

**A GENERALIZATION OF FIXED POINT THEOREMS ABOUT
F-CONTRACTION IN PARTICULAR S-METRIC SPACES AND
CHARACTERIZATION OF QUASI-CONTRACTION MAPS IN
b-METRIC SPACES**

Ghorban KHALILZADEH RANJBAR¹, Mohammad Esmael SAMEI²

Abstract: In this paper, we define a new *S*-metric space and describe some fixed point theorems concerning *F*-contraction. In this way, we give some examples to illustrate our results. Also we give a partial answer to a question raised by Singh, Czerwinski and Krol.

Keywords: Fixed point, *F*-contraction, *S*-metric space

MSC2010: 37C25, 47H10, 47H09

1. Introduction

Wardowski introduced a new contraction, the so-called *F*-contraction, and proved some fixed point results for such mappings on a complete metric space [9]. A mapping $T : X \rightarrow X$ is said to be an *F*-contraction if there exists $\tau > 0$ such that, if $d(Tx, Ty) > 0$, then $\tau + F(d(Tx, Ty)) \leq F(d(x, y))$, for all $x, y \in X$ [11, 12]. Later, Wardowski and Dung defined the notion of *F*-weak contractions in metric spaces and generalized the theorem of Wardowski [10]. Dung and Hang studied the notion of a generalized *F*-contraction and extended a fixed point theorem for such mappings [3]. Also, many author's studied *F*-contraction mappings and present some application of the map in *b*-metric space [13, 14, 1]. Let $F : \mathbb{R}^+ \rightarrow \mathbb{R}$ be a mapping satisfying: (F1) *F* is strictly increasing; (F2) For each sequence $\{a_n\}_{n \in \mathbb{N}}$ of positive numbers $\lim_{n \rightarrow \infty} a_n = 0$ if and only if $\lim_{n \rightarrow \infty} F(a_n) = -\infty$; (F3) There exists $k \in (0, 1)$ such that $\lim_{a \rightarrow 0^+} a^k F(a) = 0$. Piri and Kumam further described a large class of functions by replacing condition, (F3') *F* is continuous on $(0, \infty)$ instead of the condition (F3) in the definition of *F*-contraction [6].

Motivated by these researches, in this paper we introduce new *S*-metric spaces and prove some fixed point theorems. Throughout this paper, \mathbb{R} , \mathbb{R}_+ and \mathbb{N} denote the set of all real numbers, the set of all nonnegative real numbers and the set of all positive integers, respectively.

Definition 1.1. Let X be a nonempty set. An *S*-metric on X is a continuous function $S : X^3 \rightarrow \mathbb{R}^+$ such that satisfies the following conditions for each x, y, z , and $a \in X$:

- (S1) $S(x, y, z) > 0$ for all $x, y, z \in X$ with $x \neq y \neq z$ or $x \neq y$ or $x \neq z$ or $y \neq z$;
- (S2) $S(x, y, z) = 0$ if and only if $x = y = z$;
- (S3) $S(x, y, z) \leq S(x, y, a) + S(a, y, z) + S(x, a, z)$;
- (S4) $S(x, y, z) = S(x, z, y)$, $S(x, y, z) = S(y, x, z)$ and $S(x, y, z) = S(z, y, x)$. (symmetric)

¹Assistant Professor, Department of Mathematics, Faculty of Science, "Bu-ALI SINA" University, Hamedan, Iran, E-mail: gh_khalilzadeh@yahoo.com

²Assistant Professor, Department of Mathematics, Faculty of Science, "Bu-ALI SINA" University, Hamedan, Iran, E-mail: mesamei@basu.ac.ir; mesamei@gmail.com

Example 1.1. Suppose that $X = \mathbb{R}$. Define $S : X^3 \rightarrow \mathbb{R}^+$ by

$$S(x, y, z) = |x - y| + |y - z| + |z - x|.$$

(X, S) is an S -metric space.

Definition 1.2. Suppose that (X, S) be an S -metric space, $\{x_n\}_{n=1}^\infty$ be a sequence in X and $x \in X$ arbitrary. Then:

- (i) The sequence $\{x_n\}_{n=1}^\infty$ is said to be a Cauchy sequence, if for each $\varepsilon > 0$, exists $n_0 \in \mathbb{N}$ such that $S(x_n, x_m, x_m) < \varepsilon$ for each $m, n \geq n_0$;
- (ii) The Sequence $\{x_n\}_{n=1}^\infty$ is said to be convergent to point $x \in X$, if for each $\varepsilon > 0$, exists a positive integer number n_0 , such that for all $n \geq n_0$, $S(x, x, x_n) < \varepsilon$;
- (iii) (X, S) is said to be complete if every cauchy sequence is convergent.

Remark 1.1. Note that, if (X, d) be a metric space, then by definition

$$S(x, y, z) = d(x, y) + d(y, z) + d(z, x),$$

it can be easily shown that (X, d) is complete if and only if (X, S) is complete.

Definition 1.3. Let \mathcal{F} be the family of all functions $F : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that:

- (F1) F is strictly increasing that is for all $\alpha, \beta \in \mathbb{R}_+$ such that $\alpha < \beta$, $F(\alpha) < F(\beta)$;
- (F2) For each sequence $\{x_n\}_{n=1}^\infty$ of positive numbers, $\lim_{n \rightarrow \infty} x_n = 0$ if and only if $\lim_{n \rightarrow \infty} F(x_n) = -\infty$;
- (F3) $t \in (0, 1)$ exists such that $\lim_{\alpha \rightarrow 0^+} \alpha^k F(\alpha) = 0$.

Example 1.2. $F_1(\alpha) = -\frac{1}{\alpha^2}$, $F_2(\alpha) = \ln \alpha$ and $F_3(\alpha) = \frac{1}{1 - e^\alpha}$.

Definition 1.4. [9] Let (X, d) be a metric space. Self map T on X is said to be an F -contraction on (X, d) , firstly, $F \in \mathcal{F}$ and secondly $k > 0$ exists such that for all $x, y \in X$, if $d(Tx, Ty) > 0$, then $k + F(d(Tx, Ty)) \leq F(d(x, y))$.

Definition 1.5. [10] Let (X, d) be a metric space. Self map T on X is said to be an F -weak contraction on (X, d) , firstly, $F \in \mathcal{F}$ and secondly $k > 0$ exists such that for all $x, y \in X$, if $d(Tx, Ty) > 0$, then $k + F(d(Tx, Ty)) \leq F(M(x, y))$ where

$$M(x, y) = \left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2} \right\}.$$

2. Main Results

In the following, we are going to state and prove our main results.

