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A NOTE ON THE CORRELATIONS BETWEEN NIST 
CRYPTOGRAPHIC STATISTICAL TESTS SUITE 

Emil SIMION1, Paul BURCIU2 

This paper is focused on an open question regarding the correlation and the 
power of the NIST statistical test suite. If we found some correlation between these 
statistical tests, then we can improve the testing strategy by executing only one of 
the tests that are correlated. Using the Galton-Pearson “product-moment 
correlation coefficient”, by simulation, we found a high correlation between five 
couples of this statistical tests: (frequency, cumulative sums forward), (frequency, 
cumulative sums reverse), (cumulative sums forward, cumulative sums reverse), 
(random excursions, random excursions variant), and (serial 1, serial 2). 
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1. Introduction 

When we talk about communications security, we need to cover both the 
confidentiality of the transmitted data and the confidentiality of the 
communicators (sender and receiver). Statistical tests are an efficient tool for 
assigning the ownership of a set of independent observations, called 
measurements, to a specific population or probability distribution; they are 
commonly used in the field of cryptography, specifically in randomness testing. 
Statistics can be useful in showing that a proposed system is weak. Thus, one 
criterion in validating ciphers is that there is no efficient method for breaking it by 
brute force. That is, if we have a collection of cipher texts (and eventually the 
corresponding plain texts) all the keys have the same probability to be the correct 
key, thus we have uniformity in the key space. If we are analyzing the output of 
the cipher and find non-uniform patterns, then it can be possible to break it. But if 
we cannot find these non-uniform patterns, no one can guarantee that there are no 
analytical methods for breaking it. Also, statistical tests can be used for analyzing 
communication data and detect covert communications (steganographic systems) 
and anomalies in TCP flow (cyber-attacks). 

The paper will be organized as follows. In section 2 we present statistical 
requirements for validating the security of cryptographic primitives. Validation by 
statistical methods is prone to errors due to the samples used in testing. In section 
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3 we discuss types of errors, sample requirements, and constructions for testing 
block ciphers. For a reference to clearly defined security, the International 
Standardization Organization (ISO), national standards organizations such as 
American National Standards Institute (ANSI), National Institute for Standards 
and Technologies (NIST) standardize requirements and evaluation criteria for 
cryptographic algorithms. The statistical methods used in academic security 
evaluation of the AES candidates are generally based on the “de facto” standard 
STS SP 800-22 [8], a publication of Computer Security Research Center [9], a 
division of NIST, that initially describes sixteen statistical (because improper 
evaluation of mean and variance, the Lempel-Ziv test was dropped from the 
revised version). Besides the above, there exist other several statistical testing 
procedures and tools specified in Donald Knuth’s book [3], The Art of Computer 
Programming, Seminumerical Algorithms, the Crypt-XS suite of statistical tests 
developed by researchers from the Information Security Research Centre at 
Queensland University of Technology from Australia, the DIEHARD suite of 
statistical tests developed by George Marsaglia [5], TestU01, a C library for 
empirical testing of random number generators developed by P. L’Ecuyer and R. 
Simard [4]. In section 3 we discuss about STS SP 800-22 and the statistical 
cryptographic evaluation standard used in AES candidates’ evaluation. In section 
4, we provide experimental results regarding evaluation of correlation between 
statistical tests that were run using three different lengths of the string sample (i.e. 
1, 2, and 5 million bits). In fact, using the Galton-Pearson “product-moment 
correlation coefficient” we found a high correlation between some couples of 
these statistical tests. This fact allows us to improve the testing strategy by 
executing only the uncorrelated statistical tests. Finally, in section 5, we conclude. 

 

2. Statistical Testing of Cryptographic Primitives 

When designing cryptographic primitives such as block/stream ciphers, 
there are several requirements. One of these requirements is that the cryptographic 
primitive has to satisfy several statistical properties: 

• strict avalanche: changing one input bit causes on average about 50% 
output changes; 

• correlation immunity: correlated input gives an uncorrelated output; 
• predictability: having a sample of n binary observations it is impossible to 

predict (with a different from 0.5 probability) the next bit outcome; 
• balance: every output is produced by the same number of inputs. 

