
U.P.B. Sci. Bull., Series A, Vol. 85, Iss. 2, 2023                                                  ISSN 1223-7027 

NUMERICAL ANALYSIS OF THE DROP SHAPE DURING WICKING IN 
POROUS MEDIA 

Daciana BOTTA1,2, Corneliu BĂLAN3 

A numerical algorithm for interface analysis of wicking drops was developed. 
The code identifies the interface points and subsequently calculates the diameter, 
volume and contact angle of the drop. As the code can work with multiple frames, it 
can evaluate the evolution in time of these parameters and calculate the spreading 
velocity and the flow rate. The performance of the code was tested with solutions of 
poly(ethylene oxide) of 0.5% and 5% (w/v) concentration. The mean execution time 
was 0.5 seconds per frame. Therefore, the code can greatly improve the analysis of 
fluids wicking in porous media, where numerous frames are involved.  

 
Keywords: image processing, numerical analysis, drop interface, wicking, porous 

media. 

1. Introduction 

The imbibition of liquids in porous media has importance in many 
industries, such as textile manufacturing, industrial coating of fibers, ink-jet 
printing, filtration of liquid aerosols, and the development of paper-based sensing 
devices [1]. The final stain area that a drop will make is an important parameter in 
the aforementioned domains, therefore it is a necessity to be able to accurately 
predict the behaviour of fluids in porous media. 

The interaction between fluids and porous media has been divided in two 
processes. Wetting is the term used to describe the initial displacement of air by the 
fluid entering the porous matrix, whereas wicking represents the transport of fluid 
along the fibers, by capillary action [2-5]. Moreover, the wicking phenomenon 
takes place in two phases of different kinetics [6,7]. In the first phase, the liquid 
spreads on the surface and penetrates the porous substrate, while in the second 
phase, the fluid is fully contained in the substrate and continues to spread as an 
effect of capillary force. Both phases were taken into account in previous studies 
[8-11], but most works were focused on studying the phenomenon from above, 
which allows for observing only the evolution of stain area.  
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The wicking process is usually analysed by recording the phenomenon and 
extracting information from singular frames. However, as the phenomenon takes 
place very fast, high-speed cameras are required, leading to a numerous quantity of 
frames to be analysed. As this process is tedious, methods for automating the 
analysis procedure were implemented, with the use of Photoshop and MATLAB 
[2]. However, this was done as well mostly for droplets seen from above, where 
information can only be obtained from the stain area. 

For the study of drop interfaces techniques such as the axisymmetric drop-
shape analysis (ADSA), have been developed to measure the interfacial tensions 
and contact angles of pendant drops, sessile drops, and bubbles [12,13]. This 
technique involves a numerical method to fit a theoretical Laplacian curve with 
known surface tension values to the experimental profile of a drop. The value of 
surface tension is therefore found as the best match between the theoretical and 
experimental profiles of the drop [14]. 

In this work, we propose a numerical code for the analysis of the first phase 
of wicking. The purpose of the code is to identify the interface of the drop and 
calculate parameters such as diameter, volume and contact angle. The novelty of 
this work is that it allows the study of drops whose interfaces change in time, instead 
of sessile droplets. In comparison with other techniques, no information about the 
drop or the fluid used have to be known beforehand, as all the parameters will be 
calculated from the shape of the drop. Moreover, the use of dyes, which can 
influence the surface tension of the fluid, is not needed, because the proposed code 
can easily detect the edges of clear fluids, even if these reflect the surrounding 
environment.  

2. Experimental section 
 
2.1 Materials 

Poly(ethylene oxide) (PEO), Mv ~ 1,000,000, and Whatman 1 
Chromatography Paper were purchased from Sigma-Aldrich (St. Louis, USA). A 
Nikon camera with a long focal distance lens (Tamron 90 mm) were used for 
recording the wicking phenomenon. Two light sources were used: Erbauer Lewo 
2400-Li LED and Fiber-Lite MI-150 (Dolan Jenner Industries). 

