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1. Introduction

Wardowski introduced a new contraction, the so-called F -contraction, and proved
some fixed point results for such mappings on a complete metric space [9]. A mapping
T : X → X is said to be an F -contraction if there exists τ > 0 such that, if d(Tx, Ty) > 0,
then τ + F (d(Tx, Ty)) ≤ F (d(x, y)), for all x, y ∈ X [11, 12]. Later, Wardowski and Dung
defined the notion of F -weak contractions in metric spaces and generalized the theorem
of Wardowski [10]. Dung and Hang studied the notion of a generalized F -contraction and
extended a fixed point theorem for such mappings [3]. Also, many author’s studied F -
contraction mappings and present some application of the map in b-metric space [13, 14, 1].
Let F : R+ → R be a mapping satisfying: (F1) F is strictly increasing; (F2) For each
sequence {an}n∈N of positive numbers limn→∞ an = 0 if and only if limn→∞ F (an) = −∞;
(F3) There exists k ∈ (0, 1) such that lima→0+ akF (a) = 0. Piri and Kumam further
described a large class of functions by replacing condition, (F3′) F is continuous on (0,∞)
instead of the condition (F3) in the definition of F -contraction [6].

Motivated by these researches, in this paper we introduce new S-metric spaces and
prove some fixed point theorems. Throughout this paper, R, R+ and N denote the set of
all real numbers, the set of all nonnegative real numbers and the set of all positive integers,
respectively.

Definition 1.1. Let X be a nonempty set. An S-metric on X is a continuous function
S : X3 → R+ such that satisfies the following conditions for each x, y, z,and a ∈ X:

(S1) S(x, y, z) > 0 for all x, y, z,∈ X with x 6= y 6= z or x 6= y or x 6= z or y 6= z;
(S2) S(x, y, z) = 0 if and only if x = y = z;
(S3) S(x, y, z) ≤ S(x, y, a) + S(a, y, z) + S(x, a, z);
(S4) S(x, y, z) = S(x, z, y), S(x, y, z) = S(y, x, z) and S(x, y, z) = S(z, y, x). (symmetric)
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Example 1.1. Suppose that X = R. Define S : X3 → R+ by

S(x, y, z) = |x− y|+ |y − z|+ |z − x|.
(X,S) is an S-metric space.

Definition 1.2. Suppose that (X,S) be an S-metric space, {xn}∞n=1 be a sequaence in X
and x ∈ X arbitrary. Then:

(i) The sequeance {xn}∞n=1 is said to be a Cauchy sequence, if for each ε > 0, exists
n0 ∈ N such that S(xn, xm, xm) < ε for each m,n ≥ n0;

(ii) The Sequence {xn}∞n=1 is said to be convergent to point x ∈ X, if for each ε > 0,
exists a positive integer number n0, such that for all n ≥ n0, S(x,x, xn) < ε;

(iii) (X,S) is said to be complete if every cauchy sequence is convergent.

Remark 1.1. Note that, if (X, d) be a metric space, then by definition

S(x, y, z) = d(x, y) + d(y, z) + d(z, x),

it can be easily shown that (X, d) is complete if and only if (X,S) is complete.

Definition 1.3. Let F be the family of all functions F : R+ → R+ such that:

(F1) F is strictly increasing that is for all α, β ∈ R+ such that α < β, F (α) < F (β);
(F2) For each sequence {xn}∞n=1 of positive numbers, lim

n→∞
xn = 0 if and only if lim

n→∞
F (xn) =

−∞;
(F3) t ∈ (0, 1) exists such that lim

α→0+
αkF (α) = 0.

Example 1.2. F1(α) = − 1

α2
, F2(α) = lnα and F3(α) =

1

1− eα
.

Definition 1.4. [9] Let (X, d) be a metric space. Self map T on X is said to be an F -
contraction on (X, d), firstly, F ∈ F and secondly k > 0 exists such that for all x, y ∈ X, if
d(Tx, Ty) > 0, then k + F (d(Tx, Ty)) ≤ F (d(x, y)).

Definition 1.5. [10] Let (X, d) be a metric space. Self map T on X is said to be an F -weak
contraction on (X, d), firstly, F ∈ F and secondly k > 0 exists such that for all x, y ∈ X, if
d(Tx, Ty) > 0, then k + F (d(Tx, Ty)) ≤ F (M(x, y)) where

M(x, y) =

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.

2. Main Results

In the following, we are going to state and prove our main results.