The validation of these criteria is done by analytical methods or statistical 
tests (in case the first one is not available). Also, statistical tests are useful to 
mount distinguishing attacks that allow an attacker to distinguish random data 
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from encrypted data. Statistical hypothesis testing is a mathematical technique, 
based on sample data, used for supporting the decision making on the theoretical 
distribution of a population. In the case of statistical analysis of a cryptographic 
algorithm, the sample is the output of the algorithm from different inputs for the 
key and plain text. Because we deal with sample data from the population, the 
decision process of the population’s probability distribution is prone to errors. To 
meet this challenge, we model the decision making-process with the aid of two 
statistical hypotheses: the null hypothesis, denoted by H0 - in this case, the sample 
does not indicate any deviation from the theoretical distribution - and the 
alternative hypothesis HA - when the sample indicates a deviation from the 
theoretical distribution. There can be two types of errors: first type error (also 
known as the level of significance), i.e. the probability of rejecting the null 
hypothesis when it is true (1): 

( )trueis|reject 00 HHPr=α     (1) 
and the second type error, which represents the probability of failing to reject the 
null hypothesis when it is false (2): 

( )falseis|accept 00 HHPr=β     (2) 
These two errors, α and β, can’t be minimized simultaneously since the 

risk β increases as the risk α decreases and vice-versa. For this reason, one 
solution is to have the value of α under control and compute the probability β.  
The analysis plan of the statistical test includes decision rules for rejecting the null 
hypothesis. These rules can be described in two ways: 

• Decision based on P-value. In this case, we consider f to be the value of 
the test function and compare the P-value, defined as (3): 

( )fXPr <        (3) 
with the value α, and decide on the null hypothesis if P-value is greater 
than α; 

• The “critical region” of a statistical test is the set which causes the null 
hypothesis to be rejected; the complementary set is called the “acceptance 
region”. In the acceptance region, we shall find the ideal results of the 
statistical test. 
Because for each test statistical test the rejection rate α is a probability, 

which is “approximated” from the sample data, we need to compute the minimum 
sample size in order to achieve the desired rejection rate α. Also, the sample must 
be independent and governed by the same distribution.  

A way to construct samples for testing block ciphers is to setup the plain 
text and the key (4):  

( )iii kPEX ,=        (4) 
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where E is the encryption function, Pi is the set of plain texts, and ki is the set of 
keys. For each plain text input Pi and each encryption key ki, the output from the 
encryption function must have a uniform distribution. To test this assumption, for 
AES candidates, in NIST standard [9] the samples are constructed with low/high 
density plain text/key (a low density text/key is a text/key with a small number of 
1s, in opposition to a high density text/key which is a text/key with a small 
number of 0s). As we can see, when using this type of construction, the samples 
are not independent variables because they are connected by means of the 
encryption function E. Are the results of the statistical tests relevant when this 
assumption is not true? If the statistical test accepts the null hypothesis, then we 
can say that there is not enough evidence for the non-uniformity of the sample. 

If a cryptographic primitive passes a statistical test, it does not mean that 
the primitive is secure. For example, the predictable sequence 01010…01 is 
“perfect” if we analyze it with the bit frequency test. This is one of the reasons 
why we should be “suspicious” if we obtain perfect results. To avoid these 
situations, in some cases it is indicated to include the neighborhood of the ideal 
result in the critical region. 

NIST SP 800-90A [NIST SP 800-90] contains the specifications of four 
cryptographic secure PRBG for use in cryptography based on: hash functions, 
hash-based message authentication code, block ciphers and elliptic curve 
cryptography. Some problems with the later one (Dual_EC_DRBG) were 
discovered since 2006 ([2]): the random numbers it produces have a small bias 
and it raises the question if NSA put a secret backdoor in Dual_EC_DRBG. It was 
proved, in 2013, that (Dual_EC_DRBG) has flows. Internal memos leaked by a 
former NSA contractor, Edward Snowden, suggest that NSA generated a trapdoor 
in Dual_EC_DRBG. To restore the confidence on encryption standards, NIST 
reopens the public vetting process for the NIST SP 800-90A.Thus, if algorithm 
will fail to certain tests, then it should not be used in cryptographic applications 
because an attacker will be able to predict the behavior of the algorithm or, even 
worse, may indicate the existence of certain trapdoors. 

 

3. A View on STS SP 800-22 

Pseudorandom bit generators (PRBG) are cryptographically secure if pass 
next bit test, that is, there is no polynomial time algorithm which, given the first l-
bits of the output, can predict 1+l -bit with probability significantly greater than 
0.5, and in the situation when a part of PRBG is compromised, then it should be 
impossible to reconstruct the stream of random bits prior to the compromising. 
Yao [Yao] proved that PRBG passes next bit test if and only if passes all 
polynomial time statistical tests. Because practically is not feasible to test PRBG 
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for all polynomial statically tests, we need to find a representative, polynomial 
time, statistical testing suite such as STS SP 800-22. 