2.2 Measurement procedure 

  Solutions of PEO dissolved in water were prepared with two 
concentrations: 0.5% and 5% (w/v). Drops with volumes ranging between 1 and 2 
µl were placed on the paper with the use of a micropipette.   
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The flow was recorded from sideview at 60 fps. For ensuring a good quality 
of the images, with low noise, the paper was illuminated from two sides: one light 
source was placed behind the drop, and the other below the paper (Figure 1).  

 

 
 

Fig. 1. Experimental set-up for recording the drop wicking. 
 

Singular frames were extracted from the recordings and further analyzed in 
MATLAB R2022a, which was used on a laptop with a 1.80 GHz processor and 16 
GB RAM for processing time testing. The computation time was measured for each 
frame.  

2.3 Numerical code algorithm 

The code assumes from the start that the image is in RGB mode, so it is first 
converted to grayscale, and subsequently to binary. The binarization threshold was 
maintained the same (x > 151) for all the images analyzed in this study, and it can 
be manually adjusted for different lighting conditions. In order to find the interface 
between the fluid and the surrounding air, a for-loop was performed on the binary 
matrix, which identifies the first non-zero element (white pixel) from each column. 
For each element, its position on rows and columns was stored in two vectors, which 
therefore, contained the X and Y coordinates for each point of the interface.  

Using a reference image for scale, the vectors for the X and Y coordinates 
were multiplied with a correction factor, so that they would contain the information 
in millimeters, instead of pixels. The X-vector was then translated, so that the peak 
would be centered on X = 0. In order to accurately describe the interface shape, a 
seventh order polynomial function was used to fit the points. Having the interface 
in this position, the drop volume could be approximated as the solid of revolution 
around the Y-axis: 

 
𝑉𝑉(𝑥𝑥) = 2𝜋𝜋 ∫ 𝑥𝑥 ∙ 𝑓𝑓(𝑥𝑥) 𝑟𝑟

0 ,  (1) 
 
where r is the drop radius, and it is taken as the X coordinate of the last interface 
point. Having this value, the diameter can also be calculated as 𝐷𝐷 = 2𝑟𝑟. 
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Fig. 2. The steps involved in the image processing procedure: A. transforming the image from the 
original RGB-mode to binary and B. plotting and fitting the drop interface  

 
Moreover, using the fitting curve, the contact angle of the drop can be 

obtained as the arctangent of the slope. Using the first 30 points of the interface, the 
first derivative of the curve was evaluated, and the value of the contact angle, θ,  
was calculated as  

 
𝜃𝜃 = tan−1 𝑓𝑓′(𝑥𝑥). (2) 

 
The interface analysis was performed in a for-loop, which ran for each frame 

found in the specified folder. The values for the frame number, diameter, volume 
and contact angle were saved as vectors. The vector containing the frame numbers 
was afterwards used to transform the information to seconds, therefore containing 
the timescale for the recorded event. Finally, the wicking velocity, the fluid flow 
and the variation of contact angle in time were calculated as the first derivatives of 
the stored vectors. 

3. Results and discussions 
 
3.1 Algorithm evaluation 

In order to verify the correctitude of the interface representation and the 
subsequent calculated values for diameter and volume, the numerical code was 

 

 

A. 

B. 
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tested with images of basic mathematical shapes. The shapes used for this purpose 
were a parabola of equation 𝑦𝑦 = −  𝑥𝑥

2

4
+ 5 and circle with the radius R = 20 mm. 

The values obtained from the code were compared with the theoretical ones and the 
measurement error was calculated (Table 1). 

 

 
Fig. 3. Interface points obtained for images representing: A. a parabola of equation 𝑦𝑦 = −  𝑥𝑥

2

4
+ 5, 

and B. a circle of radius R = 20 mm. Both interfaces were fitted with a 7th order polynomial. 
Insets: the images used for edge detection. 

 
As expected, the interface obtained from the image of the parabola is well 

fitted and the points were retrieved and represented correctly. This can be seen when 
comparing the computed volume of the shape with the theoretical one, where the 
error between the two is of 3.7%. 

 

 

A. 