Definition 2.1. Let (X, S) be a S -metric space. Self map T on X is said to be an F -contaction on (X, S) , firstly, $F \in \mathcal{F}$ and secondly $k > 0$ exists such that for all $x, y \in X$, if $S(Tx, Tx, Ty) > 0$, then

$$k + F(S(Tx, Tx, Ty)) \leq F(S(x, x, y)). \quad (1)$$

Theorem 2.1. Let (X, S) be a complete S -metric space and consider self map T on X is an F -contaction on (X, S) . Then T has a unique fixed point in X .

Proof. Let $x_0 \in X$ be arbitrary and fixed. Let $\{x_n\}_{n=1}^\infty$ be the picard sequence of T based on x_0 , which is $Tx_n = x_{n+1}$ for $n = 0, 1, 2, \dots$. If $n_0 \in \mathbb{N}$ exists such that $S(x_{n_0}, x_{n_0}, x_{n_0+1}) = 0$ then x_{n_0} is a fixed point of T , and the existence part of the proof is finished. On the contrary case, assume that $S(x_n, x_n, x_{n+1}) > 0$ for all $n \in \mathbb{N} \cup \{0\}$. Applying the contractivity condition (1), we get

$$k + F(S(Tx_n, Tx_n, Tx_{n+1})) \leq F(S(x_n, x_n, Tx_n)). \quad (2)$$

We will show that

$$S(x_{n+1}, x_{n+1}, Tx_{n+1}) \leq S(x_n, x_n, Tx_n), \quad (3)$$

for all $n \in \mathbb{N}$. On the contrary, Suppose that

$$S(x_{n_0+1}, x_{n_0+1}, Tx_{n_0+1}) \geq S(x_{n_0}, x_{n_0}, Tx_{n_0}),$$

for some $n_0 \in \mathbb{N}$. From (2), we have

$$F(S(x_{n_0+1}, x_{n_0+1}, Tx_{n_0+1})) \leq F(S(x_{n_0}, x_{n_0}, Tx_{n_0})) - k,$$

which together condition (F1) implies that

$$S(x_{n_0+1}, x_{n_0+1}, Tx_{n_0+1}) \leq S(x_{n_0}, x_{n_0}, Tx_{n_0}).$$

It gives us a contradiction. Therefore, (3) holds, so $\{S(x_n, x_n, Tx_n)\}$ is a decreasing positive sequence in \mathbb{R}_+ and it converges to some $R \geq 0$. We claim that $R = 0$. To support the claim, let be untrue and $R > 0$. Then for any $\varepsilon > 0$, it is possible to find a positive integer m such that $S(x_m, x_m, Tx_m) < R + \varepsilon$. By (F1) we get

$$F(S(x_m, x_m, Tx_m)) < F(R + \varepsilon). \quad (4)$$

Since $S(x_n, x_n, x_{n+1}) > 0$ for all n , then by repeatedly using (1) and taking (4) into account, we obtain

$$\begin{aligned} F(S(T^n x_m, T^n x_m, T^{n+1} x_m)) &\leq F(S(T^{n-1} x_m, T^{n-1} x_m, T^n x_m)) - k \\ &\leq F(S(T^{n-2} x_m, T^{n-2} x_m, T^{n-1} x_m)) - 2k \\ &\leq \dots \\ &\leq F(S(x_m, x_m, Tx_m)) - nk \\ &\leq F(R + \varepsilon) - nk. \end{aligned}$$

Letting $n \rightarrow \infty$ in the above inequality, we get

$$\lim_{n \rightarrow \infty} F(S(T^n x_m, T^n x_m, T^{n+1} x_m)) = -\infty.$$

Hence from condition (F2), we obtain $\lim_{n \rightarrow \infty} S(T^n x_m, T^n x_m, T^{n+1} x_m) = 0$. Then

$$S(x_{m+n}, x_{m+n}, Tx_{m+n}) < R,$$

for n which large enough. It is a contradiction with the definition of R . Therefore

$$\lim_{n \rightarrow \infty} S(x_n, x_n, Tx_n) = 0. \quad (5)$$

Now, we prove that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in (X, S) . Suppose that the contrary. Then $\varepsilon > 0$ exists for which we can find monotonically increasing sequences $\{p(n)\}_{n=1}^{\infty}$ and $\{q(n)\}_{n=1}^{\infty}$ of natural number such that

$$\begin{aligned} p(n) &> q(n) > n, \\ S(x_{q(n)}, x_{q(n)}, x_{p(n)}) &\geq \varepsilon, \\ S(x_{q(n)}, x_{q(n)}, x_{p(n)-1}) &< \varepsilon. \end{aligned} \quad (6)$$

Regarding (1) and (6), we can write

$$\begin{aligned} F(S(x_{q(n)}, x_{q(n)}, x_{p(n)})) &\leq F(S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1})) - k \\ &< F(S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1})), \end{aligned} \quad (7)$$

which together (F1) implies

$$S(x_{q(n)}, x_{q(n)}, x_{p(n)}) < S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}).$$

Using this together with property (S3) we get

$$\begin{aligned}
\varepsilon &\leq S(x_{q(n)}, x_{q(n)}, x_{p(n)}) \\
&< S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}) \\
&\leq S(x_{q(n)-1}, x_{q(n)-1}, x_{q(n)}) + 2S(x_{q(n)}, x_{q(n)-1}, x_{p(n)-1}) \\
&\leq \dots \\
&\leq 2S(x_{q(n)-1}, x_{q(n)-1}, x_{q(n)}) + 6S(x_{p(n)}, x_{p(n)-1}, x_{p(n)}) \\
&\quad + S(x_{q(n)}, x_{q(n)}, x_{p(n)-1}).
\end{aligned}$$

By virtue of thes fact and in view if (5) and (6), we have

$$\begin{aligned}
\varepsilon &\leq \limsup_{n \rightarrow \infty} S(x_{q(n)}, x_{q(n)}, x_{p(n)}) \\
&\leq \limsup_{n \rightarrow \infty} S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}) \\
&\leq \varepsilon.
\end{aligned} \tag{8}$$