Definition 2.1. Let (X,S) be a S-metric space. Self map T on X is said to be an F -
contaction on (X,S), firstly, F ∈ F and secondly k > 0 exists such that for all x, y ∈ X, if
S(Tx, Tx, Ty) > 0, then

k + F (S(Tx, Tx, Ty)) ≤ F (S(x, x, y)). (1)

Theorem 2.1. Let (X,S) be a complete S-metric space and consider self map T on X is
an F -contaction on (X,S). Then T has a unique fixed point in X.

Proof. Let x0 ∈ X be arbitrary and fixed. Let {xn}∞n=1 be the picard sequence of T
based on x0, which is Txn = xn+1 for n = 0, 1, 2, . . . ,. If n0 ∈ N exists such that
S(xn0

, xn0
, xn0+1) = 0 then xn0

is a fixed point of T , and the existence part of the proof
is finished. On the contrary case, assume that S(xn, xn, xn+1) > 0 for all n ∈ N ∪ {0}.
Applying the contractivity condition (1), we get

k + F (S(Txn, Txn, Txn+1)) ≤ F (S(xn, xn, Txn)) . (2)
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We will show that

S(xn+1, xn+1, Txn+1) ≤ S(xn, xn, Txn), (3)

for all n ∈ N. On the contrary, Suppose that

S(xn0+1, xn0+1, Txn0+1) ≥ S(xn0
, xn0

, Txn0
),

for some n0 ∈ N. From (2), we have

F (S(xn0+1, xn0+1, Txn0+1)) ≤ F (S(xn0 , xn0 , Txn0))− k,

which together condition (F1) implies that

S(xn0+1, xn0+1, Txn0+1) ≤ S(xn0
, xn0

, Txn0
).

It gives us a contradiction. Therefore, (3) holds, so {S(xn, xn, Txn)} is a decreasing positive
sequence in R+ and it converges to some R ≥ 0. We claim that R = 0. To support the
claim, let be untrue and R > 0. Then for any ε > 0, it is possible to find a positive integer
m such that S(xm, xm, Txm) < R+ ε. By (F1) we get

F (S(xm, xm, Txm)) < F (R+ ε). (4)

Since S(xn, xn, xn+1) > 0 for all n, then by repeatedly using (1) and taking (4) into account,
we obtain

F
(
S(Tnxm, T

nxm, T
n+1xm)

)
≤ F

(
S(Tn−1xm, T

n−1xm, T
nxm)

)
− k

≤ F
(
S(Tn−2xm, T

n−2xm, T
n−1xm)

)
− 2k

≤ · · ·
≤ F (S(xm, xm, Txm))− nk
≤ F (R+ ε)− nk.

Letting n→∞ in the above inequality, we get

lim
n→∞

F
(
S(Tnxm, T

nxm, T
n+1xm)

)
= −∞.

Hence from condition (F2), we obtain lim
n→∞

S(Tnxm, T
nxm, T

n+1xm) = 0. Then

S(xm+n, xm+n, Txm+n) < R,

for n which large enough. It is a contradiction with the definition of R. Therefore

lim
n→∞

S(xn, xn, Txn) = 0. (5)

Now, we prove that {xn}∞n=1 is a Cauchy sequence in (X,S). Suppose that the contrary.
Then ε > 0 exists for which we can find monotonically increasing sequences {p(n)}∞n=1 and
{q(n)}∞n=1 of natural number such that

p(n) > q(n) > n,

S
(
xq(n), xq(n), xp(n)

)
≥ ε,

S
(
xq(n), xq(n), xp(n)−1

)
< ε.

(6)

Regarding (1) and (6), we can write

F
(
S
(
xq(n), xq(n), xp(n)

))
≤ F

(
S
(
xq(n)−1, xq(n)−1, xp(n)−1

))
− k

< F
(
S
(
xq(n)−1, xq(n)−1, xp(n)−1

))
,

(7)

which together (F1) implies

S
(
xq(n), xq(n), xp(n)

)
< S

(
xq(n)−1, xq(n)−1, xp(n)−1

)
.
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Using this together with property (S3) we get

ε ≤ S
(
xq(n), xq(n), xp(n)

)
< S

(
xq(n)−1, xq(n)−1, xp(n)−1

)
≤ S

(
xq(n)−1, xq(n)−1, xq(n)

)
+ 2S

(
xq(n), xq(n)−1, xp(n)−1

)
≤ · · ·
≤ 2S

(
xq(n)−1, xq(n)−1, xq(n)

)
+ 6S

(
xp(n), xp(n)−1, xp(n)

)
+ S

(
xq(n), xq(n), xp(n)−1

)
.

By virtue of thes fact and in view if (5) and (6), we have

ε ≤ lim
n→∞

supS
(
xq(n), xq(n), xp(n)

)
≤ lim
n→∞

supS
(
xq(n)−1, xq(n)−1, xp(n)−1

)
≤ ε.