B. 
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In the case of the circle, as the code retrieves the coordinates of the first non-
zero element of each column, a slight reduction in the height of the interface 
happens. The computed height of the interface is 18.37 mm, instead of the 20 mm 
of the radius, meaning an 8% reduction. This is due to the fact that at the middle 
section of the circle, the interface has more than one point placed at the same 
position on the X-axis. However, the code was designed to only find the point 
placed the highest on the Y-axis. On the other hand, no errors occurred in the radius 
computation. Also, as the interface was generated by the equation of a circle, a 
polynomial is not a perfect fit, as it does not account for the lowest values on the 
Y-axis. This further leads to the propagation of the error in the volume calculus, 
leading to a 12% decrease in the computed volume, compared to the theoretical one. 

 
Table 1 

Comparison between theoretical and computed values 

Shape Theoretical volume 
(mm3) 

Computed volume 
(mm3) Error (%) 

Parabola 157.08 160.80 3.7 

Circle 1.68 x 104 1.47 x 104 12 

 
However, in reality, a fluid drop placed on a porous hydrophilic surface will 

always have an angle lower than 90°, and the shape of the interface will rather 
resemble a parabola, than a circle. Thus, for the analysis of the wicking 
phenomenon, it is considered that the measurement error will be under 5% for the 
volume. In the measurement of the diameter, an error would not occur in this case 
for sharp interfaces, but it is possible that it could appear if the interface is noisy or 
blurred.  

3.2 Drop wicking analysis 

The interface detection was tested for the drops of PEO wicking on the paper 
substrate (Fig. 4). The experimental points of the interface were plotted and fitted 
with a seventh order polynomial function. For each frame, the diameter, the volume 
and the contact angle of the drop were computed by the numerical code, as 
previously described. Their evolution was plotted over time and for each parameter, 
a fitting function was employed from the standard options provided in MATLAB.  

Polynomial functions proved to be the best fit for the evolution of the 
diameter in time. It was observed that as the viscosity of the fluid increased, a higher 
order polynomial function was needed for a good fit. Therefore, for the drops of the 
0.5% solution a second order polynomial was used, whereas for the drops of 5% 
PEO a fourth order polynomial provided the best fit (Fig. 5). Subsequently, the 



Numerical analysis of the drop shape during wicking in porous media               157 

spreading velocity was calculated as the absolute value of the first derivative 
evaluated for the fitting functions used.  
 

    
 

 
 

 
 
Fig. 4. Drop interface evolution over time. A. Frames extracted from the recording of a PEO 0.5% 

drop wicking on paper. B. Evolution over time of the detected interface by the numerical code, 
shown in 2D (computed points and polynomial fit) and 3D (only the function fit). 

 
In the case of volume evolution, the best fit was found to be a smoothing 

spline function. The same smoothing parameter could be used for both solutions, 
and the optimal value was found to be 0.97423. Using the first derivative of the 
fitting functions, the flow rate of the drops into the porous substrate could be 
calculated (Fig. 6). 

The contact angle of the drops was found to decrease exponentially for the 
drops of both solutions (Fig. 7). It was also concluded that the first 30 points of the 
interface were enough in order to accurately calculate this parameter.  

All the analysed parameters had similar trends over time. This led to the 
conclusion that the viscosity of the fluid does not influence considerably the 
phenomenon, but it leads to a decrease in the velocity of the fluid front in the porous 
substrate.  

 

0 s 0.03 s 0.32 s 0.15 s 

A. 

B. 
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Fig. 5. Spreading velocity as a function of time, calculated as the first derivative of the diameter 
evolution over time. Inset: Drop diameter evolution over time, with the associated polynomial 

fittings. 
 

 
Fig. 6. Flow rate evolution over time derived from the evolution of drop volume. Inset: Drop 

volume as function of time, with the associated smoothing spline fittings. 
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Fig. 7. Contact angle evolution over time, calculated as the arctangent of the first derivative 

evaluated for the linear fit of the first 30 interface points. 
 
The execution time of the program was found to vary between the frames. 

