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THE USE OF COMPLEX POWER METHOD IN EXPERIMENTAL 
MODAL ANALYSIS 

 
Lică FLORE1 

The area of experimental modal analysis is quite extensive and it involves 
different fields: vibration measurements, signal processing, post-processing, 
mathematical background, issues of vibrating multi degree-of-freedom systems with 
different models of damping, etc. This paper does not aim to discuss in detail all 
aspects of modal testing. Instead, it focuses on showing a reliable method for system 
identification. The computational model with the use of complex power method is 
highly advisable in some branches (e.g. aircraft), and even mandatory. The article 
presents the theoretical support, experimental procedure and some results based on 
complex power method, used for aircraft structure identification. 
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1. Introduction 

 There are at least four reasons to know the modal parameters of a structure 
[1]: structure modification, assessment of the structural integrity and reliability, 
structural health monitoring and model updating. 
 The experimental modal analysis uses the system response to calculate the 
modal parameters by different identification techniques of modal analysis. The 
theoretical support of these techniques and practical aspects of vibration 
measurement techniques are discussed by Ewins [2]. 
 Some of the more advanced methods available for the modal parameters 
calculation in experimental modal analysis can be summarized below. 
 In the excitation domain, the multi-point excitation [3] is used to compute 
the FRFs from a complex extraction procedure that requires different exciters to 
be driving with excitation forces which are uncorrelated with their neighbors. A 
very important advantage of this method is that the resulting FRF (Frequency 
Response Function) data are free of any kind of inconsistency errors. The 
disadvantage comes when applying for large structures, because it is difficult to 
supply sufficient power to obtain significantly vibration levels. 
 In the measurements domain, the laser measurements with a non-intrusive 
nature of their operation (they are all non-contact transducers) has been more and 
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more applied and used lately [6]. The laser based response measurement 
techniques include holography and laser-Doppler velocimetry. 
 The latest evolution in modal acquisition and computing equipment allows 
an easy test set-up, as well as a quick and simple calculation of different modal 
parameters. There are specialized digital boards to calculate two magnitudes (real 
and imaginary parts of the response) in real time [4], reducing computation time 
and increasing the accuracy of the results. 
 There are several methods [5] for modal parameters calculation that 
exploit the same basic assumption: that in the vicinity of resonance frequency, the 
entire response of the system is dominated by the nearest mode. 
 Quadrature forces method is a very simple way to evaluate the generalized 
masses and generalized damping parameters for one mode of vibration.  This is 
based on simultaneous excitation with two harmonic forces out of phase by 90°, to 
deduce formulas to obtain the modal parameters. This method is a more unstable 
method because depends on the viscosity of the system and the test conditions 
(temperature, forces levels ...). 
  Peak-picking method is a method that works adequately for structures 
whose FRFs display well separated modes which have a moderate damping. The 
applicability of this method is limited, because it is difficult to obtain accurate 
measurements at resonances.  
 Circle-fit method exploits the fact that the behavior of most systems is 
dominated by a single mode in the vicinity of a resonance. By this method, the 
accurate value of natural frequency could be identified without any problem, but 
the damping estimate would not be reliable. 
 The complex power is the most important method in experimental modal 
analysis because can be obtained a lot of modal parameters with a good accuracy.  
To develop this method, it is necessary to excite the structure with appropriated 
forces at the resonance frequency and after this to make a micro frequency sweep 
around this frequency. 
 

2. Application of Power Complex Method 
 

 Any kind of structure, upon an external excitation, will deform and vibrate 
in a characteristic manner that should be known in advance. The vibration resulted 
can be a combination of different modes of vibration defined by frequency, shape, 
damping and stiffness. When a structure is excited by a force whose frequency 
corresponds to one of its vibration modes, the amplitude of movement can 
increase up to destroying the structure. It is important to isolate the parameters 
corresponding to each mode when they highly influence each other due to the 
proximity modes. There are two ways for this: a theoretical one and an 
experimental one, Fig. 1. 
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 Fig.1. Numerical and experimental approaches to identify the vibration modes. 

 
 Therefore, the experimentation is the only way to eliminate the 
approximations and suppositions from numerical calculation by evaluating the 
real modes from the measured data. This is based on the measurement of the 
response of the structure as a result of applied forces. 
 The complex power of a structure with harmonic excitation is the product 
between the velocities of the measurements points and the applied forces upon the 
structure. 

    { } { }1
2

P F V= ⋅ ⋅     (1) 

where: { }F = excitation force vector [kg*m*s-2]; 

  { }V = velocities vector [m/s] 
We need just to draw the real and imaginary parts of the complex power graphics 
and make some mathematical calculus. 
 

