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A SINGULAR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION
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We investigate the existence of solutions for a singular fractional differential

equation with some integral boundary condition.
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1. Introduction

As you know it has been published many papers about fractional differential equations
and inclusions which have been applied in modeling of many problems of engineering sciences,
physics, nano technology, etc. Some researchers have been investigated the existence of
solutions for some singular fractional differential equations (see for example, [4], [5], [7]
and [10]). In 2010, the fractional problem D%u(t) + f(¢,u(t), D*u(t)) = 0 with boundary
conditions 4(0) = u(1) = 0 investigated, where 0 <t <1, 1 <a<2,0<pu<a—1, D*is
the standard Riemann-Liouville fractional derivative, f satisfies the Carateodory conditions
on [0,1]x(0,00) X R, f is positive and f(t,x,y) is singular at ¢ = 0 ([1]). In 2012, the fractional
differential equation D*u(t) + f(¢,u(t)) = 0 with boundary conditions «(0) = u”(0) = 0
and u(1) = /\folu(s)ds investigated, where 0 < ¢t < 1, 2 < a < 3, 0 < A < 2, D® is the
Caputo fractional derivative and f : [0,1] x [0,00) — [0,00) is a continuous function ([2]).
In 2014, the singular fractional problem “Dg, u(t) + f(t,u(t),* DS u(t)) = 0 with boundary
conditions u(0) = v’(0) = 0 and v/(1) =° DF, u(1) investigated, where 0 <t < 1,2 < ¢ <3,
0<o<1, f:(0,1 x Rx R — R is continuous with f(¢,z,y) may be singular at some
points of ¢ € [0,1] and °D{, is the Caputo derivative ([3]). By using main idea of the works,

we investigate the singular fractional integro-differential equation

D(t) + f(t,a(t), 2/ (t), D (t), / h(E)2(€)de) = 0 (1.1)

with boundary conditions z(0) = 0 and z(1) = D7z(u), where 0 < t < 1, z € C'[0,1],
a>2,0<pB<1,0<y<1,0<u<1,heL0,1]is nonnegative with || ||y =m , D? is
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the Caputo fractional derivative of order ¢ and f(t,x1, z2, 23, x4) is singular at some points
t € [0,1]. In this paper, we use |.||; as the norm of L'[0,1], ||.|| as the norm Y = C]0, 1] and
|||« as the norm of X = C*[0,1]. As we know, Riemann-Liouville integral of order p with the
lower limit @ > 0 for a function f : (a,00) — R is defined by I”, f(t) = ﬁ fat(tfs)pflf(s)ds
whenever the right-hand side is pointwise define on (a, 00) ([6]). we denote I}, f(t) by I? f(t).
Also, the Caputo fractior;al derivative of order o > 0 of a function f : (a,00) — R is defined
by ¢D*f(t) = F(nl_a) /0 0 _f;iszl_n ds, where n = [a] + 1 ([6]). We need the following

results.

Lemma 1.1. ([8]) Suppose that 0 < n—1 < a < n and x € C(0,1) N L*(0,1). Then
I*Dz(t) = z(t) + Z?:_Ol cit® for some constants cg,...,cn_1 € R.

Lemma 1.2. ([9]) If E is a closed, bounded and convex subset of a Banach space X and
F: E — E is completely continuous, then F has a fixed point in E.

Lemma 1.3. ([11]) Let X be a Banach space, C' a closed and convex subset of X, Q a
relatively open subset of C with 0 € Q and F : Q — C a continuous and compact map. Then
either F has a fived point in Q or there exist y € O and lambda € (0,1) such that y = A\Fy.

2. Main Results

We first prove the following key result.