Again, by using (7), (8), conditions (F1) and (F3) in Definition 1.3, we find that

$$\begin{aligned}
F(\varepsilon) &\leq F\left(\limsup_{n \rightarrow \infty} S(x_{q(n)}, x_{q(n)}, x_{p(n)})\right) \\
&\leq F\left(\limsup_{n \rightarrow \infty} S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1})\right) - k \\
&\leq F(\varepsilon) - k,
\end{aligned}$$

which holds to a contradiction. Therefore, $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in the complete S -metric space X . Then $v \in X$ exists such that $x_n \rightarrow v$ as $n \rightarrow \infty$. That is for any $\varepsilon > 0$, $n_1 \in \mathbb{N}$ exists such that $S(v, v, x_n) < \varepsilon$ for all $n \geq n_1$. We are going to show that v is a fixed point of T . First note that $S(Tv, Tv, Tx_n) = 0$. Since, if for all n , $S(Tv, Tv, Tx_n) > 0$, then $F(S(Tv, Tv, Tx_n)) < F(S(v, v, x_n)) - k$. It inforce that $S(Tv, Tv, Tx_n) < S(v, v, x_n) < \varepsilon$. That is a contradiction. So, We have

$$S(Tv, Tv, v) = \limsup_{n \rightarrow \infty} S(Tv, Tv, Tx_{n+1}) = \limsup_{n \rightarrow \infty} S(Tv, Tv, Tx_n) < \varepsilon.$$

Thus $S(Tv, Tv, v) = 0$. Therefore $Tv = v$. Hence, v is a fixed point of T . Next we study the uniqueness of the fixed point of T . Assume that T has two different fixed points v_1 and v_2 . Then $S(v_1, v_1, v_2) > 0$ and from condition (1), we get

$$\begin{aligned}
0 &< r \leq F(S(v_1, v_1, v_2)) - F(S(Tv_1, Tv_1, Tv_2)) \\
&= F(S(v_1, v_1, v_2)) - F(S(v_1, v_1, v_2)) \\
&= 0,
\end{aligned}$$

which is a contradiction. Then $S(v_1, v_1, v_2) = 0$, and so $v_1 = v_2$. Therefore the fixed point is unique. \square

Example 2.1. Let $X = \mathbb{R}$ and $S(x, y, z) = |x - y| + |y - z| + |z - x|$. Define the mapping $T : X \rightarrow X$ by $T(x) = \frac{x}{3}$ and take $F(\alpha) = \ln \alpha$. We obtain the result that T is an F -contraction with $0 \leq k \leq \ln 3$. To see this, let us consider the following calculations. First, observe that

$$k + F(S(Tx, Tx, Ty)) \leq F(S(x, x, y)).$$

On the other hand, $S(Tx, Ty, Ty) = |Tx - Ty| + |Tx - Ty| = 2|Tx - Ty|$. So

$$F(S(Tx, Tx, Ty)) = F(2|Tx - Ty|) = \ln 2|Tx - Ty|,$$

and

$$F(S(x, x, y)) = F(2|x - y|) = \ln 2|x - y|.$$

Indeed, $k + \ln 2|Tx - Ty| \leq \ln 2|x - y|$. Therefore,

$$k \leq \ln \frac{2|x - y|}{2|Tx - Ty|} = \ln \frac{|x - y|}{|Tx - Ty|} = \ln \frac{|x - y|}{\frac{|x - y|}{3}} = \ln 3.$$

Definition 2.2. Let (X, S) be a S -metric space. A self map T on X is said to be an F -weak contraction on (X, S) , if $F \in \mathcal{F}$ and $k > 0$ exists such that for all $x, y \in X$, which $S(Tx, Tx, Ty) > 0$, we have

$$k + F(S(Tx, Tx, Ty)) \leq F(M(x, y)), \quad (9)$$

where

$$M(x, y) = \max \left\{ S(x, x, y), S(Tx, Tx, Ty), \frac{S(y, y, Tx)}{10}, \frac{S(y, y, Ty)}{10} \right\}.$$

Theorem 2.2. Let (X, S) be a complete S -metric space and $T : X \rightarrow X$ be an F -weak contraction satisfying the following condition:

$$\max \left\{ \frac{S(y, y, Ty)}{10}, \frac{S(y, y, Ty)}{5} + \frac{S(Tx, Tx, Ty)}{10} \right\} \leq S(Tx, Tx, Ty).$$

Then T has a unique fixed point in X .

Proof. Let $x_0 \in X$ be arbitrary and fixed. Define a sequence $\{x_n\}_{n=1}^{\infty}$ in X such that $x_1 = Tx_0$, $x_{n+1} = Tx_n$ for all $n \in \mathbb{N}$. We may suppose that $x_{n+1} \neq x_n$ for all n , otherwise, T has obviously a fixed point. Then $S(x_n, x_n, x_{n+1}) > 0$ for all $n \in \mathbb{N} \cup \{0\}$ and hence (9) implies that

$$F(S(Tx_{n-1}, Tx_{n-1}, Tx_n)) \leq F(M(x_{n-1}, x_n)) - k. \quad (10)$$

We obtain

$$\begin{aligned} \max \{S(x_{n-1}, x_{n-1}, x_n), S(Tx_{n-1}, Tx_{n-1}, Tx_n)\} &\leq M(x_{n-1}, x_n) \\ &\leq \max \left\{ S(x_{n-1}, x_{n-1}, x_n), S(Tx_{n-1}, Tx_{n-1}, Tx_n), \right. \\ &\quad \left. \frac{S(x_n, x_n, Tx_{n-1})}{10}, \frac{S(x_n, x_n, Tx_n)}{10} \right\} \\ &\leq \max \{S(x_{n-1}, x_{n-1}, x_n), S(x_n, x_n, x_{n+1})\}. \end{aligned}$$

Then (10) becomes that

$$F(S(Tx_{n-1}, Tx_{n-1}, Tx_n)) \leq F(\max \{S(x_{n-1}, x_{n-1}, x_n), S(x_n, x_n, x_{n+1})\}) - k.$$