The images of the initial stage of the wicking process employ a larger drop, with a 
higher number of interface points, so the first frames required approximately 1 
second for running the code. As the interface decreases, the average running time 
per frame was found to decrease to 0.5 seconds. The wicking cases analysed had 50 
frames for the 0.5% PEO solution and 120 frames for the 5% solution. This means 
that the wicking phenomenon of a single droplet can be evaluated in under 1 minute 
of running time. 

4. Conclusions 

In this work, a MATLAB image processing code was developed in order to 
simplify the analysis of wicking drops in porous media. The phenomenon was 
analyzed for solutions of poly(ethylene oxide) with two different concentrations. 
The program can accurately detect the interface of the drop and further evaluate the 
diameter, volume and contact angle. From the evolutions over time of these 
parameters, the spreading velocity and flow rate could be calculated. The study is 
still under development, but the results can be used to understand how the wicking 
process determines the final stain diameter. This is especially important in the 
paper-based biosensors domain, where the area of the fluid drop influences the 
electroactive surface.  Moreover, as porous media is inhomogeneous, diffusion is a 
complex process, for which a general law has not been yet defined. The numerical 
code can be used to better understand how the material properties of fluids influence 
this phenomenon.  
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Appendix – MATLAB code 

path = 'E:\..\*.jpg'; % the folder in which the images exist 
jpgFiles = dir(path);  
numFiles = length(jpgFiles);    
 
% Preallocate space for every array needed 
dropVolume = zeros(1,numFiles);  
stainArea = zeros(1,numFiles); 
diameter = zeros(1,numFiles); 
time = zeros(1,numFiles); 
spreadingVelocity = zeros(1,numFiles); 
flowRate = zeros(1,numFiles); 
contactAngle = zeros(1,numFiles); 
 
for k = 1:numFiles    % loop through each img 
   filename = strcat('E:\..\',jpgFiles(k).name); 
   I = imread(filename);  
 
    % Prepare the image for processing by converting to grayscale, 
cropping to a smaller area of interest and flipping the image to be in 
the right direction of the Y axis 
    I = im2gray(I);  
    I = imcrop(I,[396.8 725.6 784.4 109.7]);  
    I = flip(I);  
 
    % Binarize the image, remove the artifacts (innacurate small clusters 
of pixels) and convert the logical matrix to double 
    [BW, mask] = segmentImage (I);  
    BW = bwareaopen (BW, 50);  
    BW = double(BW);  
 
    % Find the coordinates of the first and last white pixels 
    [rowFirst, colFirst] = find(BW, 1, "first");  
    [rowLast, colLast] = find(BW, 1, "last");  
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    % Prealocating space for the row and column arrays 
    row = zeros(1, colLast);  
    col = zeros(1, colLast); 
 
    % The for loop must run only on the area where white pixels are 
present to avoid errors 
   for kk=colFirst:colLast 
      % Find the last non-zero element from each column and put it in row 
array 
      [row(kk)] = find(BW(:,kk),1,"last");  
      % Construct the column array by incrementing each iteration 
      col(kk) = kk;        
   end 
 
    % Remove the 0 elements from arrays, which represent the black space 
    col(col==0) = [];  
    row(row==0) = []; 
 
    % Rescale the arrays so that interface starts from (0;0). Rescale the 
arrays from px to mm. Then center the interface peak on 0. 
    col = col - colFirst; 
    col = col .* (1/86); 
    row = row .* (1/86); 
    if k == 1 
        rowInitial = row(1); 
    end 
    row = row - rowInitial; 
    col = col - col(round(end/2)); 
    colLast = col(end); 
 
    % Call the fitting function and apply it to the arrays col and row 
    fittingFunction = 'poly7'; 
    [fitresult1, gof1] = createFit(col, row, fittingFunction);  
 