Lemma 2.1. Let a > 2,0<vy<1,0< pu <1, A:l—% and y € L'0,1]. Then
unique solution of the problem D%u(t) + y(t) = 0 with boundary conditions u(1) = DVu(u)
and u(0) = 0 is up(t) = fol G(t,s)y(s)ds, where

—A(t—s)u71F(a—7)+t£(r‘ot(;;yr)‘é(l)tis’y);71—tF(a)(lt—s)aiwilO <s<t<l1, s<up,

—A(t—s)* " 4t(1—s)>!
AT (a) SH=S5>t>4

tL(a=y)(1=8)* "'t (a) (u=s)* """
AT()T (@—7)

t(1—s)> "1
TAT(a) 0<t<s<1l,u<s.

Proof. Let u be a solution for the problem. By using Lemma 1.1, we get

u(t) = fﬁ /0 (t—s)* Yy(s)ds + c1t.

a—y— T 1
Hence, Du(t) = *ﬁ [ — 5)* 7 y(s)ds + cfz—y and u(l) = —ﬁ fya -
5)* Lly(s)ds + ¢1. Since u(1) = DYu(p), we conclude that

e 1 1

fa=s) = e J, 49w = ey [ =9 o

14

and so ¢; = ﬁ(a) fol(l —8)% ly(s)ds — m o (u—5)*"7"1y(s)ds. Thus, we obtain
t o 1 a oy
ult) = — s [ (t—s)2 () xrbs [2 (1= 8)y(s)ds — s i (u—5)"~ 7 y(s)ds.

61(1 —
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)= s [ = oo + s ([ [ / (1= 5 y(s)ds)
— / / o1y (5)ds)

_ M A=) T T (a =) + (e =) (1 = 8) Tt — T (a)(p =)
N /0 AT(a)T(a — ) y(s)d

P iD(0— 7)(1 - 5)°1 — tD(a)( — 5> Lyl = g)o?
+f AT(@)T(a — ) y(s)ds +/u

whenever ¢ < p and

ut) =~ ([ 0= 9 uts)a)

+AFt(a) (/OIL +/; +/t1)((1 —5)* ty(s)ds) — m /OH(M )Ly (s)ds

=A== ) + D (= ) (1 — s)* T — i () (p — )T
-/ AT(@)T(a —7) y(s)ds

t _Sa—l _Sa—l 1 _Sa_l
+/ Alt )AF(—;)t(l ) y(s)ds—i—/t 715(1 ())4 y(s)ds

whenever ¢ > p. This implies that, u(t) = f01 G(t, s)y(s)ds = up(t) for all ¢.

Define the map F': X — X by

/Gts s, x( /h
1

= — —g) ! s,x(s A
- F(a)/u (), (51, D), [ BE)w(€)dE)as

0 0

t S

- ! _soc—l s. x(s B
txp | (-9 (s a9/, D ()/ HE)(€)de)ds

5y 09, 6
- w—8)" 77 f(s, x( h(&)x(£)dE)ds.
AT{a—7) Jy W79 6 2.1)
If z € C10, 1], thenDPx(t) = F(l 5 fot :(”t sz)dﬂs and so
/ t /
DPx Ll / t—s)Pds = Mtl_ﬁ.
Thus, D’z € C[0,1] and |D5x| < H2 ﬁ) Since fo z)dz = m > 0, we get |g(t)]

||| fo 2)dz < ml|z||, where g(¢ fo 2)dz. Now, we give our main result.

<
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Theorem 2.1. Suppose that there exist the maps a1, as,as,aq : [0,1] — R with fol a;(t)dt <
oo for alli=1,2,3,4 such that
‘f(t,xhylazlawl) - f(taxQ,y27227w2)|

< ar(t)]wr — @2 + az(t)|yr — yol + as(t)|21 — 22| + aa(t)|wr — ws
for all (x1,y1,21,w1), (T2, Y2, 22, w2) € R* and t € [0,1]. Assume that there exist b € L*[0, 1]
and H € Y* such that | f(t,x1, 22,3, 24)| < b(t)H (71,22, 73,24) for all (x1, 2,73, 74) € R

and almost all t € [0,1] and |H||y := Sup{|H (z1, 72,23, 74)| : (1,22, 73,24) € R*} < c0.
Then the singular problem (1.1) has a solution.

