1, 80–88.

[8] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integral and derivative; theory and applications,

Gordon and Breach (1993).

[9] J. Schauder, Der fixpunktsatz in funktionalraumen, Studia Math. 2 (1930) 171–180.

[10] Y. Wang, L. Liu, Necessary and sufficient condition for the existence of positive solution to singular

fractional differential equations, Adv. Diff. Eq. (2015) 2014:207.

[11] E. Zeidler, Nonlinear functional analysis and its applications, Springer-Verlag (1986).