(8)

Again, by using (7), (8), conditions (F1) and (F3) in Definition 1.3, we find that

F (ε) ≤ F
(

lim
n→∞

supS
(
xq(n), xq(n), xp(n)

))
≤ F

(
lim
n→∞

supS
(
xq(n)−1, xq(n)−1, xp(n)−1

))
− k

≤ F (ε)− k,

which holds to a contradiction. Therefore, {xn}∞n=1 is a Cauchy sequence in the complete
S-metric space X. Then v ∈ X exists such that xn → v as n → ∞. That is for any ε > 0,
n1 ∈ N exists such that S(v, v, xn) < ε for all n ≥ n1. We are going to show that v is a fixed
point of T . First note that S(Tv, Tv, Txn) = 0. Since, if for all n, S(Tv, Tv, Txn) > 0, then
F (S(Tv, Tv, Txn)) < F (S(v, v, xn)) − k. It inforce that S(Tv, Tv, Txn) < S(v, v, xn) < ε.
That is a contradiction. So, We have

S(Tv, Tv, v) = lim
n→∞

supS (Tv, Tv, Txn+1) = lim
n→∞

supS(Tv, Tv, Txn) < ε.

Thus S(Tv, Tv, v) = 0. Therefore Tv = v. Hence, v is a fixed point of T . Next we study
the uniqueness of the fixed point of T . Assume that T has two different fixed points v1 and
v2. Then S(v1, v1, v2) > 0 and from condition (1), we get

0 < r ≤ F (S(v1, v1, v2))− F (S(Tv1, T v1, T v2))

= F (S(v1, v1, v2))− F (S(v1, v1, v2))

= 0,

which is a contradiction. Then S(v1, v1, v2) = 0, and so v1 = v2. Therefore the fixed point
is unique. �

Example 2.1. Let X = R and S(x, y, z) = |x− y|+ |y − z|+ |z − x|. Define the mapping
T : X → X by T (x) = x

3 and take F (α) = lnα. We obtain the result that T is an F -
contraction with 0 ≤ k ≤ ln 3. To see this, let us consider the following calculations. First,
observe that

k + F (S(Tx, Tx, Ty)) ≤ F (S(x, x, y)) .

On the other hand, S(Tx, Ty, Ty) = |Tx− Ty|+ |Tx− Ty| = 2|Tx− Ty|. So

F (S(Tx, Tx, Ty)) = F (2|Tx− Ty|) = ln 2|Tx− Ty|,
and

F (S(x, x, y)) = F (2|x− y|) = ln 2|x− y|.
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Indeed, k + ln 2|Tx− Ty| ≤ ln 2|x− y|. Therefore,

k ≤ ln
2|x− y|

2|Tx− Ty|
= ln

|x− y|
|Tx− Ty|

= ln
|x− y|
|x−y|

3

= ln 3.

Definition 2.2. Let (X,S) be a S-metric space. A self map T on X is said to be an F -
weak contraction on (X,S), if F ∈ F and k > 0 exists such that for all x, y ∈ X, which
S(Tx, Tx, Ty) > 0, we have

k + F (S(Tx, Tx, Ty)) ≤ F (M(x, y)) , (9)

where

M(x, y) = max

{
S(x, x, y), S(Tx, Tx, Ty),

S(y, y, Tx)

10
,
S(y, y, Ty)

10

}
.

Theorem 2.2. Let (X,S) be a complete S-metric space and T : X → X be an F -weak
contraction satisfying the following condition:

max

{
S(y, y, Ty)

10
,
S(y, y, Ty)

5
+
S(Tx, Tx, Ty)

10

}
≤ S(Tx, Tx, Ty).

Then T has a unique fixed point in X.

Proof. Let x0 ∈ X be arbitrary and fixed. Define a sequence {xn}∞n=1 in X such that
x1 = Tx0, xn+1 = Txn for all n ∈ N. We may suppose that xn+1 6= xn for all n, otherwise,
T has obviously a fixed point. Then S(xn, xn, xn+1) > 0 for all n ∈ N ∪ {0} and hence (9)
implies that

F (S(Txn−1, Txn−1, Txn)) ≤ F (M(xn−1, xn))− k. (10)

We obtain

max {S(xn−1 , xn−1, xn), S(Txn−1, Txn−1, Txn)} ≤M(xn−1, xn)

≤ max

{
S(xn−1, xn−1, xn), S(Txn−1, Txn−1, Txn),

S(xn, xn, Txn−1)

10
,
S(xn, xn, Txn)

10

}
≤ max {S(xn−1, xn−1, xn), S(xn, xn, xn+1)} .