3. Summary of Modal Analysis Theory 
 
 Several mathematical expressions will allow the evaluation of the modal 
parameters. To the general equation of motion for an MDOF (multi degree of 
freedom) system, following equation applies: 

   [ ] { } [ ]{ } [ ]{ } { }
.. .

( )M x C x K x f t⋅ + + =    (2)  

where: [ ]M , [ ]C , [ ]K  are: mass matrix [kg], damping matrix [kg*s-1], 
respectively stiffness matrix [kg*s-2].  
With a stabilized harmonic excitation we have: 

{ } { }( ) j tf t F e ω= ⋅  = harmonic excitation force vector 

{ } { }( ) j tx t X e ω= ⋅  = displacement vector 
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{ } [ ]{ }( ) j tx t j X e ωω= ⋅
i

 = speed vector 

( ){ } [ ] { }2 j tx t X e ωω= − ⋅
ii

 = acceleration vector 

And by replacing the parameters above in eq.2  and simplifying by j te ω  we 
obtain: 
  [ ] [ ] [ ][ ] [ ]( ) { } { }2M j C K X Fω ω− ⋅ + + ⋅ =  

Or by multiplying with the negative complex unit: 
  [ ] [ ] [ ] [ ] [ ]( ) { } { }2j M C j K X j Fω ω⋅ ⋅ + ⋅ − ⋅ ⋅ = − ⋅  

 The displacement of each point is a spatial displacement and it is ideal to 
use the minimum number of coordinates needed to define the configuration of the 
entire system. These quantities are known as generalized coordinates. 
Changing the coordinates { }X to generalized coordinates{ }q and the mass[ ]M , 

damping [ ]C  and stiffness[ ]K  to generalized parameters[ ]μ ,[ ]β  and [ ]γ  based 
on formulas: 
 { } [ ] { }X qα= ⋅ ;   [ ] [ ] [ ] [ ]T Mμ = Φ ⋅ ⋅ Φ ;   [ ] [ ] [ ] [ ]Tk K= Φ ⋅ ⋅ Φ  
we can write the modal equation: 

  
[ ] [ ] [ ] [ ] [ ]{ } { } [ ] { }2j j q Fβ ω μ ω γ α⋅ + ⋅ − ⋅ = ⋅   (3) 

Where:[ ]α = response frequency function (complex conjugate receptance matrix 
 of system) [5], 
 1j = − ,  
 [ ]Φ = eigenvector matrix, 

 [ ]ω = diagonal matrix of frequencies,  

 { }q = generalized coordinates vector,  
And:    

 [ ]β  = generalized damping matrix,  

 [ ]μ = generalized mass matrix,  

 [ ]γ = generalized stiffness matrix. 
 These parameters are the global characterizing parameters for each 
individual vibration mode. They show the energy of the excited mode and the 
share of the mass for each mode. 
With the notation:  
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  [ ] [ ] [ ] [ ] [ ] [ ]{ }2( )Z j jω β ω μ ω γ= ⋅ + ⋅ −    (4) 

where: [ ]( )Z ω called complex impedance matrix [4], the equation (3) can be 
written: 

   [ ] { } [ ] { }( )Z q Fω α⋅ = ⋅     (5) 

or:    { } [ ] [ ] { }1( )q Z Fω α−= ⋅ ⋅     (6) 
Each mode i can be isolated by applying an excitation at its natural frequencies 
( iω ω= ) where iω = resonance frequency. At this frequency, the imaginary parts 
are zero and the generalized coordinates vector { }q has all of terms zero, except 
the line i because only this mode contributes to the structure response. After  
normalization, considering unitary the maximum amplitude for each mode, the 
equation (3) becomes: 

      { } [ ] { }ii
Fβ ω α⋅ = ⋅      (7) 

where: { }i
β =column i of the generalized damping matrix. 

Considering the velocities vector: 
   { } [ ] { }V qω α= ⋅ ⋅      (8) 

then from (1) and (4) we obtain:  

   { } [ ] { }
2

P F qω α= ⋅ ⋅      (9) 

or:   { } { }
2

iiP qω ω β⋅
= ⋅ ⋅      (10) 

where: { }iβ =line i of the generalized damping matrix. 
 
From (6), (7) and due to the properties of matrix  [ ]β  the relation (10) becomes: 

  [ ] [ ] [ ]
2

1( )
2

ii
i

P Zω ω β ω β−⋅
= ⋅ ⋅ ⋅     (11) 

One mode of MDOF system is described by means of 2 parameters: 

natural frequency:  ii
i

ii

γω
μ

=      (12) 

damping ratio:  
2

ii
ii

ii ii

βζ
γ μ

=
⋅

     (13) 

where:  iiζ = damping ratio corresponding to vibration mode i ; 
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By replacing the parameters from (4), (12) and (13) relation to (11) relation and 
making its Taylor series expansion, around the resonance frequency iω  , one can 
obtain a good evaluation, just considering one order of this expansion: 

 
2( ) ( ) (4 .........

