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ENHNCEMENT INFLUENCE OF THE APERIODICITY
COEFFICIENTS IN SPEECH SYNTHESIS

Marius Adrian COTESCU', Inge GAVAT?

Lucrarea prezinta un studiu asupra imbundtatirii calitatii vorbirii sintetice
parametrice folosind coeficientii de aperiodicitate extrasi prin metoda STRAIGHT
de analizd a vorbirii. In acest scop au fost construite trei voci sintetice pentru limba
engleza, folosind corpusul de sinteza ARCTIC SLT si setul de programe HTS,
exemplificand trei modalitati de abordare a generarii secventelor de coeficienti de
aperiodicitate, unul clasic si doud propuse de autori. Cele trei voci au fost evaluate
de un lot de ascultdtori in vederea compardrii naturaletei si similaritdtii cu o voce
naturald.

This paper presents an attempt to enhance the naturalness of synthetic
parametric voices using the aperiodicity coefficients extracted by STRAIGHT
analysis. Three synthetic English voices were built from the ARCTIC SLT database
using the HTS toolkit, with different approaches in treating the aperiodicity
coefficients, one classical and two proposed by the authors. The three voices were
evaluated by a panel of ten non-native English speakers to compare the naturalness
and similarity to a natural voice.
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1. Introduction

Speech synthesis is offering an important communication channel between
the machine and its human user. It allows the user to receive messages on multiple
levels and to process them in a parallel manner. This is very useful in
environments where the user has to focus on visually or physically intensive tasks,
but information should still be transmitted to him. Moreover, together with speech
recognition, it enables the deployment of speech driven interfaces, which can
provide a natural means for a user to exchange information with a machine. This
can be extremely useful for the blind and visually challenged people, but it can
also be implemented for automated public information systems.

There are two main techniques used by machines to render speech. One is
based on selecting fragments of speech recorded from a human speaker and
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stitching them to form a new message. This method is called concatenative speech
synthesis, and it produces very natural sounding voices, especially for systems
that only have to render a limited vocabulary. The other technique used to produce
synthetic speech relies on using sets of parameters extracted from recorded
utterances to reconstruct new waveforms corresponding to the desired message.
This second method had the tendency to produce less natural speech, often
characterized as “robotic” or “metallic”’. Recent developments in speech
processing, such as the STRAIGHT technique [1] and trajectory hidden Markov
models (HMM) [2] have almost eliminated these problems, such that the current
output of parametric synthesizers is very close to natural speech. There is still no
synthetic voice that could pass as natural, though.

The current synthetic voices are lacking in two aspects: the prosody model
and the similarity to the original speaker. Current generated prosody relies on
HMMs to render the pitch contour and sound durations. The combination of
statistics and a limited alphabet used to described the phrasing, leads to a
repetitive and monotonous prosody, which, although close to the model in short
phrases, sounds unnatural and tiring when used for longer texts or phrases. Our
concern is, however, the study of the particularities of the natural speaker and
their integration with the synthetic voice for enhanced naturalness. In this work
we will focus on the characteristics of the excitation generator for voiced sounds.
It is already known that the aperiodicity coefficients extracted by STRAIGHT
analysis are a good way to capture some of the excitation source characteristics
[3], and they have been previously used to enhance the naturalness of parametric
voices [4] [5] [6]. We will show that natural extracted sequences of aperiodicity
coefficients can be used to enhance synthetic voices.

In this paper we are going to present a study on the effect of the
aperiodicity coefficients extracted by STRAIGHT analysis on the naturalness of
synthetic parametric speech. The following section describes the tools and
techniques used to built the synthetic voice. The third section presents our
experiments and results, while the final section draws the conclusions and shows
some possible future work.

2. Speech Processing and Synthesis System

The speech analysis stage involved in speech synthesis aims to extract
accurate features from natural recordings that are then used to build precise
models for the synthesis module. All synthesis modules use a source-filter model
[7] to synthesize speech. In order for the synthesis module to be able to produce a
large variety of sounds and to take full advantage of the ability to modify
parameters without affecting the quality of speech, the analysis techniques should
be able to separate as much as possible the source signal from the vocal tract
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filter. In the same time, the coding method should provide a compact
representation of the analysis frame’s speech content keeping as much of the
initial information.

After analyzing the recordings the extracted parameters were used to train
HMMs using the HMM-based Speech Synthesis System (HTS) toolkit. Details of
the process are described further.

2.1. STRAIGHT analysis

One analysis method that produces accurate separation of the excitation
signal from the vocal tract filter is STRAIGHT. It relies on treating the speech
signal’s spectrogram as a continuous surface sampled by the windowing process
in the time domain and by the harmonic structure of the excitation source in the
frequency domain. The STRAIGHT analysis extracts three components: the
fundamental frequency, the power spectrum of the vocal tract filter, and an
aperiodicity coefficient.

The method considers that a periodic signal s(z) = s(t+nty, with a
fundamental period 7y, is thought to provide information of the surface for every 7y
in the time domain and every fj = /7y in the frequency domain. The goal of the
analysis is to recover the surface S(w, ¢) using this partial information.