Then (10) becomes that

F (S(Txn−1, Txn−1, Txn)) ≤ F (max {S(xn−1, xn−1, xn), S(xn, xn, xn+1)})− k.

If we assume that

max {S(xn−1, xn−1, xn), S(xn, xn, xn+1)} = S(xn, xn, xn+1),

for some n then from (10), we have

F (S(Txn−1, Txn−1, Txn)) ≤ F (S(Txn−1, Txn−1, Txn)− k)

≤ F (S(Txn−1, Txn−1, Txn)) ,

and using condition (F1) we conclude that

S(xn, xn, xn+1) < S(xn, xn, xn+1),

which is a contradiction. Therefore,

max {S(xn−1, xn−1, xn), S(xn, xn, xn+1)} = S(xn−1, xn−1, xn),

for each n. Applying again (10) and condition (F1), we deduce that

S(xn, xn, xn+1) < S(xn−1, xn−1, xn).
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That is {S(xn, xn, xn+1)}∞n=1 is a stricly decreasing positive sequence in R+ and it converges
to some R ≥ 0. We declare that R = 0. Suppose it is not true. Then R > 0. For each ε > 0,
let us choose m ∈ N such that S(xm, xm, Txm) < R+ ε. From condition (F1), we have

F (S(xm, xm, Txm)) < F (R+ ε) . (11)

Since T is an F -weak contraction and taking into account S(Txm, Txm, T
2xm) > 0, we get

k + F
(
S(Txm, Txm, T

2xm)
)
≤ F (M(xm, Txm)) . (12)

Since,

M(xm, Txm) = max
{
S(xm, xm, Txm), S(Txm, Txm, T

2xm)
}
,

then from (9) and (F1), we get

max
{
S(Txm, Txm, T

2xm), S(xm, xm, Txm)
}

= S(xm, xm, Txm).

Hence (12) becaomes F
(
S(Txm, Txm, T

2xm)
)
≤ F (S(xm, xm, Txm))− k. This yields

F
(
S(T 2xm, T

2xm, T
3xm)

)
≤ F

(
S(Txm, Txm, T

2xm)
)
− k

≤ F (S(xm, xm, Txm))− 2k.

Continuing the above process and using (11), we observe that

F
(
S(Tnxm, T

nxm, T
n+1xm)

)
≤ · · · ≤ F (S(xm, xm, Txm))− nk
≤ F (R+ ε)− nk.

Passing to the limit n→∞ in the above relation, we obtain

lim
n→∞

F
(
S(Tnxm, T

nxm, T
n+1xm)

)
= −∞.

It follows from condition (F2) that limn→∞ S(Tnxm, T
nxm, T

n+1xm) = 0. So

S(Tnxm, T
nxm, T

n+1xm) = S(xm+n, xm+n, Txm+n) < R,

for n sufficiently large which is a contraction with the definition of R. Therefore

lim
n→∞

S(xn, xn, xn+1) = 0. (13)

Next, we intend to show that the sequence {xn}∞n=1 is a Cauchy sequence in (X,S). Arguing
by contradiction, we assume that ε > 0 and the sequences {p(n)} and {q(n)} of natural
numbers exists such that for all n ∈ N,

p(n) > q(n) > n,

S
(
xq(n), xq(n), xp(n)

)
≥ ε,

S
(
xq(n), xq(n), xp(n)−1

)
< ε.

(14)

In the hight of (14) and condition (9), we find that

F
(
S
(
xq(n)−1, xq(n)−1, xp(n)−1

))
≤ F

(
M(xq(n)−1, xp(n)−1)

)
− k. (15)
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Applying (S3) and our hypothesis, we get

max

{
S
(
xq(n)−1, xq(n)−1, xp(n)−1

)
, S
(
Txq(n)−1, Txq(n)−1, Txp(n)−1

)}
≤M

(
xq(n)−1, xp(n)−1

)
= max

{
S
(
xq(n)−1, xq(n)−1, xp(n)−1

)
, S
(
Txq(n)−1, Txq(n)−1, Txp(n)−1

)
,

S
(
xp(n)−1, xp(n)−1, Txq(n)−1

)
10

,
S
(
xq(n)−1, xq(n)−1, xp(n)−1

)
10

}
≤ max

{
S
(
xq(n)−1, xq(n)−1, xp(n)−1

)
, S
(
Txq(n)−1, Txq(n)−1, Txp(n)−1

)
,

S
(
xp(n)−1, xp(n)−1, Txp(n)−1

)
5

+
S
(
Txq(n)−1, Txq(n)−1, Txp(n)−1

)
10

,

S
(
xp(n)−1, xp(n)−1, Txp(n)−1

)
10

}
≤ max

{
S
(
xq(n)−1, xq(n)−1, xp(n)−1

)
,

S
(
Txq(n)−1, Txq(n)−1, Txp(n)−1

)}
.

a consequence of (15) and (F1), we have

max
{
S
(
xq(n)−1, xq(n)−1, xp(n)−1

)
, S
(
xq(n), xq(n), xp(n)

)}
= S

(
xq(n)−1, xq(n)−1, xp(n)−1

)
.