Because STS SP 800-22 is a standard, we shall focus on it rather than 
other statistical test suites ([3], [4], or [5]). STS SP 800-22 (the revised version) 
consists of fifteen statistical tests, which highlight a certain fault type proper to 
randomness deviations. Each test is based on a computed test statistic value f, 
which is a function of the sample. A statistical test is used to compute (5): 

( )0| HfPrValueP =−       (5) 
that summarizes the strength of the evidence against the null hypothesis. If the P-
value is greater, then the null hypothesis is accepted (the sequence appears to be 
random). The tests are not jointly independent, making it difficult to compute an 
overall rejection rate (i.e. the power of the test). Recall that the tests T1,…,T15 are 
jointly independent if (6) is true for every subset {i1,…,ik} of {1,…,15}: 

( ) ( )iki1iki1 TPrTPrTTPr ⋅⋅⋅= )(,...,      (6) 
Obviously, jointly independent tests are pair wise independent. The 

converse is not true [1]. If the statistical tests would be independent, then the 
overall rejection rate, would be computed using the probability of the 
complementary event (7): 

( ) 14.011 15 ≈−− α        (7) 
STS SP 800-22 provides two methods for integrating the results of the 

tests, namely percentage of passed tests and the uniformity of P-values. The 
experiments revealed that these decision rules were insufficient and, therefore, 
researchers considered their improvement would be useful. Therefore, in [10], 
new integration methods for these tests were introduced: 

• Maximum value decision, based on the max value of independent 
statistical test Ti, ni ,...,1= . In this case, the maximum value of the random 
variables was computed; the repartition function of the max value being 
the product of the repartition functions of the random variables Ti (8): 

( )( ) ( )xTPrxTTmaxPr i

n

i
n1 <=< ∏

=1

,...,     (8) 

• Sum of square decision, based on the sum of squares S of the results of the 
tests (which have a normal distribution). The distribution of S, in this case, 
is χ2, the freedom degrees given by the number of partial results which are 
being integrated. 
Weak points of STS SP 800-22: 

• Fixed first order error 01.0=α ; 
• The tests are not evaluating the second order error, which represents the 

probability to accept a false hypothesis. 
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In [7], the possibility of extending STS SP 800-22 tests to arbitrary level 
of significance α (and computing β) is presented by computing, for 30>n , the 
second order probability (9): 


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In [6], there are some comments about NIST statistical testing 
methodology: ambiguous hypothesis (does not specify the family of distribution 
and/or the alternative), error quantification (NIST does not give the size of the 
category-test decisions), power of the test suite, dependencies of tests, invariant 
test (cryptographically equivalent tests performed on the same sample do not 
necessary give the same result), and inadmissible tests (the existence of better 
tests). 

After the process of evaluation of AES candidates, researchers [Kim] 
reported that the test setting of Discrete Fourier Transform test (designed to detect 
periodic features in the tested sequence that would indicate a deviation from the 
assumption of randomness) and Lempel-Ziv test (designed to see if the sequence 
can be compressed and will be considered to be non-random if it can be 
significantly compressed) of the STS SP 800-22 are unsuitable:  

• threshold value and the variance σ2 of theoretical distribution, and 
• the setting of standard distribution, which has no algorithm dependence 

(SHA-1 for million bit sequences) and the re-definition of the uniformity 
of P-values (based on simulation). 
Because the mean and variance of Lempel-Ziv test were evaluated using 

samples generated by an algorithm, in the revised version of STS SP 800-22 the 
Lempel-Ziv was dropped. 

4. Experimental Analysis of Correlation Between Statistical Tests 

In [10], we studied the variation of the second order error β, with respect 
to p1 and the length n of the bit stream Frequency test within a block, Runs, 
Discrete Fourier transform (spectral), and Serial test (2 components). For the rest 
of statistical tests, it is difficult to find an analytical formula for the second order 
error β. For this reason, one proposal is the following procedure for checking the 
independence of tests i and j: 

 
i) implement the NIST SP 800-22 testing suite; 
ii) use a “good” pseudorandom generator GPA to test N binary 

samples; 
iii) for each test i, define the Bernoulli random variable Ti 

which gives 1 if the sample passes the test, otherwise 0; 
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iv) estimate the value of (10): 
( ) ( ) ( )jiji TPrTPrTTPr ⋅−and     (10) 

If the tests are independent, then this value should be close 
to zero. 

v) find the highest value of the above value for i and j. 
 
On the other hand, the result of a statistical test, denoted as P-value, as a 

measure of randomness, ranges between [0,1], and is calculated by a specific 
formula given for each test by NIST’s specification. With a P-value close to 1, we 
have a high level of randomness. 

Our work improves the results of [11] and [12] and, based on the Galton-
Pearson “product-moment correlation coefficient” ([13]), evaluates pairs of P-
values, and produces a result which ranges between [-1, 1]. A correlation of +1 
means that there is a perfect positive linear relationship between variables, or a 
direct proportion, while a correlation of -1 means that there is a perfect negative 
linear relationship between them, or an inverse proportion. With a correlation 
which is close to the absolute value of 1, we have a strong relationship between 
the variables. In case of a correlation close to 0, the variables are independent. The 
reciprocal is not always true ([14]). For the evaluation of correlation between 
statistical test results, the chosen method was Galton-Pearson formula, that is, the 
correlation coefficient. In order to produce reliable/effective results and 
conclusions, this was done by calculating and analyzing three sets of correlation 
coefficients, corresponding to the application of NIST statistical tests over 100 
binary samples of different lengths (i.e. 1, 2, and 5 million bits). The correlation 
coefficients that resulted from the application of NIST statistical tests, and showed 
a strong correlation (close to or greater than 0.5) between a test situated on the 
horizontal line and one on the vertical line, are contained by Table 1, 2, and 3 
shown below (only the tests with correlations), that is, for a sample length M = 
1,000,000, 2,000,000, and 5,000,000 bits. 