Proof. If x1,29 € X, then

1 ! a—1 °
P = Foal0) < 5 / (t = )" (s, 21(5), / h(E) (€)de)

~f(ssa(5) o [ M2l + 1

x /O (1= )™ (s, 22(5) /0 B(E)x1(€)dE) — f(5,22(5), . /O h(E)2(€)d€) ds

t

S —8)* 7 f(s,21(5), ... ) 1
+Ap(a_7)/0 (1 =) (s, 21(s), /0 h(€)x1(€)dE)
7f(5,$2($),...7/ h(f)ftg(f)dg)‘ds

0

1 t
< o) / (t —5)* Y ay(s)|z1 — za| + ag(s)|x) — xh| 4 as(s)|DPxy — DP s
0

+aq(s)| /S h(&)(w1(§) — x2(€))dE])ds
0
L 1 — 52 Yay(s)|zy — as ()2 — 25| + aa(s)|DPzq — DPx
+F(a)/0 (1 —5)*"(ar(s)|x1 — 22| + az(s)|z] — x5| + as(s)|D"x1 — D" xs

tay(s) / T h(E)(1(6) — aa(E))de])ds

t M
- _ o\a——1 _ I
TAT(a =) /0 (= o) (sl —mal + aals)loy = o3

tas()|DPz) — DPaa| + aa(s)] / T h(E) (21 (6) — m2(€))de])ds

< oy — x2||<ﬁ / (t— )2 Y(as(s) + aa(s) m)ds)
e~ 5l s [ =9 02(9) + 2
ey — un(ﬁ / (1— )™ (ay(s) + as(s).m)ds)
i wéll(ﬁ / (1— )" (az(s) + F{‘;(S)ﬂyds)

t

Hlar — ol (xpre =y / (5= ) ar(s) + aa(s).m)ds)
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+zy - x'zH(m /Oﬂ(ﬂ —5)* 77 Hag(s) + Fg’(;g)ﬁ) )ds)

1,2a1(8) + 2may(s)  a1(s) + may(s)
0 [(a) Al'(a =)
/ / ! a—vy—1 20’2(5) 02(5)
oy =gl [ (1= s G+
2as3(s) n as(s)
L(@)'(2-p) Al a—7)(2-5)
< O1([lzr — w2l + ||2) — 25]) = O1llzr — w2lls,

)ds

+

)ds

where
! ai(s mag(s)  ai(s) + may(s
0, = max{/o (1- s)a*”*1(2 ( )I—"—(j) 4(s) (A%a — ;1)( ))ds,
L ay-1,202(5) as(s) 2a3(s) as(s) S < oo
L a9 T A Tt AT e <

On the other hand, we have
|Fy, (8) — Fy, (8)]

€T

< [ RN, [ WD) ~ 5206 [ (I

<l x2||/0 - S)Q_Q(F(CL;(_S)U ’ Clil((cf)) - AFa(la(S—) 7)

may(s)  mag(s) may (s

Ta-1 " Ta) T afa-%
T a2, a2(s) | ax(s) az(s) as(s)
e - ‘”2”/0 =9 (o * Ta) + Bla =] * Tla — 1=

asz(s) n az(s)
F(@)l(2-p8)  Al(a—-7)I(2-5)

where
B 1 o al(s) al(s) al(s)
b =maa( | (1= 2 + O A

mag(s) = may(s) may(s) \ds
Ia—1) () Al (o =)'
1
1 _ gya—2(_2(5) as(s) az(s)
f 0= i a
as(s) n as(s) n as(s)

Ma-1I2-p) T(@r2-p5) Al(a-7I'(2-7)
If g = max{01, 02}, then we obtain |Fz1 — Fxs|l.« < 6p|lx1 — 22|/« and so ||Fx; — Fasl|« — 0
as ||z1 —x2||« — 0. Now, put My = ﬁ+m+m, My =

+

)ds < 01 ([lz1 — 22|l + (|2} — 25]]) = O2f|z1 — 22|+,

+

)ds} < oc.