Again, according (15) becomes

F
(
S
(
xq(n), xq(n), xp(n)

))
≤ F

(
S
(
xq(n)−1, xq(n)−1, xp(n)−1

))
− k,

and so by using (F1), we get

S
(
xq(n), xq(n), xp(n)

)
< S

(
xq(n)−1, xq(n)−1, xp(n)−1

)
. (16)

By (14), (16) and using (S3), we obtain

ε ≤ S
(
xq(n), xq(n), xp(n)

)
≤ S

(
xq(n)−1, xq(n)−1, xp(n)−1

)
≤ · · ·
≤ 2S

(
xq(n)−1, xq(n)−1, xq(n)

)
+ 6S

(
xp(n)−1, xp(n)−1, xp(n)

)
+ S

(
xq(n), xq(n), xp(n)−1

)
.

Regarding to (13) and (14), we have

ε ≤ lim
n→∞

supS
(
xq(n), xq(n), xp(n)

)
≤ lim
n→∞

supS
(
xq(n)−1, xq(n)−1, xp(n)−1

)
≤ ε.

(17)
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In view of (16) and (17), together with (F1), (F3)′, we have

F (ε) ≤ F
(

lim
n→∞

supS
(
xq(n), xq(n), xp(n)

))
≤ F

(
lim
n→∞

supS
(
xq(n)−1, xq(n)−1, xp(n)−1

))
− k

≤ F (ε)− k.

It is a contradiction with k > 0 and it follows that {xn}∞n=1 be a Cauchy sequence in X. By
completeness (X,S), {xn}∞n=1 converges to some point v ∈ X. Therefore, for each ε > 0,
n1 ∈ N exists, such that S(v, v, xn) < ε, for all n ≥ n1. We claim that v is a fixed point of T
and S(Tv, Tv, Txn) = 0, for some n ≥ n1. If S(Tv, Tv, Txn) > 0 for all n ≥ n1, then from
(9), we have F (S(Tv, Tv, Txn)) ≤ F (M(v, xn)) − k. In view of (S3) and our assumptions,
we obtain

max {S(v, v, xn), S(Tv, Tv, Txn)} ≤M(v, xn)

≤ max

{
S(v, v, xn), S(Tv, Tv, Txn),

S(xn, xn, Txn)

5
+
S(Tv, Tv, Txn)

10
,

S(xn, xn, Txn)

10

}
≤ max {S(v, v, xn), S(Tv, Tv, Txn)} .

Then (18) turns into

F (S(Tv, Tv, Txn)) ≤ F (max {S(v, v, xn), S(Tv, Tv, Txn)})− k. (18)

If max {S(v, v, xn), S(Tv, Tv, Txn)} = S(Tv, Tv, Txn), then from (18) and condition (F1),
we lead to a contradiction, and so consequently

max {S(v, v, xn), S(Tv, Tv, Txn)} = S(v, v, xn),

we have F (S(Tv, Tv, Txn)) ≤ F (S(v, v, xn))− k and we get

S(Tv, Tv, Txn) < S(v, v, xn) < ε,

S(Tv, Tv, v) = lim
n→∞

supS(Tv, Tv, xn) = lim
n→∞

supS(Tv, Tv, Txn−1) = 0,

which implies that Tv = v. Hence, v is a fixed point of T . Finally, we show that T has at
nost one fixed point. Indeed, if v1, v2 ∈ X are two fixed points of T such that v1 6= v2, then
from (9), we obtain

F (S(Tv1, T v1, T v2)) ≤ F (M(v1, v2))− k. (19)

Applying (S3) and the a ssumption of the theorem, it follows that

S(v1, v1, v2) ≤M(v1, v2) ≤ max

{
S(v1, v1, v2), S(Tv1, T v1, T v2),

S(v2, v2, T v2)

5
+
S(Tv1, T v1, T v2)

10
,
S(v2, v2, T v2)

10

}
≤ max {S(v1, v1, v2), S(Tv1, T v1, T v2)}
= S(v1, v1, v2),

applying (18), we yield S(v1, v1, v2) < S(v1, v1, v2), which is contradiction. Hence v1 = v2.
This complete the proof. �
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Example 2.2. Let X = R and define S : R→ R by

S(x, , y, z) = |x− y|+ |y − z|+ |z − x|.
Then (X,S) is a complete S-metric space. Let T : X → X be defined by T (x) = x