1! 2!
i i

ii ii i ii iP j ω ω ω ωγ ζ ω μ ω
⎧ ⎫− −

= ⋅ ⋅ − − ⋅ ⋅⎨ ⎬
⎩ ⎭

  (14) 

Because the power is a complex parameter one can write: 
   ( ) ( ) ( )P R jSω ω ω= +  
where,   R(ω) = active power [W] and S(ω) = reactive power [W] and then,  
we can deduce that at the resonance ( iω ω= ):  

   ( )i ii ii iR ω γ ζ ω= ⋅ ⋅      (15) 
   ( ) 0iS ω =       (16) 

   0
i

dR
d ω ωω =

⎛ ⎞ =⎜ ⎟
⎝ ⎠

  and  
i

ii
dS
d ω ω

γ
ω =

⎛ ⎞ = −⎜ ⎟
⎝ ⎠

  (17) 

 In order to obtain the modal parameters, we draw the real and imaginary 
parts of the complex power according to (14) graphics and find the maximum of 
the real part and zero of the imaginary part (Fig. 2).  
 

 
Fig.2. The  real and imaginary parts of complex power at resonance 

 
 The natural frequency corresponds to this point. With relations (15) - (17) 
we evaluate all of modal parameters: 
 
natural frequency: iω ω= (corresponds at ( ) 0S ω = ) 
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generalized stiffness:
i

dS
d ω ω

γ
ω =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 ;

2

23

21

kg m
Watts kg ms

Hz s
s

⎡ ⎤⋅
⎢ ⎥ ⎡ ⎤⋅⎡ ⎤ = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

  (18) 

generalized mass:  2
i

γμ
ω

=   ; 

2

2
2

2
1

kg m
s kg m

s

⎡ ⎤⋅
⎢ ⎥

⎡ ⎤= ⋅⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

    (19) 

damping factor:  ( )

i

R ωζ
ω γ

=
⋅

; 

2

3

2 2

2 3

adimensional
1

kg m
Watts s
Kg m kg m

s s s

⎡ ⎤ ⎡ ⎤⋅
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⋅ ⋅⎢ ⎥ ⎢ ⎥⋅

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (20) 

 
4. Experimental Modal Analysis with Complex Power Method - 

Modal Parameters Identification 
 
 The test results shown in this chapter have been developed by the author to 
demonstrate the advantages obtained by using the complex power method applied 
to Ground Vibration Testing of aircraft structure. The experimental procedure can 
be described by the next steps: 
- The excitation of the structure with harmonic forces around the supposed 

natural frequency, Fig.2; 
- The evaluation of the complex power as a product of forces and velocities, 

around the supposed natural frequency of the structure, using (14) formula; 
- The extraction of the real and imaginary parts of the complex power; 
- Plotting the real and the imaginary parts, Fig.3; 
- Finding the maximum of the real part and zero of the imaginary part, Fig.4; 
- Calculation of the generalized stiffness, using (18) formula; 
- Calculation of the other modal parameters, using (12), (13) and (15) formulas. 

A typical experimental setup for harmonic excitation using a specially 
developed hardware with a dynamic exciter is shown in Fig. 3. In this case, the 
exciter is fixed in the reference point and the response is measured at all the 
points. Thus, it provides one column of the FRF matrix. This setup was used in 
modal testing for a small aircraft wing. 
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Fig.3. Experimental setup to identify the natural frequencies of aircraft small wing 
 
The extraction of the real and imaginary parts of signals is performed by 

hardware using a multiplier. The response of a transducer will be a sine signal: 
   ( ) sin( )S t A tω ϕ= +     (22) 

with the same frequency as excitation forces, but with different amplitude and 
phase [4]. The real and imaginary parts are proportional to the sine and/or the 
cosine of this phase. The signal generator provides two signals out of phase 90o: 

   
( ) sin( )
( ) cos( )

SC t F t
SQ t F t

ω
ω

= ⋅
= ⋅

    (23) 

By multiplying point by point the transducers response to these signals, we 
obtain two magnitudes: one composed of harmonic component and one composed 
of continuous component proportional to the real and imaginary parts: 

Re( ) ( ) ( ) sin( ) sin( ) cos( ) cos(2 )
2 2

Im( ) ( ) ( ) sin( ) cos( ) sin( ) sin(2 )
2 2

AF AFt S t SC t A t F t t

AF AFt S t SQ t A t F t t

ω ϕ ω ϕ ω ϕ

ω ϕ ω ϕ ω ϕ

= ⋅ = + ⋅ ⋅ = − +

= ⋅ = + ⋅ ⋅ = + +

 Both magnitude signals are computed in real time by multiplying the 
temporal signal with the excitation force (0o phase) and by the quadrature of the 
excitation force (90o phase). 