1y 1, 1
| T'(a—1) ' Al'(a) ' AT(a—7)’
mo = [y (1 =) 77 b(s)ds and ro = max{||H||y .Mi.mq, |H||y.Ms.mo}. Note that, mo <
oo because b € L. Let z € X and E = {x € X : ||z||« < ro}. Then, we have

L t — 8)*p(s)H (s, z(s),2'(s), DPx(s ) x s
0] € g [ (=97 ) 5009, (). DPa(s). [ h©)a(6)de)a

# ' _Sa—ls sxsx/s ﬁxs 8 . <
+AF(a)/0 (1—s)*"'b(s)H (s, 2(s),2'(s), D (),/0 h(€)x(€)de)d
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R —8)* " (s)H (s, z(s), 2" (s), DPx(s ) x s
T [, 0 9T N H s (s). (). D). [ h©a()de)a
<l (75 + Ry * B =)\ (19" b(e)ds) = Iy Mimg

for all ¢ € [0,1]. Note that, mg > fol(l — 5)*1b(s)ds. Also, we have

1 s
FI(t) = / 9CE5) (s (), 2/ (s), DPa(s), / h(E)2(€)de)ds

ot
= o Jy 0 9 (0.0, D75, [
1
* AFl(a) /0 (L—8)"" 1 f(s,2(s),2'(s), D a(s), /O h(€)x(€)de)ds
1 s

s H ) (s (8. 2 (s ’8$S r s
*Amﬁ)/o (1= )7 (s, 2(5),2(s), D (),/0 h(E)2(€)de)d

1 ey
and so |F2(6)] < [ Hlly (rp + arvy + sy ) (L = )27 1b(s)ds) = | H|ly Mamo.
Hence, ||Fy|l« = max{||F:||,||FLll} < ro. Thus, F maps E into E. Similarly one can check
that F' maps bounded sets into bounded sets. Let t1,to € [0, 1] with ¢; < t2. Then, we have

|[Fe(t1) — Fa(ta)]

< i [l 9 = = / n(E)a(€)de)ds
) ”(tl—s)a (s, / h(€)a(€)de)lds
el [ a9 st .0 <s>/0h<s> 2(€)d€) ds
+Af§"(af1) / 'hm)“ . 0(s), (5, D), [ HEa ) ds
< (g5 | "t — 907 — (11 — )" p(s)ds + o/ (tr — )" b(s)ds
H il + a0 - 9T e

Since b € L'[0,1] fol 1 —5)* 77 1p(s)ds < oo. Also, we have

1
Sup{/ (ts — $)°=1 — (11 — $)°~1b(s)ds : £, 12 € [0, 1]} g/ (1 — 5)°~1b(s)ds < oo.
0
Since (t2 — 8)*~ 1 — (t; — 5)*~! — 0 as ty — 1, for each € > 0 there exists § > 0 such that
[t — t1] < d implies (to — s)*™+ — (t1 — s)a L<e If0< 6§ <eand |ta — t1| < 6, then

gl[(tg —5)* bt —(t; — 5)*Hb(s)ds < efo s)ds and so
ty
/ [(ts — )1 — (11 — $)°b(s)ds — 0
0
as to — t1. Similarly we conclude that fttz — 5)*~1b(s)ds and

|t2—t1|/ oz'ylb dS—)O
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tend as to — t1. Thus, |F.(t2) — Fr(t1)] — 0 as to — t; and so F is equi-continuous on E.
Hence, F : E — E is completely continuous. Now by using Lemma 1.2, F has a fixed point

on E and so the problem (1.1) has a solution. O

Note that in Theorem 2.1, the map f(¢,.,.,.,.) could be discontinuous at points of a
subset of [0, 1] of measure zero. One can obtain solutions of the problem (1.1) under some
different conditions. For example in next result, the map f(t,.,.,.,.) could be discontinuous
at t =0.