 
Table 1 

Correlation coefficients for M = 1,000,000 bits 
Tests T1 T3F T3R T12 T13 T14.1 T14.2 

T1 1 0.738 0.722 0.287 0.248 0.031 -0.002 
T3F 0.738 1 0.765 0.371 0.313 -0.087 -0.245 
T3R 0.722 0.765 1 0.235 0.180 -0.049 -0.149 
T12 0.287 0.371 0.235 1 0.725 -0.010 -0.037 
T13 0.248 0.313 0.180 0.725 1 -0.011 -0.079 

T14.1 0.031 -0.087 -0.049 -0.010 -0.011 1 0.690 
T14.2 -0.002 -0.245 -0.149 -0.037 -0.079 0.690 1 
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Table 2 

Correlation coefficients for M = 2,000,000 bits 
Tests T1 T3F T3R T12 T13 T14.1 T14.2 

T1 1 0.790 0.767 0.286 0.324 0.022 -0.052 
T3F 0.790 1 0.705 0.421 0.348 -0.092 -0.116 
T3R 0.767 0.705 1 0.236 0.201 -0.043 0.033 
T12 0.286 0.421 0.236 1 0.623 0.128 0.036 
T13 0.324 0.348 0.201 0.623 1 0.049 -0.098 

T14.1 0.022 -0.092 -0.043 0.128 0.049 1 0.690 
T14.2 -0.052 -0.116 0.033 0.036 -0.098 0.690 1 

 
Table 3 

Correlation coefficients for M = 5,000,000 bits 
Tests T1 T3F T3R T12 T13 T14.1 T14.2 

T1 1 0.716 0.733 0.199 0.139 -0.123 -0.111 
T3F 0.716 1 0.637 0.267 0.099 -0.107 -0.117 
T3R 0.733 0.637 1 0.086 0.014 -0.164 -0.106 
T12 0.199 0.267 0.086 1 0.498 -0.056 -0.135 
T13 0.139 0.099 0.014 0.498 1 -0.013 -0.023 

T14.1 -0.123 -0.107 -0.164 -0.056 -0.013 1 0.746 
T14.2 -0.111 -0.117 -0.106 -0.135 -0.023 0.746 1 

 
where: T1 - Frequency (Monobit), T3F - Cumulative Sums (Forward), T3R - 
Cumulative Sums (Reverse), T12 - Random Excursions, T13 - Random 
Excursions Variant, T14.1 - Serial 1 (where a P-value1 was evaluated for 

12 −= m
1K degrees of freedom, with m being the number of bits in a pattern that 

appears in the n-bit stream), and T14.2 - Serial 2 (where a P-value2 was evaluated 
for 2

2 2 −= mK degrees of freedom); the values that are close to or greater than 0.5 
were filled with grey color. 

We found a high correlation between five couples of these statistical tests: 
(frequency, cumulative sums Forward), (frequency, cumulative sums reverse), 
(cumulative sums forward, cumulative sums reverse), (random excursions, 
random excursions variant) and (serial 1, serial 2). This allows us to improve the 
testing strategy by “dropping” one of the correlated tests. 

Looking at the correlation coefficients, concerning only the presumed 
dependencies (correlations), we found different patterns of variation (depending 
on the sample length), as follows: 
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• Oscillation pattern: T1-T3F: 0.738 ↑ 0.790 ↓ 0.716 
• Oscillation pattern: T1-T3R: 0.722 ↑ 0.767 ↓ 0.733 
• Decrease pattern: T3F-T3R: 0.765 ↓ 0.705 ↓ 0.637 
• Decrease pattern: T12-T13: 0.725 ↓ 0.623 ↓ 0.498 
• Increase pattern: T14.1-T14.2: 0.690 ↑ 0.690 ↑ 0.746 

 
These patterns will be object of our future work in order to mathematically 

describe the variance of correlation coefficients with the length of string sample. 
 

6. Conclusions 

In this article we focused on an open question regarding the correlation of 
the NIST statistical test suite and improved the results obtained in [10], [11] and 
[12]. Using the Galton-Pearson “product-moment correlation coefficient” we 
found a high correlation between five couples of these statistical tests. This 
allowed us to improve the testing strategy. 
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