3 . Also,
take F (α) = lnα for α > 0. Note that,

M(x, y) = max

{
s(x, x, y), s(Tx, Tx, Ty),

s(y, y, Tx)

10
,
s(y, y, Ty)

10

}
,

s(x, x, y) = 2|x− y|, s(Tx, Tx, Ty) = 2|Tx− Ty|,
s(y, y, Tx)

10
=

1

10
(2|y − Tx|) =

1

5
|y − Tx|,

s(y, y, Ty)

10
=

1

10
(2|y − Ty|) ,

and

M(x, y) = max

{
2|x− y|, 2|y|, 1

5

∣∣∣y − x

3

∣∣∣} .
We have k+F (s(Tx, Tx, Ty)) ≤ F (M(x, y)). So k+ln 2|x3 −

y
3 | ≤ F (M(x, y)). If M(x, y) =

2|x− y|, then k + ln 2|x3 −
y
3 | < ln 2|x− y| and so k < ln 3. If M(x, y) = 2

15 |y| then

k + ln 2|x
3
− y

3
| < ln

2

15
|y|,

or k < ln
|y|
5

|x− y|
. Thus, k ≤ ln 3. If M(x, y) = 1

5 |y −
x
3 |, then

k + ln 2|x
3
− y

3
| ≤ ln

1

5
|y − x

3
|.

Finally k ≤ ln 3.

3. Characterization of quasi-contraction maps

Now, we first introduce the concept of a quasi-contraction map in b-metric spaces.

Definition 3.1. Let X be a nonempty set. Suppose that D : X ×X → [0,∞) be a function
satisfies the following conditions:

1) D(x, y) = 0 if and only if x = y,
2) D(x, y) = D(y, x) for each x, y,∈ X,
3) D(x, y) ≤ k(D(x, z) +D(z, y)) for each x, y, z ∈ X, where k > 1 is a constant.

Then the pair (X,D) is called a b-metric space or a metric type space.

Definition 3.2. Let (X,D) be a b-metric space. The self-map T : X → X is said to be
quasi-contraction, if there exists a 0 ≤ c ≤ 1 such that

D(Tx, Ty) ≤ cmax

{
D(x, y),

D(x, Tx) +D(y, Ty)

2
,
D(x, Ty) +D(x, Ty)

2

}
,

for all x, y,∈ X.

Definition 3.3. Let (X,D) be a b-metric space and {xn} be a sequence in X.

(i) We say sequence {xn} is converges to x, if D(xn, x)→ 0 as n→∞,
(ii) we say sequence {xn} is Cauchy sequence if for ε > 0, exists n0 ∈ N such that for all

natural number m,n, which m,n ≥ n0, then D(xn, xm) < ε.

Theorem 3.1. Let (X,D) be a complete b-metric space and T : X → X be a quasi-
contraction map with 0 < kc < k2c < 1 (0 < c < 1, k > 1). Then T has a unique fixed point
x◦ ∈ X and for each x ∈ X, limn→∞ Tnx = x◦.
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Proof. Since T is quasi-contraction, for each x, y,∈ X, we have

D(Tx, Ty) ≤ cmax

{
D(x, y),

D(x, Tx) +D(y, Ty)

2
,
D(x, Ty) +D(Tx, y)

2

}
.

Let x ∈ X be arbitrary. If for some n0 ∈ N, Tn0−1x = Tn0x = T (Tn0−1), then Tnx =
Tn0−1x for n ≥ n0. Thus Tn0−1x is a fixed point of T , the sequence {Tnx} is convergent
to Tn0−1x and the proof is finished. So we may assume that Tn−1x 6= Tnx for each n ∈ N.
Now we show that {Tnx} is a Cauchy sequence. To prove the claim, we first show that by
induction for each n ≥ 2, we have

D
(
Tn−1x, Tnx

)
≤
(

kc

1− kc

n−1)
D(x, Tx).

If n = 2, we get

D(Tx, T 2x) ≤ cmax

{
D(x, Tx),

D(x, Tx) +D(Tx, T 2x)

2
,

D(x, T 2x) +D(Tx, Tx)

2

}
= cmax

{
D(x, Tx),

D(x, Tx) +D(Tx, T 2x)

2
,
D(x, T 2x)

2

}
≤ cmax

{
D(x, Tx), D(x, Tx) +D(Tx, T 2x), D(x, T 2x)

}
≤ cmax

{
D(x, Tx) +D(Tx, T 2x), k[D(x, Tx) +D(Tx, T 2x)]

}
.