Theorem 2.2. Suppose that f : [0,1] x X* — R is a map such that f(t,z1,.,.,24) > 0
for all (x1,.,.,24) € X* and almost all t € [0,1], f(t,.,.,.,.) : [0,1] — R is continuous for
almost all t € [0,1], there exist b € L'[0,1] and H, K : R* — [0,00) such that H and K are

H(zz,z,z)
x

nondecreasing in all components, lim,_, =0, lim, 0 K(z,2,2,2) = A < o0 and

f(twrl) oy .,$4) S b(t)H(I‘]_, .y .,1'4) + K(.’IJ]_, .y '71‘4)

for all (z1,.,.,74) € X* and t € [0,1]. Then the problem (1.1) has a solution.

Proof. For each € X and n > 1 define (2),(t) = maz{i,z(t)} whenever z(t) > 0 and
(2)n(t) = mm{%,x(t)} whenever x(t) < 0. Put f,(¢t, z1, 22, 23,24) = f(& (T1)ns -, - (Ta)n)
for all n, ¢t and 1, z2, x5, x4. It is clear that (), (t) — «(t) and each f,, is a regular function

on [0,1]. For each n, consider the regular fractional differential equation

Dx(t) + fult, (1), 2’ / h(&)x(€)dE) =0 (2.2)

under the boundary condition of the problem (1.1). Suppose that ||bl]; > 0 and ¢ > 0.
Choose 1 > 0 such that [£] < € for all || > 7, and choose 75 > 0 such that

for all || > ro. Thus, M < g for all |z| > ro := max{ry,r2}. Put

H(z,z,z,x)
— = <

Mol
1 n 1 n 1 1 n 1 n 1 )
I'a) Al'(a) Al(a—7v) T(a—=1) Al(a) ATl'(a—7%)

A+|\b||1H(T,r7ﬁ,m.r)

0o := max{

and g = %. If r > max{ry, %,m.ro}, then - < %. Now, consider
the set O = {z € X : ||z||« < r}. For each n > 1, define F,, : @ — X as (2.1) in which we
replaced f by f,. If {x}} is a convergent sequence in Q, then x;, — x and z}, — 2’ uniformly

on [0,1]. Since || DAz — DPz| < ”w’“ ”;3)”, DPx), — DPz. Also, we have

| / h(E)an(€)de — / (©)de| < / B(E) e (€) — 2(€)|dE < g — x]l-m

and so limy_, o fo h(&)xk(£)dE = fo &)d¢. Thus,

khm fu(t, gt /h z,(8)dE) = fn(t, x(t) /h

Note that,
Lit—s)t  t(t—s)ot

\ank(t)—Fnﬂc(t)IS/O[ T(a) | Al(a)

tp—s) !

+m]|fn(5a$k(s)ww/o h(§)wk (£)dS) _fn(svx(s)w“?/o h(&)z(€)dE)|ds
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< 1 1 1
= (f) * ar@) T AT =)

x /0 (5,2 (5), o /0 W)k (€)dE) — fuls, 2(s), . /0 B(E)(€)de)|ds.

By using a similar method, we have

1 1 1

Fio®)| < (5= * a70@) + 37—

[ Frai(t) —

x /0 (5,2 (5), o /0 W)k (€)dE) — fuls, 2(s). - /0 B(E)(€)de)|ds.