 In order to obtain one column of the FRF matrix we perform 
measurements and acquire all data for one mode of the structure. After that, the 
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modal analysis software is to be used to post-process this data. This part of modal 
test is called experimental modal analysis corresponding to the stage called 
theoretical modal analysis. In both cases, modal analysis leads to identification of 
modal parameters of the system. The similarity between these approaches can be 
noticed in Fig.4 where there are shown the mode shapes for the first mode of 
vibration of an aircraft wing. 

 

Fig.4. Theoretical Mode Shapes [9] and Experimental Mode Shapes of aircraft small wing obtaind 
by Complex Power Method 

 
 The results may be obtained in table form (as in Table 1), but much more 
illustrative is to use an animated display of the obtained the modal shape, Fig.4 
right. 
 

Table 1 
The calculated modal parameters from aircraft wing harmonic excitation by 

Complex Power Method  

Frequency 
[Hz] 

Active 
power 
[W] 

Reactive 
power 
[W] 

Generalized 
mass 

[kg*m2] 

Generalized 
stiffness 

[kg*m2/s2] 

 
Damping ratio 

10.30 3.60E-01 4.92E-01 

2988.736 
 

1.275E+07 
 

0.01207 
 

10.32 5.10E-01 5.29E-01 
10.34 6.98E-01 4.53E-01 
10.36 9.04E-01 2.64E-01 
10.38 0.95857 5.64E-02 
10.40 0.937967 -5.63E-02 
10.42 0.973613 -1.69E-01 
10.44 0.934373 -2.62E-01 
10.46 0.820676 -3.36E-01 
10.48 0.800494 -3.72E-01 
10.50 0.761808 -4.27E-01 
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Fig.5. The frequency identification from real and imaginary parts graphical representation of 
complex power 

A better solution to increase the resolution of resonance frequency (Fig.5) 
is to use the polynomial interpolation (Fig.6). By this interpolation we can avoid 
uncertainty provided by measurements devices and acquisition systems (close to 
zero value the imaginary part of complex power can have multiple sign changes). 

 

Fig.6. The interpolation of real and imaginary parts graphical representation 
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Table 2 shows a data comparison in both cases: case A with interpolation 
and case B without interpolation. Through interpolation, more accurate data has 
been obtained. Improvement in accuracy is up to 5%. The values come from 
unloaded wing test. 

Table 2 
The influences of interpolation data  on frequencies identification for a small 

aircraft wing (with load) 
 1st mode 2nd mode 3rd mode 

Mode type Bending Bending Torsion 
Interpolation Case A Case B % Case A Case B % Case A Case B  % 

Frequency [Hz] 10,930 10,404 4,81 49,223 49,463 0,75 51,069 - - 
 
 

 Table 3 shows the results of experimental modal analysis of aircraft wing 
obtained through the procedure described above. Two other methods have been 
used in order to compare the data: quadrature forces method and peak-picking 
method. The complex power method offers the best results.  

Table 3 
The modal parameters for the first three modes of a aircraft wing (without load) 

tested through harmonic excitation  
 1st mode 2nd mode 3rd mode 

Mode type Bending Bending Torsion 
Frequency [Hz] 10,39Hz 47,11Hz 50,27Hz 

Generalized Stiffness 
[kgm2/s2] 2,84E+07 3,20E+07 4,12E+07 

Generalized Mass 
[kgm2] 746kgm2 431kgm2 288kgm2 

Damping ratio 0,0233 0,0072 0,010 

Some observations about above parameters can be made. The generalized 
masses are influenced by the correct measurement of vibration amplitudes, the 
excitation forces and damping values. A correct damping measurement is an 
important experimental task because damping values are not predicted by the 
analytical model. 

5. Conclusions 

New techniques of modal tests and their analysis make the data acquisition 
and processing easier but at the same time call for a better knowledge of all the 
factors involved [4]. Appropriation based on the calculation of the complex 
power, provide the different modal parameters. This method also allows, via a 
multiplier board, the real-time calculation of the other modal parameters. During 
harmonic excitation, the responses are proportional to the frequency response 
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functions and therefore to the vibration modes. A better resolution, obtained 
during above displayed tests, represents a own contribution at the use of complex 
power method in experimental modal analysis. 

The reliability of complex power method in experimental modal analysis 
was verified by author through other methods of excitation, measurement, 
acquisition and data processing. Finally, in aircraft structure domain this method 
remains the first choice [8]. 

The results of tests shown in this article were carried out during several 
months upon an aircraft wing in order to evaluate the influences of load in the 
modal parameters identification. Various tests and identification methods were 
applied. A critical review of the different tests and analysis methods, more than 
the selection in this paper, will be performed. 
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