If

max
{
D(x, Tx) +D(Tx, T 2x), k[D(x, Tx) +D(Tx, T 2x)]

}
= D(x, Tx) +D(Tx, T 2x),

we have D(Tx, T 2x) ≤ c
(
D(x, Tx) +D(Tx, T 2x)

)
. It is easy to check that

D(Tx, T 2x) ≤ kc

1− kc
D(x, Tx).

If

max
{
D(x, Tx) +D(Tx, T 2x), k[D(x, Tx) +D(Tx, T 2x)]

}
= k[D(x, Tx) +D(Tx, T 2x)],

we have D(Tx, T 2x) ≤ ck[D(x, Tx) +D(Tx, T 2x)]. Thus,

D(Tx, T 2x) ≤ kc

1− kc
D(x, Tx).

If n = 3, then we get

D(T 2x, T 3x) ≤ cmax

{
D(Tx, T 2x),

D(Tx, T 2x) +D(T 2x, T 3x)

2
,

D(Tx, T 3x) +D(T 2x, T 2x)

2

}
≤ cmax

{
D(Tx, T 2x) +D(T 2x, T 3x), D(x, T 3x)

}
≤ cmax

{
D(Tx, T 2x) +D(T 2x, T 3x),

k[D(Tx, T 2x) +D(T 2x, T 3x)]

}
. (20)
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If right-hand inequality (20) equal to D(Tx, T 2x) +D(T 2x, T 3x), we get

D(T 2x, T 3x) ≤ cD(Tx, T 2x) +D(T 2x, T 3x)

≤ kcD(Tx, T 2x) + kcD(T 2x, T 3x).

So, D(T 2x, T 3x) ≤ (kc)2

(1− kc)2
D(x, Tx). By induction, we have

D(Tn−1x, Tnx) ≤
(

kc

1− kc

)n−1

D(x, Tx).

Now with m = n+ s, we obtain

D (Tnx, Tmx) = D
(
Tnx, Tn+sx

)
= k

[
D
(
Tnx, Tn+1x

)
+D

(
Tn+1x, Tn+sx

)]
≤ k

[
D
(
Tnx, Tn+1x

)
+ k

[
D
(
Tn+1x, Tn+2x

)
+D

(
Tn+2x, Tn+sx

)]]
≤ kD

(
Tnx, Tn+1x

)
+ k2D

(
Tn+1x, Tn+2x

)
+ k3D

(
Tn+2x, Tn+3x

)
+ k3D

(
Tn+3x, Tn+4x

)
≤ kD

(
Tnx, Tn+1x

)
+ k2D

(
Tn+1x, Tn+2x

)
+ · · ·+ ksD

(
Tn+s−1x, Tn+sx

)
≤ k

(
kc

1− kc

)n
D (x, Tx)

[
1 + k

(
kc

1− kc

)
+ · · ·+ ks−1

(
kc

1− kc

)s−1 ]

= k

(
kc

1− kc

)n
D (x, Tx)


(
k2c

1−kc

)s
− 1

k2c
1−kc − 1

 .
If n→∞ and s→∞, we obtain D(Tnx, Tmx)→ 0 and a sequence {Tnx} is Cauchy. Since
(X,D) is a complete b-metric space, there exists a x◦ ∈ X such that lim

n→∞
Tnx = x◦,

D(Tx◦, Tnx) ≤ kD(Tx◦, x◦) + kD(x◦, Tnx),

then

lim
n→∞

supD(Tx◦, Tnx) ≤ kD(Tx◦, x◦) + k lim
n→∞

supD(x◦, Tnx).

So lim
n→∞

supD(Tx◦, Tnx) ≤ kD(Tx◦, x◦),

D(Tx◦, Tn+1x) ≤ cmax

{
D(x◦, Tnx),

D(x◦, Tx◦) +D(Tnx, Tn+1x)

2
,

D(x◦, Tn+1x) +D(Tx◦, Tnx)

2

}
,

so

lim
n→∞

supD(Tx◦, Tn+1x) ≤ cD(x◦, Tx◦).
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We obtain D(Tx◦, x◦) ≤ cD(x◦, Tx◦) which yields D(Tx◦, x◦) = 0 and Tx◦ = x◦. To prove
the uniqueness, suppose that x◦ 6= x◦◦ such that Tx◦ = x◦ and Tx◦◦ = x◦◦. We have

D(x◦, x◦◦) = D (Tx◦, Tx◦◦)

≤ cmax

{
D(x◦, x◦◦x),

D(x◦, Tx◦) +D(x◦◦, Tx◦◦)

2
,

D(x◦, Tx◦◦) +D(x◦◦, Tx◦)

2

}
= cD (x◦, x◦◦) .