However, speech is not purely periodic, nor stable. Other errors are
introduced by the estimation process of the fundamental frequency. All these
aspects must be taken into account by the algorithm, so using the following
representation is more dependable in modeling the non-stationary repetitive nature
of speech waveforms

t
S(w,1) = Zak(t)~sin(jk'(a)(r)+a)k(r))~dr+d)k , (1)
k=N o
where oy(t) represents the time varying amplitude of the A-th harmonic
component, wy(z) represents the time varying fundamental frequency of the k-th
component, and @y represents the initial phase at #). The equation implies that the
speech signal is an almost harmonic sum of sinusoids frequency modulated by
k(7)) parameters and amplitude modulated by ox(?)) parameters. It is well known
that the partial information provided by the oy(?) parameters can be used to
reconstruct the surface S(w,?), representing the vocal tract transfer function.

Apart from extracting a spectrogram that is free of interferences from the
signals periodicity, the STRAIGHT analysis module extracts two more important
features of the spoken signal: a very precise pitch contour (using the TEMPO
method), and the aperiodicity coefficients, which are computed by dividing the
spectrum obtained by the interpolation of the peaks to the spectrum obtained by
the interpolation of the valleys of the original power spectrum [3]. The
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aperiodicity coefficients are closely correlated to the bandwidth of each harmonic
component, and so to the frequency modulation factor w; in Equation 1.
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Fig.1. Examples of normal spectrogram (a), aperiodicity coefficients (b), STRAIGHT spectrogram
(c), and pitch contour extracted with TEMPO (d) for the word \author\

Figure 1 shows an example of a FFT extracted spectrogram (a) compared
with a spectrogram extracted using STRAIGHT analysis (c). The spectrogram’s
frequency resolution is 7.8 Hz. In the normal spectrogram, the line pattern given
by the harmonic components of the fundamental frequency is clearly visible. The
STRAIGHT spectrogram however does not show any traces of the harmonics of
the excitation signal, proving the better separation between source and filter in the
STRAIGHT analysis.

In addition are represented the pitch contour (d) and the aperiodicity
coefficients (b). The aperiodicity factor is smaller at low frequencies, and rises
with the frequency for voiced sounds. Unvoiced sounds tend to have constant
aperiodicity coefficients over the entire frequency range.
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2.2. Vocal tract parameterization

The spectrogram obtained with STRAIGHT can be used by classic
analysis methods to extract accurate parametric representations of the vocal tract
filter. There are two methods generally used in speech analysis and coding: the
linear prediction method [8], and the cepstral method [9]. The linear prediction
method represents the signal’s spectrum using the all-pole model, which prevents
any representation using the zeros of the spectrum. On the other hand, the
exponential-type transfer function obtained by the cepstral method has difficulties
in reconstructing the sharp peaks of the spectrum. One approach to solving this
problem is the generalized cepstral method [10]. It proposes a method of unifying
the cepstral method and linear prediction, allowing for the spectrum model to be
varied continuously from the all-pole type to the exponential type. The speech

spectrum H(¢'®), is modeled as follows, using the mel-generalized spectrum c(m):
1

M y
(1+7/Zc(m)-?"’j , —1<y<0
HE@= @
exp(Zc(m) . 3”’} y=0
m=0
where 7! is given by an all-pass function as
,1 _
=2 % o<1 3)
l-a-z

For our experiment, we used a value for y of 0, corresponding to the normal
cepstral analysis. A value of 0.42 was chosen for a, which for the 16 kHz
sampling rate used in the recordings, approximates well the mel frequency scale.
The vocal tract models were trained using 39 mel-cepstral coefficients extracted
using the above a and y values.

2.3. Excitation source parameterization

Two of the three components extracted by STRAIGHT analysis contain
information regarding the excitation source: the pitch contour, and the
aperiodicity coefficients. The pitch contour dictates the intonation of the
utterance, while the aperiodicity coefficients contain information about the
particularities of the excitation generator.

The intonation model was trained using the logarithm of the extracted
fundamental frequency values. The source’s particularities were modeled by the
mean value of the aperiodicity coefficient over 5 sub-bands: 0 — 1 kHz, 1 — 2 kHz,
2 —4 kHz, 4 — 6 kHz, and 6 — 8 kHz. A set of aperiodicity coefficients extracted
from a random analysis window containing voiced speech and the sequence of
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aperiodicity coefficients corresponding to the longest stretch of voiced sounds
were saved for use in the synthesis stage.

2.4. Text-to-speech system

We have used the HMM-based Speech Synthesis System (HTS) toolkit
developed by the HTS working group at the Nagoya Institute of Technology, in
Japan. It is based on the popular Hidden Markov Models Toolkit (HTK)
developed by the Cambridge University Engineering Department as a portable
toolkit for building and manipulating hidden Markov models. HTS extends the
capabilities of HTK to build and train HMMs, to be able to generate observation
sequences using the trained models that can be used to synthesize speech
waveforms.