    % Calculate the volume as the integral of fit from 0 to the last 
column (implies rotation around Y axis). Fit stores the handle for 
y=fitresult(x). Calculate the stain area also. Finally put the calculated 
values in arrays and change the time from frames to seconds. 
    fit1=@(col) feval(fitresult1,col); 
    middleCol = colLast/2; 
    vol_around_y = 2*pi*integral(@(col) fit1(col) .* col, 0, colLast, 
'ArrayValued',true); 
    stain_area = pi*colLast^2; 
 
    dropVolume(k) = vol_around_y; 
    stainArea(k) = stain_area; 
    diameter(k) = colLast*2; 
    time(k) = k * (1/60);  
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    % Find the first 30 points of the interface 
      linearcontactPointsX = col(1:30); 
      contactPointsY = fit1(linearcontactPointsX); 
      contactPointsY = contactPointsY'; 
      [linearX, linearY] = prepareCurveData( linearcontactPointsX, 
contactPointsY ); 
      fitLinearInterface = fit(linearX,linearY,'poly1'); 
 
     [dlinTheta1,~] = differentiate(fitLinearInterface,contactPointsX); 
     contactAngleLin(k) = atan(mean(dlinTheta1)); 
     contactAngleLin(k) = contactAngleLin(k) .* (180/pi); 
 
     C{k} = col; 
     interfacePoints = fit1(col); 
     R{k} = interfacePoints; 
end 
 
% find the longest vector 
lA = max(cellfun(@(x) length(x), C)); 
lB = max(cellfun(@(x) length(x), R)); 
A = zeros(length(C), lA); 
B = zeros(length(C), lB); 
for i=1:length(C) 
    A(i, 1:length(C{i})) = C{i}; 
    B(i, 1:length(C{i})) = R{i}; 
end 
 
plot3(A,B,time,'o'); 
 
figure("Name","Contact Angle Linear vs Time") 
    scatter(time,contactAngleLin); 
    hold on 
    [smoothTime, smoothAngleLin] = prepareCurveData ( time, 
contactAngleLin ); 
    fitAngleLin = fit(smoothTime,smoothAngleLin,'exp2'); 
    plot(fitAngleLin); 
    legend({'experimental data','exp2'},'Location','northeast') 
 
%fitting the diameter and calculating the spreading velocity as the 1st 
%derivative 
[fitTime, fitDiameter] = prepareCurveData( time, diameter ); 
smoothDiameter = fit(fitTime,fitDiameter,'poly4'); 
[smooth_dD1,~] = differentiate(smoothDiameter,time); 
smooth_dD1 = abs(smooth_dD1); 
 
 figure("Name","Diameter vs Time") 
    scatter(time,diameter); 
    hold on 
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    plot(smoothDiameter);    
 
figure("Name","Spreading velocity (function derivative) vs Time") 
     plot(time,smooth_dD1); 
     hold on   
     scatter(time,smooth_dD1);       
         
%fitting the volume 
[fitTime, fitVolume] = prepareCurveData( time, dropVolume ); 
smoothVolume = fit(fitTime, fitVolume, 'smoothingspline', 
'SmoothingParam', 0.97423); 
[smooth_dV1,~] = differentiate(smoothVolume,time); 
smooth_dV1 = abs(smooth_dV1); 
 
figure("Name","Drop Volume vs Time") 
    scatter(time,dropVolume); 
    hold on 
    plot(smoothVolume); 
    legend({'experimental data', 'smooth function'}, 'Location', 
'northeast') 
    
figure("Name","Flow rate vs Time") 
    scatter(time,smooth_dV1); 
    hold on 
    plot(time,smooth_dV1); 
 
%fitting the stain area 
[fitTime, fitArea] = prepareCurveData( time, stainArea ); 
smoothArea = fit(fitTime,fitArea,'poly4'); 
 
figure("Name","Stain Area vs Time") 
    scatter(time,stainArea); 
    hold on 
    plot(smoothArea); 
    hold on 
 
function [fitresult, gof] = createFit(X, Y, fittingFunction) 
[xData, yData] = prepareCurveData( X, Y ); 
ft = fittype( fittingFunction ); % Set up fittype and options. 
[fitresult, gof] = fit( xData, yData, ft ); % Fit model to data. 
end 
 
function [BW,maskedImage] = segmentImage(X) 
BW = X > 153; % Threshold image - manual threshold 
maskedImage = X; 
maskedImage(~BW) = 0; 
end 
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