If we assume that

$$\max \{S(x_{n-1}, x_{n-1}, x_n), S(x_n, x_n, x_{n+1})\} = S(x_n, x_n, x_{n+1}),$$

for some n then from (10), we have

$$\begin{aligned} F(S(Tx_{n-1}, Tx_{n-1}, Tx_n)) &\leq F(S(Tx_{n-1}, Tx_{n-1}, Tx_n) - k) \\ &\leq F(S(Tx_{n-1}, Tx_{n-1}, Tx_n)), \end{aligned}$$

and using condition (F1) we conclude that

$$S(x_n, x_n, x_{n+1}) < S(x_n, x_n, x_{n+1}),$$

which is a contradiction. Therefore,

$$\max \{S(x_{n-1}, x_{n-1}, x_n), S(x_n, x_n, x_{n+1})\} = S(x_{n-1}, x_{n-1}, x_n),$$

for each n . Applying again (10) and condition (F1), we deduce that

$$S(x_n, x_n, x_{n+1}) < S(x_{n-1}, x_{n-1}, x_n).$$

That is $\{S(x_n, x_n, x_{n+1})\}_{n=1}^{\infty}$ is a strictly decreasing positive sequence in \mathbb{R}^+ and it converges to some $R \geq 0$. We declare that $R = 0$. Suppose it is not true. Then $R > 0$. For each $\varepsilon > 0$, let us choose $m \in \mathbb{N}$ such that $S(x_m, x_m, Tx_m) < R + \varepsilon$. From condition (F1), we have

$$F(S(x_m, x_m, Tx_m)) < F(R + \varepsilon). \quad (11)$$

Since T is an F -weak contraction and taking into account $S(Tx_m, Tx_m, T^2x_m) > 0$, we get

$$k + F(S(Tx_m, Tx_m, T^2x_m)) \leq F(M(x_m, Tx_m)). \quad (12)$$

Since,

$$M(x_m, Tx_m) = \max\{S(x_m, x_m, Tx_m), S(Tx_m, Tx_m, T^2x_m)\},$$

then from (9) and (F1), we get

$$\max\{S(Tx_m, Tx_m, T^2x_m), S(x_m, x_m, Tx_m)\} = S(x_m, x_m, Tx_m).$$

Hence (12) becomes $F(S(Tx_m, Tx_m, T^2x_m)) \leq F(S(x_m, x_m, Tx_m)) - k$. This yields

$$\begin{aligned} F(S(T^2x_m, T^2x_m, T^3x_m)) &\leq F(S(Tx_m, Tx_m, T^2x_m)) - k \\ &\leq F(S(x_m, x_m, Tx_m)) - 2k. \end{aligned}$$

Continuing the above process and using (11), we observe that

$$\begin{aligned} F(S(T^n x_m, T^n x_m, T^{n+1} x_m)) &\leq \dots \leq F(S(x_m, x_m, Tx_m)) - nk \\ &\leq F(R + \varepsilon) - nk. \end{aligned}$$

Passing to the limit $n \rightarrow \infty$ in the above relation, we obtain

$$\lim_{n \rightarrow \infty} F(S(T^n x_m, T^n x_m, T^{n+1} x_m)) = -\infty.$$

It follows from condition (F2) that $\lim_{n \rightarrow \infty} S(T^n x_m, T^n x_m, T^{n+1} x_m) = 0$. So

$$S(T^n x_m, T^n x_m, T^{n+1} x_m) = S(x_{m+n}, x_{m+n}, Tx_{m+n}) < R,$$

for n sufficiently large which is a contraction with the definition of R . Therefore

$$\lim_{n \rightarrow \infty} S(x_n, x_n, x_{n+1}) = 0. \quad (13)$$

Next, we intend to show that the sequence $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in (X, S) . Arguing by contradiction, we assume that $\varepsilon > 0$ and the sequences $\{p(n)\}$ and $\{q(n)\}$ of natural numbers exists such that for all $n \in \mathbb{N}$,

$$\begin{aligned} p(n) &> q(n) > n, \\ S(x_{q(n)}, x_{q(n)}, x_{p(n)}) &\geq \varepsilon, \\ S(x_{q(n)}, x_{q(n)}, x_{p(n)-1}) &< \varepsilon. \end{aligned} \quad (14)$$

In the light of (14) and condition (9), we find that

$$F(S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1})) \leq F(M(x_{q(n)-1}, x_{p(n)-1})) - k. \quad (15)$$

Applying (S3) and our hypothesis, we get

$$\begin{aligned}
& \max \left\{ S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}), S(Tx_{q(n)-1}, Tx_{q(n)-1}, Tx_{p(n)-1}) \right\} \\
& \leq M(x_{q(n)-1}, x_{p(n)-1}) \\
& = \max \left\{ S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}), S(Tx_{q(n)-1}, Tx_{q(n)-1}, Tx_{p(n)-1}), \right. \\
& \quad \left. \frac{S(x_{p(n)-1}, x_{p(n)-1}, Tx_{q(n)-1})}{10}, \frac{S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1})}{10} \right\} \\
& \leq \max \left\{ S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}), S(Tx_{q(n)-1}, Tx_{q(n)-1}, Tx_{p(n)-1}), \right. \\
& \quad \left. \frac{S(x_{p(n)-1}, x_{p(n)-1}, Tx_{p(n)-1})}{5} + \frac{S(Tx_{q(n)-1}, Tx_{q(n)-1}, Tx_{p(n)-1})}{10}, \right. \\
& \quad \left. \frac{S(x_{p(n)-1}, x_{p(n)-1}, Tx_{p(n)-1})}{10} \right\} \\
& \leq \max \left\{ S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}), \right. \\
& \quad \left. S(Tx_{q(n)-1}, Tx_{q(n)-1}, Tx_{p(n)-1}) \right\}.
\end{aligned}$$

a consequence of (15) and (F1), we have

$$\begin{aligned}
& \max \{ S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}), S(x_{q(n)}, x_{q(n)}, x_{p(n)}) \} \\
& = S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}).
\end{aligned}$$

Again, according (15) becomes

$$F(S(x_{q(n)}, x_{q(n)}, x_{p(n)})) \leq F(S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1})) - k,$$

and so by using (F1), we get

$$S(x_{q(n)}, x_{q(n)}, x_{p(n)}) < S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}). \quad (16)$$

By (14), (16) and using (S3), we obtain

$$\begin{aligned}
\varepsilon & \leq S(x_{q(n)}, x_{q(n)}, x_{p(n)}) \\
& \leq S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}) \\
& \leq \dots \\
& \leq 2S(x_{q(n)-1}, x_{q(n)-1}, x_{q(n)}) \\
& \quad + 6S(x_{p(n)-1}, x_{p(n)-1}, x_{p(n)}) + S(x_{q(n)}, x_{q(n)}, x_{p(n)-1}).
\end{aligned}$$