Hidden Markov Models (HMMs) had been used for speech recognition
and synthesis for a long time, producing very good results. However, in speech
synthesis, the classic HMM model is unable to generate smooth observation
sequences using just the mean values corresponding to each state. A series of
articles by Tokuda and colleagues [2] [11] [12] presents a method to produce
maximum likelihood observations that took the natural dynamics of speech into
account. In [11], Tokuda et al presents a system which uses delta coefficients as a
constraint on what observations can be generated. This can be easily extended to
cases which use acceleration and higher order constraints also. Further description
of the core techniques used by the HTS toolkit can be found in [13] [14] [15].

3. Experiment and Results

Our work focused on evaluating effects on synthetic voices of different
strategies to built sequences of aperiodicity coefficients extracted by STRAIGHT
analysis. We know about the aperiodicity coefficient that it is a characteristic of
the excitation source [3]. The experiment aimed to show the existence of
aperiodicity coefficients sequences that can be used to enhance the quality of
synthetic parametric voices.

In order to prove our hypothesis, we have trained a voice using the HTS
toolkit and the ARCTIC SLT speech synthesis database. Using the trained
models, we have generated the pitch contour, cepstral coefficients, and
aperiodicity coefficients for the five bands using the HTS toolkit. We then
synthesized three sets of utterances: one set in the classical manner using all the
generated parameters, the second using the aperiodicity coefficients extracted
from one random frame of voiced speech for all the voiced synthetic sounds with
the generated pitch contour and cepstral coefficients and a third one using the
aperiodicity coefficients extracted from the longest continuous stretch of voiced
sounds in the training database.
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In Fig.2 we present the aperiodicity coefficients obtained in the three
variants for the word “Alice”, and it is visible that the proposed two strategies
ensure a larger variety of the aperiodicity coefficients than the classical method,
so that an enhancement of the obtained synthetic voices is to be expected.

To evaluate the voices, a set of ten non-native English speakers, with no or
little speech processing experience, were asked to rate the generated speech
utterances.
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Fig.2. Examples of generated aperiodicity coefficients for the word \Alice\: a) HTS generated sub-
bands, b) using a set from a random window, c) using the longest stretch of voiced sound.

Table 1
Scores meaning for naturalness and similarity tests
. T Meaning for the
Score Meaning for the similarity test naturalness test
1 Sounds like a totally different Completely unnatural
2 person Mostly Unnatural
3 Equally natural and
unnatural
4 Mostly natural
5
Sounds like exactly the same Completely natural
person

The tests were divided in two sections: one aiming at measuring the
similarity of the synthetic voices to the original speaker, and one measuring the
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perceived naturalness of the generated voices. The score meaning for each test are
given in Table 1 on a five step scale. Each section was split into nine parts.

The similarity test section provides the person with four reference samples
of the original voice and one other new sample for every part of the section. For
each part, the person is asked to rate how similar the voice in the new example
sounds to the voice in the 4 reference samples.

In the naturalness section, the person can listen to one sample of a voice
(natural or synthetic) at a time, and he is asked how natural or unnatural the
sentence sounds. The scores given by each person for every phrase generated by
the three methods were compared to see which method was best appreciated.

Figure 3 shows the distribution of the winning method over all samples
and participants. In the similarity test, voices generated in classical manner were
preferred in 33% of the cases, the ones generated using the random sample in 30%
of the cases, and the ones generated using the longest stretch in 37% of the cases.
In the naturalness test, the HTS generated phrases were preferred in 30% of the
cases, the ones generated using the single random sample were preferred in 34%
of the cases, while the phrases generated the longest stretch of aperiodicity
coefficients were preferred in 36% of the cases.
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Fig. 3. Results of the similarity and naturalness tests
4. Conclusions

We built an English synthetic voice using the HTS toolkit and the
ARCTIC SLT database which we than modified to use samples of aperiodicity
coefficients extracted by STRAIGHT from real speech. The initial voice was
constructed using 39 cepstral coefficients extracted from STRAIGHT smoothed
spectrograms to model the vocal tract, the mean value of the aperiodicity
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coefficients over five sub-bands and the logarithm of the fundamental frequency
to model the excitation source. We have then modified it to use either a single
random frame of aperiodicity coefficients extracted from real voiced speech, or
the aperiodicity coefficients sequence extracted from the longest voiced stretch in
the training database.

The original and modified synthetic voices were tested by ten non-native
English speakers. The results showed that the random sample method has some
advantages in naturalness, but not in similarity; the longest stretch method
performs better, having an advantage in both the similarity and naturalness tests.
Although not highly decisive, the results show that samples of aperiodicity
coefficients can be used to enhance the quality of synthetic speech.

Better results we expect to obtain in the next step, by using samples of
extracted aperiodicity coefficients for each phonetic unit, or applying one of the
available unit selection synthesis algorithms [16] to generate the aperiodicity
coefficients sequence.
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