Therefore D(x◦, x◦◦) = 0 and x◦ = x◦◦. �

Example 3.1. Let X = [0, 1], D(x, y) = |x− y|(2 + |x− y|) for each x, y,∈ X and (X,D)
is a complete b-metric space with k = 2. Let T : X → X be defined by Tx = 1

2 , whenever

x = 1 and Tx = 1
4 , whenevere x 6= 1. It is strightforward to see that for each x, y ∈ X and

following inequality

D(Tx, Ty) ≤ 1

2
max

{
D(x, y),

D(x, Tx) +D(y, Ty

2
,
D(x, Ty) +D(y, Tx

2

}
,

satisfies for all cases.

1) If x = y = 1, then Tx = Ty = 1
2 , hence D(Tx, Ty) = D( 1

2 ,
1
2 ) = 0.

2) If x = 1 and y 6= 1, then Tx = 1
2 and Ty = 1

4 , hence

D(Tx, Ty) = D(1, y) = |1− y|(2 + |1− y|).

We Have

D(Tx, Ty) = D(
1

4
,

1

2
) =

9

16
, D(x, Tx) = D(1,

1

2
) =

5

4
,

D(y, Ty) = |1
4
− y|(2 + |y − 1

4
|),

D(x, Ty) = D(1,
1

4
) =

33

16
,

D(y, Tx) = D(y,
1

2
) = |y − 1

2
(2 + |y − 1

2
).

3) If x 6= 1 and y 6= 1, then Tx = Ty = 1
4 , hence D(Tx, Ty) = D( 1

4 ,
1
4 ) = 0.

4) If x 6= 1 and y = 1, then Tx = 1
4 and Ty = 1

2 , hence D(Tx, Ty) = 9
16 .

D(x, y) = D(x, 1) = |x− 1|(2 + |x− 1|),

D(x, Tx) = D(x,
1

4
) = |x− 1

4
|(2 + |x− 1

4
|),

D(y, Ty) = D(1,
1

2
) =

5

4
,

D(x, Ty) = D(x,
1

2
) = |x− 1

2
|(2 + |x− 1

2
|),

D(y, Tx) = D(1,
1

4
) =

33

16
.

Definition 3.4. Let T : X → X be a map, T is called Lipschitzian, if there exists a constant
λ ≥ 0 such that D(Tx, Ty) ≤ λD(x, y), for each x, y ∈ X. The smallest constant λ will be
denoted Lip(T ).

In the following, we give a fixed point theorem for Lipschitzian mappings in b-metric
spaces.



A generalization of fixed point theorems about F -contraction in particular S-metric spaces ... 63

Corollary 3.1. Let (X,D) be a b-metric space and T : X → X be a map satisfies

D(Tx, Ty) ≤ cD(x, y),

or

D(Tx, Ty) ≤ c
[
D(x, Tx) +D(y, Ty)

2

]
,

or

D(Tx, Ty) ≤ c
[
D(x, Ty) +D(y, Tx)

2

]
.

Then T has a unique fixed point x◦ and for each x ∈ X, lim
n→∞

Tnx = x◦.

Proof. Since T is a quasi-contraction with kc < k2c < 1, then by the proof of Theorem
3.1, we have limn→∞ Tnx = x◦, for each x ∈ X. Now we consider some cases. Case I. If
D(Tn+1x, Tx◦) ≤ cD(Tnx, x◦), and lim

n→∞
D(Tnx, x◦) = 0, then

lim
n→∞

Tn+1x = Tx◦ = x◦.

Case II. If D(Tn+1x, Tx◦) ≤ c
[
D(Tnx,Tn+1x)+D(x◦,Tx◦)

2

]
, but lim

n→∞
Tn+1x = x◦. Therefore

lim
n→∞

D(Tn+1x, Tx◦) ≤ c

2

[
lim
n→∞

D(Tnx, Tn+1x) + lim
n→∞

D(x◦, Tx◦)

2

]
=
c

2
D(x◦, Tx◦).

Thus D(x◦, Tx◦) ≤ c
2D(x◦, Tx◦). We conclude that D(x◦, Tx◦) = 0 and Tx◦ = x◦.

Case III. If D(Tx, Ty) ≤ c
2 [D(x, Ty) +D(y, Tx)], then

D(Tn+1x, Tx◦) ≤ c

2

[
D(Tnx, x◦) +D(x◦, Tn+1x)

]
lim
n→∞

D(Tn+1x, Tx◦) ≤ c

2

[
lim
n→∞

D(Tnx, x◦) + lim
n→∞

D(x◦, Tn+1x)
]
.

So D(x◦, Tx◦) ≤ c
2D(x◦, Tx◦). Hence D(x◦, Tx◦) = 0 and Tx◦ = x◦. �
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