Regarding to (13) and (14), we have

$$\begin{aligned}
\varepsilon & \leq \lim_{n \rightarrow \infty} \sup S(x_{q(n)}, x_{q(n)}, x_{p(n)}) \\
& \leq \lim_{n \rightarrow \infty} \sup S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}) \\
& \leq \varepsilon.
\end{aligned} \quad (17)$$

In view of (16) and (17), together with (F1), (F3)', we have

$$\begin{aligned} F(\varepsilon) &\leq F\left(\limsup_{n \rightarrow \infty} S(x_{q(n)}, x_{q(n)}, x_{p(n)})\right) \\ &\leq F\left(\limsup_{n \rightarrow \infty} S(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1})\right) - k \\ &\leq F(\varepsilon) - k. \end{aligned}$$

It is a contradiction with $k > 0$ and it follows that $\{x_n\}_{n=1}^\infty$ be a Cauchy sequence in X . By completeness (X, S) , $\{x_n\}_{n=1}^\infty$ converges to some point $v \in X$. Therefore, for each $\varepsilon > 0$, $n_1 \in \mathbb{N}$ exists, such that $S(v, v, x_n) < \varepsilon$, for all $n \geq n_1$. We claim that v is a fixed point of T and $S(Tv, Tv, Tx_n) = 0$, for some $n \geq n_1$. If $S(Tv, Tv, Tx_n) > 0$ for all $n \geq n_1$, then from (9), we have $F(S(Tv, Tv, Tx_n)) \leq F(M(v, x_n)) - k$. In view of (S3) and our assumptions, we obtain

$$\begin{aligned} \max\{S(v, v, x_n), S(Tv, Tv, Tx_n)\} &\leq M(v, x_n) \\ &\leq \max\left\{S(v, v, x_n), S(Tv, Tv, Tx_n), \right. \\ &\quad \left. \frac{S(x_n, x_n, Tx_n)}{5} + \frac{S(Tv, Tv, Tx_n)}{10}, \right. \\ &\quad \left. \frac{S(x_n, x_n, Tx_n)}{10}\right\} \\ &\leq \max\{S(v, v, x_n), S(Tv, Tv, Tx_n)\}. \end{aligned}$$

Then (18) turns into

$$F(S(Tv, Tv, Tx_n)) \leq F(\max\{S(v, v, x_n), S(Tv, Tv, Tx_n)\}) - k. \quad (18)$$

If $\max\{S(v, v, x_n), S(Tv, Tv, Tx_n)\} = S(Tv, Tv, Tx_n)$, then from (18) and condition (F1), we lead to a contradiction, and so consequently

$$\max\{S(v, v, x_n), S(Tv, Tv, Tx_n)\} = S(v, v, x_n),$$

we have $F(S(Tv, Tv, Tx_n)) \leq F(S(v, v, x_n)) - k$ and we get

$$S(Tv, Tv, Tx_n) < S(v, v, x_n) < \varepsilon,$$

$$S(Tv, Tv, v) = \limsup_{n \rightarrow \infty} S(Tv, Tv, x_n) = \limsup_{n \rightarrow \infty} S(Tv, Tv, Tx_{n-1}) = 0,$$

which implies that $Tv = v$. Hence, v is a fixed point of T . Finally, we show that T has at most one fixed point. Indeed, if $v_1, v_2 \in X$ are two fixed points of T such that $v_1 \neq v_2$, then from (9), we obtain

$$F(S(Tv_1, Tv_1, Tv_2)) \leq F(M(v_1, v_2)) - k. \quad (19)$$

Applying (S3) and the assumption of the theorem, it follows that

$$\begin{aligned} S(v_1, v_1, v_2) &\leq M(v_1, v_2) \leq \max\left\{S(v_1, v_1, v_2), S(Tv_1, Tv_1, Tv_2), \right. \\ &\quad \left. \frac{S(v_2, v_2, Tv_2)}{5} + \frac{S(Tv_1, Tv_1, Tv_2)}{10}, \frac{S(v_2, v_2, Tv_2)}{10}\right\} \\ &\leq \max\{S(v_1, v_1, v_2), S(Tv_1, Tv_1, Tv_2)\} \\ &= S(v_1, v_1, v_2), \end{aligned}$$

applying (18), we yield $S(v_1, v_1, v_2) < S(v_1, v_1, v_2)$, which is contradiction. Hence $v_1 = v_2$. This complete the proof. \square

Example 2.2. Let $X = \mathbb{R}$ and define $S : \mathbb{R} \rightarrow \mathbb{R}$ by

$$S(x, y, z) = |x - y| + |y - z| + |z - x|.$$

Then (X, S) is a complete S -metric space. Let $T : X \rightarrow X$ be defined by $T(x) = \frac{x}{3}$. Also, take $F(\alpha) = \ln \alpha$ for $\alpha > 0$. Note that,

$$M(x, y) = \max \left\{ s(x, x, y), s(Tx, Tx, Ty), \frac{s(y, y, Tx)}{10}, \frac{s(y, y, Ty)}{10} \right\},$$

$$s(x, x, y) = 2|x - y|, \quad s(Tx, Tx, Ty) = 2|Tx - Ty|,$$

$$\frac{s(y, y, Tx)}{10} = \frac{1}{10}(2|y - Tx|) = \frac{1}{5}|y - Tx|,$$

$$\frac{s(y, y, Ty)}{10} = \frac{1}{10}(2|y - Ty|),$$

and

$$M(x, y) = \max \left\{ 2|x - y|, 2|y|, \frac{1}{5} \left| y - \frac{x}{3} \right| \right\}.$$

We have $k + F(s(Tx, Tx, Ty)) \leq F(M(x, y))$. So $k + \ln 2 \left| \frac{x}{3} - \frac{y}{3} \right| \leq F(M(x, y))$. If $M(x, y) = 2|x - y|$, then $k + \ln 2 \left| \frac{x}{3} - \frac{y}{3} \right| < \ln 2|x - y|$ and so $k < \ln 3$. If $M(x, y) = \frac{2}{15}|y|$ then

$$k + \ln 2 \left| \frac{x}{3} - \frac{y}{3} \right| < \ln \frac{2}{15}|y|,$$

or $k < \ln \frac{5}{|x - y|}$. Thus, $k \leq \ln 3$. If $M(x, y) = \frac{1}{5}|y - \frac{x}{3}|$, then

$$k + \ln 2 \left| \frac{x}{3} - \frac{y}{3} \right| \leq \ln \frac{1}{5} \left| y - \frac{x}{3} \right|.$$

Finally $k \leq \ln 3$.