Thus, ||F,zr — Fozll. — 0 as 7, — z. Hence, {F,(z)}32, is relatively compact in Q and
so F,, is a completely continuous operator on €2 for all n. Suppose that n > 1 be given and
there exist y € 9Q and A € (0,1) such that y = AF,y. Since |lyll. =7, |yl <, ||V <r
and also || D%y < M <t and | [ h(2)y(2)dz|| < mr. By using the assumption,

h T2-f) < TP
0 = PEO =11 [ Gl [ OIS
<[ 1 1 1 ]
i) " AT(@) T A —7)
/ K(r r)ds + / b(s / h(e
l 1
and
’ o ’ o ! aG(t’S) °
1Y) = AEy(0)] = A / L n(su(s) e [ QO dE)s
1 1 1
a0t are T are =)
X(AJr”b”l'H(T’T’F(T—B)’mT))'
Hence,
1 1 1 1 1

1
”yH* < max{r(a) + AI‘(a) + AF(O[ — ’Y), I‘(a - 1) + AF(Oé) + AF(OZ - ’7)}

X (A +||b||l1-H (ryr ,mr))

r
'T(2-5)
and so r < Oo(A + ||b||1.H (r, 7, ﬁ,mr}). Thus, A+|\b||1.H(r,:7r(2[m,m.r
a contradiction to (4.2). This implies that y ¢ 9. Now by using Lemma 1.3, F,, has a
fixed point =, € Q for each n, that is the problem (2.2) has a solution. Let (x), be the

solution of the problem (2.2). As we proved, {(z),} is relatively compact and (x),, — = for

y < 0y which is

some € X. Thus, z € Q. Similar to last result we can show that limy,— oo DP za(t) =
DBx(t), limy oo’ (t) = 2'(t) and lim, oo fo 2)dz = fo z(z)dz for all ¢t € [0, 1].

Consequently, we get

limnﬂmfn(t,x(t),...,/o h(z)x(z)dz) :f(t,x(t),...,/o h(z)x(z)dz)
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and
|G(t, ) fu(t, z(t), ...,/0 h(z)z(z)dz)

1 1 1 r
= (Fa) T 2T T AT =) POK™ T 55

for almost all ¢ € [0,1]. By using the Lebesgue dominated theorem, we obtain

,m.r)] < oo

1 s
= G(t, , s | R d&)d
o) = [ Gt (sn(o)ns | MO
for all ¢ € [0,1]. This completes the proof. |

Now we give the following examples to illustrate our results.

Example 2.1. Let o« > 2, p,v,6 € (0,1), k> 1, ¢1,...,qx+1 € (0,1), 91,02, ..., 0 be real
numbers such that 0 < 01 < 6 < ... < 8, < 1 and h € L'[0,1]. Put b(t) = 7 whenever
1
t € (0,61), b(t) = m whenever t € (01,02) and finally b(t) = W
t € (0g,1). Also, let K(x1,22,23,24) = Z?:l 1_‘:”‘;‘” and y,(t) = fg h(§)x(&)dE. By using
Theorem 2.2, the fractional deferential equation
|z(8)] E4Q |DF ()] |y (2)]

L+lz()] 142" 1+ [DPz(®)] 1+ [y.(t)]
with boundary condition x(0) =0 and x(1) = DYx(u) has a solution.

whenever

D%x(t) + b(t)(

)=0

Example 2.2. Let o > 2, u,7v,8,q9 € (0,1), p1,...,ps € [0,1) , a1,...,a4 € [0,00) and
h € L'[0,1]. Consider the problem

1
D% + t?[a1|$\p1 + sz’ [P + as|DPz|P + on|ye|']

1 1 1 1
-0, (2.3
Tr20 T @2 1+ (D2 11 () (2:3)

with boundary conditions x(0) = 0 and z(1) = DYx(u), where y, = fot h(&)x(&)dE. Put

H(xy,29,23,24) = Z?zl a;|zi|Pi, K(x1,29,23,24) = Zle H% and b(t) = fiq One can

i

check that H, K and b satisfy the conditions of Theorem 2.3. Thus, the problem (2.3) has

a solution.
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