3. Characterization of quasi-contraction maps

Now, we first introduce the concept of a quasi-contraction map in b -metric spaces.

Definition 3.1. Let X be a nonempty set. Suppose that $D : X \times X \rightarrow [0, \infty)$ be a function satisfies the following conditions:

- 1) $D(x, y) = 0$ if and only if $x = y$,
- 2) $D(x, y) = D(y, x)$ for each $x, y \in X$,
- 3) $D(x, y) \leq k(D(x, z) + D(z, y))$ for each $x, y, z \in X$, where $k > 1$ is a constant.

Then the pair (X, D) is called a b -metric space or a metric type space.

Definition 3.2. Let (X, D) be a b -metric space. The self-map $T : X \rightarrow X$ is said to be quasi-contraction, if there exists a $0 \leq c \leq 1$ such that

$$D(Tx, Ty) \leq c \max \left\{ D(x, y), \frac{D(x, Tx) + D(y, Ty)}{2}, \frac{D(x, Ty) + D(y, Tx)}{2} \right\},$$

for all $x, y \in X$.

Definition 3.3. Let (X, D) be a b -metric space and $\{x_n\}$ be a sequence in X .

- (i) We say sequence $\{x_n\}$ is converges to x , if $D(x_n, x) \rightarrow 0$ as $n \rightarrow \infty$,
- (ii) we say sequence $\{x_n\}$ is Cauchy sequence if for $\varepsilon > 0$, exists $n_0 \in \mathbb{N}$ such that for all natural number m, n , which $m, n \geq n_0$, then $D(x_n, x_m) < \varepsilon$.

Theorem 3.1. Let (X, D) be a complete b -metric space and $T : X \rightarrow X$ be a quasi-contraction map with $0 < kc < k^2c < 1$ ($0 < c < 1$, $k > 1$). Then T has a unique fixed point $x^* \in X$ and for each $x \in X$, $\lim_{n \rightarrow \infty} T^n x = x^*$.

Proof. Since T is quasi-contraction, for each $x, y \in X$, we have

$$D(Tx, Ty) \leq c \max \left\{ D(x, y), \frac{D(x, Tx) + D(y, Ty)}{2}, \frac{D(x, Ty) + D(Tx, y)}{2} \right\}.$$

Let $x \in X$ be arbitrary. If for some $n_0 \in \mathbb{N}$, $T^{n_0-1}x = T^{n_0}x = T(T^{n_0-1})$, then $T^n x = T^{n_0-1}x$ for $n \geq n_0$. Thus $T^{n_0-1}x$ is a fixed point of T , the sequence $\{T^n x\}$ is convergent to $T^{n_0-1}x$ and the proof is finished. So we may assume that $T^{n-1}x \neq T^n x$ for each $n \in \mathbb{N}$. Now we show that $\{T^n x\}$ is a Cauchy sequence. To prove the claim, we first show that by induction for each $n \geq 2$, we have

$$D(T^{n-1}x, T^n x) \leq \left(\frac{kc}{1-kc} \right)^{n-1} D(x, Tx).$$

If $n = 2$, we get

$$\begin{aligned} D(Tx, T^2 x) &\leq c \max \left\{ D(x, Tx), \frac{D(x, Tx) + D(Tx, T^2 x)}{2}, \right. \\ &\quad \left. \frac{D(x, T^2 x) + D(Tx, T^2 x)}{2} \right\} \\ &= c \max \left\{ D(x, Tx), \frac{D(x, Tx) + D(Tx, T^2 x)}{2}, \frac{D(x, T^2 x)}{2} \right\} \\ &\leq c \max \{ D(x, Tx), D(x, Tx) + D(Tx, T^2 x), D(x, T^2 x) \} \\ &\leq c \max \{ D(x, Tx) + D(Tx, T^2 x), k[D(x, Tx) + D(Tx, T^2 x)] \}. \end{aligned}$$

If

$$\begin{aligned} &\max \{ D(x, Tx) + D(Tx, T^2 x), k[D(x, Tx) + D(Tx, T^2 x)] \} \\ &= D(x, Tx) + D(Tx, T^2 x), \end{aligned}$$

we have $D(Tx, T^2 x) \leq c(D(x, Tx) + D(Tx, T^2 x))$. It is easy to check that

$$D(Tx, T^2 x) \leq \frac{kc}{1-kc} D(x, Tx).$$

If

$$\begin{aligned} &\max \{ D(x, Tx) + D(Tx, T^2 x), k[D(x, Tx) + D(Tx, T^2 x)] \} \\ &= k[D(x, Tx) + D(Tx, T^2 x)], \end{aligned}$$

we have $D(Tx, T^2 x) \leq ck[D(x, Tx) + D(Tx, T^2 x)]$. Thus,

$$D(Tx, T^2 x) \leq \frac{kc}{1-kc} D(x, Tx).$$

If $n = 3$, then we get

$$\begin{aligned} D(T^2 x, T^3 x) &\leq c \max \left\{ D(Tx, T^2 x), \frac{D(Tx, T^2 x) + D(T^2 x, T^3 x)}{2}, \right. \\ &\quad \left. \frac{D(Tx, T^3 x) + D(T^2 x, T^3 x)}{2} \right\} \\ &\leq c \max \{ D(Tx, T^2 x) + D(T^2 x, T^3 x), D(x, T^3 x) \} \\ &\leq c \max \{ D(Tx, T^2 x) + D(T^2 x, T^3 x), \\ &\quad k[D(Tx, T^2 x) + D(T^2 x, T^3 x)] \}. \end{aligned} \tag{20}$$

If right-hand inequality (20) equal to $D(Tx, T^2x) + D(T^2x, T^3x)$, we get

$$\begin{aligned} D(T^2x, T^3x) &\leq cD(Tx, T^2x) + D(T^2x, T^3x) \\ &\leq kcD(Tx, T^2x) + kcD(T^2x, T^3x). \end{aligned}$$

So, $D(T^2x, T^3x) \leq \frac{(kc)^2}{(1-kc)^2} D(x, Tx)$. By induction, we have

$$D(T^{n-1}x, T^nx) \leq \left(\frac{kc}{1-kc}\right)^{n-1} D(x, Tx).$$

Now with $m = n + s$, we obtain

$$\begin{aligned} D(T^n x, T^m x) &= D(T^n x, T^{n+s} x) \\ &= k [D(T^n x, T^{n+1} x) + D(T^{n+1} x, T^{n+s} x)] \\ &\leq k [D(T^n x, T^{n+1} x) + k [D(T^{n+1} x, T^{n+2} x) + D(T^{n+2} x, T^{n+s} x)]] \\ &\leq k D(T^n x, T^{n+1} x) + k^2 D(T^{n+1} x, T^{n+2} x) + k^3 D(T^{n+2} x, T^{n+3} x) \\ &\quad + k^3 D(T^{n+3} x, T^{n+4} x) \\ &\leq k D(T^n x, T^{n+1} x) + k^2 D(T^{n+1} x, T^{n+2} x) \\ &\quad + \cdots + k^s D(T^{n+s-1} x, T^{n+s} x) \\ &\leq k \left(\frac{kc}{1-kc}\right)^n D(x, Tx) \left[1 + k \left(\frac{kc}{1-kc}\right)\right. \\ &\quad \left. + \cdots + k^{s-1} \left(\frac{kc}{1-kc}\right)^{s-1}\right] \\ &= k \left(\frac{kc}{1-kc}\right)^n D(x, Tx) \left[\frac{\left(\frac{k^2 c}{1-kc}\right)^s - 1}{\frac{k^2 c}{1-kc} - 1}\right]. \end{aligned}$$

If $n \rightarrow \infty$ and $s \rightarrow \infty$, we obtain $D(T^n x, T^m x) \rightarrow 0$ and a sequence $\{T^n x\}$ is Cauchy. Since (X, D) is a complete b -metric space, there exists a $x^\circ \in X$ such that $\lim_{n \rightarrow \infty} T^n x = x^\circ$,

$$D(Tx^\circ, T^n x) \leq kD(Tx^\circ, x^\circ) + kD(x^\circ, T^n x),$$

then

$$\lim_{n \rightarrow \infty} \sup D(Tx^\circ, T^n x) \leq kD(Tx^\circ, x^\circ) + k \lim_{n \rightarrow \infty} \sup D(x^\circ, T^n x).$$

So $\lim_{n \rightarrow \infty} \sup D(Tx^\circ, T^n x) \leq kD(Tx^\circ, x^\circ)$,

$$\begin{aligned} D(Tx^\circ, T^{n+1} x) &\leq c \max \left\{ D(x^\circ, T^n x), \frac{D(x^\circ, Tx^\circ) + D(T^n x, T^{n+1} x)}{2}, \right. \\ &\quad \left. \frac{D(x^\circ, T^{n+1} x) + D(Tx^\circ, T^n x)}{2} \right\}, \end{aligned}$$

so

$$\lim_{n \rightarrow \infty} \sup D(Tx^\circ, T^{n+1} x) \leq cD(x^\circ, Tx^\circ).$$

We obtain $D(Tx^\circ, x^\circ) \leq cD(x^\circ, Tx^\circ)$ which yields $D(Tx^\circ, x^\circ) = 0$ and $Tx^\circ = x^\circ$. To prove the uniqueness, suppose that $x^\circ \neq x^{\circ\circ}$ such that $Tx^\circ = x^\circ$ and $Tx^{\circ\circ} = x^{\circ\circ}$. We have

$$\begin{aligned} D(x^\circ, x^{\circ\circ}) &= D(Tx^\circ, Tx^{\circ\circ}) \\ &\leq c \max \left\{ D(x^\circ, x^{\circ\circ}), \frac{D(x^\circ, Tx^\circ) + D(x^{\circ\circ}, Tx^\circ)}{2}, \right. \\ &\quad \left. \frac{D(x^\circ, Tx^{\circ\circ}) + D(x^{\circ\circ}, Tx^\circ)}{2} \right\} \\ &= cD(x^\circ, x^{\circ\circ}). \end{aligned}$$

Therefore $D(x^\circ, x^{\circ\circ}) = 0$ and $x^\circ = x^{\circ\circ}$. \square

Example 3.1. Let $X = [0, 1]$, $D(x, y) = |x - y|(2 + |x - y|)$ for each $x, y \in X$ and (X, D) is a complete b -metric space with $k = 2$. Let $T : X \rightarrow X$ be defined by $Tx = \frac{1}{2}$, whenever $x = 1$ and $Tx = \frac{1}{4}$, whenever $x \neq 1$. It is straightforward to see that for each $x, y \in X$ and following inequality

$$D(Tx, Ty) \leq \frac{1}{2} \max \left\{ D(x, y), \frac{D(x, Tx) + D(y, Ty)}{2}, \frac{D(x, Ty) + D(y, Tx)}{2} \right\},$$

satisfies for all cases.

- 1) If $x = y = 1$, then $Tx = Ty = \frac{1}{2}$, hence $D(Tx, Ty) = D(\frac{1}{2}, \frac{1}{2}) = 0$.
- 2) If $x = 1$ and $y \neq 1$, then $Tx = \frac{1}{2}$ and $Ty = \frac{1}{4}$, hence

$$D(Tx, Ty) = D(1, y) = |1 - y|(2 + |1 - y|).$$

We Have

$$\begin{aligned} D(Tx, Ty) &= D\left(\frac{1}{4}, \frac{1}{2}\right) = \frac{9}{16}, D(x, Tx) = D\left(1, \frac{1}{2}\right) = \frac{5}{4}, \\ D(y, Ty) &= \left|\frac{1}{4} - y\right|(2 + \left|y - \frac{1}{4}\right|), \\ D(x, Ty) &= D\left(1, \frac{1}{4}\right) = \frac{33}{16}, \\ D(y, Tx) &= D\left(y, \frac{1}{2}\right) = \left|y - \frac{1}{2}\right|(2 + \left|y - \frac{1}{2}\right|). \end{aligned}$$

- 3) If $x \neq 1$ and $y \neq 1$, then $Tx = Ty = \frac{1}{4}$, hence $D(Tx, Ty) = D(\frac{1}{4}, \frac{1}{4}) = 0$.
- 4) If $x \neq 1$ and $y = 1$, then $Tx = \frac{1}{4}$ and $Ty = \frac{1}{2}$, hence $D(Tx, Ty) = \frac{9}{16}$.

$$D(x, y) = D(x, 1) = |x - 1|(2 + |x - 1|),$$

$$D(x, Tx) = D\left(x, \frac{1}{4}\right) = \left|x - \frac{1}{4}\right|(2 + \left|x - \frac{1}{4}\right|),$$

$$D(y, Ty) = D\left(1, \frac{1}{2}\right) = \frac{5}{4},$$

$$D(x, Ty) = D\left(x, \frac{1}{2}\right) = \left|x - \frac{1}{2}\right|(2 + \left|x - \frac{1}{2}\right|),$$

$$D(y, Tx) = D\left(1, \frac{1}{4}\right) = \frac{33}{16}.$$

Definition 3.4. Let $T : X \rightarrow X$ be a map, T is called Lipschitzian, if there exists a constant $\lambda \geq 0$ such that $D(Tx, Ty) \leq \lambda D(x, y)$, for each $x, y \in X$. The smallest constant λ will be denoted $Lip(T)$.

In the following, we give a fixed point theorem for Lipschitzian mappings in b -metric spaces.

Corollary 3.1. *Let (X, D) be a b -metric space and $T : X \rightarrow X$ be a map satisfies*

$$D(Tx, Ty) \leq cD(x, y),$$

or

$$D(Tx, Ty) \leq c \left[\frac{D(x, Tx) + D(y, Ty)}{2} \right],$$

or

$$D(Tx, Ty) \leq c \left[\frac{D(x, Ty) + D(y, Tx)}{2} \right].$$

Then T has a unique fixed point x° and for each $x \in X$, $\lim_{n \rightarrow \infty} T^n x = x^\circ$.

Proof. Since T is a quasi-contraction with $kc < k^2c < 1$, then by the proof of Theorem 3.1, we have $\lim_{n \rightarrow \infty} T^n x = x^\circ$, for each $x \in X$. Now we consider some cases. **Case I.** If $D(T^{n+1}x, Tx^\circ) \leq cD(T^n x, x^\circ)$, and $\lim_{n \rightarrow \infty} D(T^n x, x^\circ) = 0$, then

$$\lim_{n \rightarrow \infty} T^{n+1} x = Tx^\circ = x^\circ.$$

Case II. If $D(T^{n+1}x, Tx^\circ) \leq c \left[\frac{D(T^n x, T^{n+1}x) + D(x^\circ, Tx^\circ)}{2} \right]$, but $\lim_{n \rightarrow \infty} T^{n+1} x = x^\circ$. Therefore

$$\begin{aligned} \lim_{n \rightarrow \infty} D(T^{n+1}x, Tx^\circ) &\leq \frac{c}{2} \left[\lim_{n \rightarrow \infty} D(T^n x, T^{n+1}x) + \lim_{n \rightarrow \infty} \frac{D(x^\circ, Tx^\circ)}{2} \right] \\ &= \frac{c}{2} D(x^\circ, Tx^\circ). \end{aligned}$$

Thus $D(x^\circ, Tx^\circ) \leq \frac{c}{2} D(x^\circ, Tx^\circ)$. We conclude that $D(x^\circ, Tx^\circ) = 0$ and $Tx^\circ = x^\circ$.

Case III. If $D(Tx, Ty) \leq \frac{c}{2} [D(x, Ty) + D(y, Tx)]$, then

$$\begin{aligned} D(T^{n+1}x, Tx^\circ) &\leq \frac{c}{2} [D(T^n x, x^\circ) + D(x^\circ, T^{n+1}x)] \\ \lim_{n \rightarrow \infty} D(T^{n+1}x, Tx^\circ) &\leq \frac{c}{2} \left[\lim_{n \rightarrow \infty} D(T^n x, x^\circ) + \lim_{n \rightarrow \infty} D(x^\circ, T^{n+1}x) \right]. \end{aligned}$$

So $D(x^\circ, Tx^\circ) \leq \frac{c}{2} D(x^\circ, Tx^\circ)$. Hence $D(x^\circ, Tx^\circ) = 0$ and $Tx^\circ = x^\circ$. \square

REFERENCES

- [1] *M.U. Ali, T. Kamran, M. Postolache*, Solution of Volterra integral inclusion in b -metric spaces via new fixed point theorem, *Nonlinear Anal. Modelling Control* **22**(2017), No. 1, 17-30.
- [2] *I.A. Bakhtin*, The contraction mapping principle in quasi-metric spaces, *Funct. Anal. Unianowsk Gos. Ped. Inst.* **30**(1989), 26-37.
- [3] *N.V. Dung, V.L. Hang*, A fixed point theorem for generalized F -contractions on complete metric spaces, *Vietnam J. Math.* **43**(2015), No. 4, 743-753.
- [4] *Z. Mustafa, B. Sims*, A new approach to generalized metric spaces, *J. Nonlinear Convex Anal.* **7**(2006), No. 2, 289-297.
- [5] *H. Piri, P. Kumam*, Fixed point theorems for generalized F -Suzuki-contraction mappings in complete b -metric spaces, *Fixed Point Theory Appl.* **90**(2016), 13 pages.
- [6] *H. Piri, P. Kumam*, Some fixed point theorems concerning F -contraction in complete metric spaces, *Fixed Point Theory Appl.* **210**(2014), 11 pages.
- [7] *N.Y. Özgür, N. Tas*, Some new contractive mappings on S -metric spaces and their relationships with the mapping (S25), *Math. Sci.* **11** (2017), 7-16.
- [8] *S. Sedghi, N. Shobe, A. Aliouche*, A generalization of fixed point theorem in S -metric spaces, *Mat. Vesn.* **64**(2012), 258-266.

- [9] *D. Wardowski*, Fixed points of a new type of contractive mappings in complete metric spaces, *Fixed Point Theory Appl.* **94**(2012), 6 pages.
- [10] *D. Wardowski, N.V. Dung*, Fixed points of F -weak contractions on complete metric spaces, *Demonstr. Math.* **1**(2014), 146-155.
- [11] *T. Kamran, M. Postolache, M.U. Ali, Q. Kiran*, Feng and Liu type F -contraction in b -metric spaces with application to integral equations, *J. Math. Anal.* **7**(2016), No. 5, 18-27.
- [12] *W. Shatanawi, A. Pitea, R. Lazović*, Contraction conditions using comparison functions on b -metric spaces, *Fixed Point Theory Appl.*, **2014**(2014), No. 1, 135.
- [13] *J.V.V. Jagannadha Rao, S.K. Padhan, M. Postolache*, Application of fixed point results on rational F -contraction mappings to solve boundary value problems, *Symmetry-Basel*, **11**(2019), No. 1, 70.
- [14] *M. Samreen, T. Kamran, M. Postolache*, Extended b -metric space, extended b -comparison function and nonlinear contractions, *U. Politeh. Buch. Ser. A* **80**(2018), No. 4, 21-28.