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BINARY RELATIONS — ADDENDA 1 (KERNEL,
RESTRICTIONS AND INDUCING, RELATIONAL
MORPHISMS)

Mihai REBENCIUC!

Aceasta lucrare (in doud parti) contine unele completari la teoria relatiilor
binare intr-un cadru extins prin operatii categoriale generalizate — relativ la
categoria neregulatd a relatiilor binare Rl.asociatd categoriei regulate Set.
Primele doud completari din aceasta parte a lucrarii se refera la nucleul,
respectiv la restrictiile §i indusa in multimi arbitrare a unei relatii binare — in
legaturda cu operatii de algebra Booleand si categoriale generalizate Ultima
completare constd intr-o ierarhie de morfisme relationale in paralel in cazurile
omogen §i neomogen la care se raporteazd §i notiunea de (bi)simulare
(generalizata pentru cazul neomogen) — esentiald in programarea concurentd .

This paper( in two parts) contains some addenda to binary relations theory
in a background witch is extended by generalized categorical operations — relative
to the unregulated category of binary relations Ret associated with the regulate
category Ser. The first two addenda from this part of the paper refer to the kernel,
respectively to the restrictions and the induced relation in arbitrary sets of a binary
relation - in connection with Boolean algebra operations and generalized
categorical operations. The last addendum consists in a hierarchy of relational
morphisms in parallel in homogeneous and inhomogeneous cases to witch the
notion of (bi)simulation (generalized for inhomogeneous case) is reported -
important in concurrency programming.

Keywords: category of relations, relational systems, category of sets.
MSC2000: primary18B10, 08A02; secondary 18B05.

1. Introduction

The concept of multivocity is illustrated in a naturally way by the notion
of binary relation in the regulate category of sets Ser — in witch the binary
relations form the unregulated category &« in regard to the categorical operation
of composition and the binary relations between the same sets have a structure of
complete Boolean algebra — with the known properties [1], [2], [3], [4]; in a
topoi £ it is maintained the corresponding category 2, — but the structure of a
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complete Boolean algebra it is replaced by the structure of Heyting algebra [5]
and in a category that in the finite case is more generally then a topoi
(wellpowered and wellcopowered category with products, coproducts and finite
intersections ) remains just the structure of complete lattice - with a conditionally
distributivity of the composition in regard to union [6], [7].

The first addendum from this part of the paper is relates to the functional
type — by defining the kernel of a relation and the determination of some
properties as a special homogeneous relation (of tolerance and equivalence)
respectively of connection with generalized categorical operations.

In the second addendum, we associate the concept of multivocity with the
one of partiality - with a unification of functional and order approach by defining
in the same generalized way of the notions of restrictions and induced binary
relation in arbitrary sets, followed by the study of Boolean algebra and
generalized categorical operations.

These generalisations - relative to categorical operations and restrictions
and inducing in arbitrary sets are categorical validated in categories with
intersections and unions of “objects” [8], [9].

The last addendum refers to a hierarchy of relational morphisms with a
parallel between homogeneous and inhomogeneous cases - to witch the notion of
(bi)simulation (generalized for inhomogeneous case) is reported ; the notion of
(bi)simulation — that induces the notion of (bi)similarity is important in
concurrency programming [10], [11].

We close up with an example relative to ones of the above generalizations.

Example 1.1 (operations with subtotal and subdiagonal relations) Relative
to the set 2#4(A, B) of binary relations between A, B we consider the set Ze,(A4, B)

={w, y =A'xB'/ A" €P(A), B'eP(B)}cRel(4, B) of the subtotal relations
with @, , the total relation and for A'e?(4), B eP(B) with
Oy 5 =Wy p =Wy 5 =D the vide relation in Zel(4, B) ; 7,0 P(A)*x { @ } >Rely(A,
), 1(A,¢)=w, ,(and analogously z,) is complete isomorphism of Boolean
algebras , but 7. P(A)x P(B) —Rek(4, B), (A", B')=w, remains only
morphism of inferior semilattices (and partial order semiembedding ) with 2(4) x
P(B) complete Boolean algebra and with (4, B) bounded inferior semilattice
by O, w,,. Consequently Re(4, ®), Rel(e, B) are complete Boolean
subalgebras of complete Boolean algebra 2#4(A4, B) - through the medium of
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inferior semilattice Ze,(A, B) ; analogously in homogeneous case 24(A) = Rel(A,
A) - in addition with R#4(4) = {A, ={(x, x)/xe X}/ X € P(A)} = Rel(A) (the set
of subdiagonal relation in A with A, the diagonal relation in 4) complete
sublattice of Ze(A) according to complete lattice isomorphism d: 2(A) — et i(A4),
3(A)=A ;. Reby corresponding to the sets Rebo(4, B) = { @, 5}, Rebol(A) = { @, }

is preordered subcategory of ¢ with (@, 5 = wy , ; categorical operation of

113

composition “ o” (graphically omitted) is generalized by @ ,0,,=< for
BNC=0, respectively o, ,0,,=0,, for BNC=J. If R-A, B) is non-
strictly, ie. O=ANB=# [12], then RAA, B) is semigroup relative to
composition (A ,, A, the neutral elements to the right , respectively to the left)
which 2,(A4, B) subsemigroup . In homogeneous case 2#(A) is monoid with
Relsq(A) submonoid because A,A, =A,A, =A, ,; in addition we have
A

Xxy — AX x AY .
2. Kernel

Definition 2.1 ((co)kernel of a relation). The kernel of the relation Re
Zel(A, B) is the homogeneous relation of Z#(4), noted ker R and defined by

ker R = R™'R ; dually cokerR = RR™' € R(B) is the cokernel of R.

Observation 2.1.i (duality) We have coker R =kerR™', kerR = cokerR™
because cokerR=RR'=(R'R)"'=kerR™ and analogously for the other
equality.

it (symmetry) Ker R is symmetric relation  because
(kerR)"' =(R"'R)™" =R'R =kerR and analogously for cokernel.

ili(tolerance) Ker R is D-tolerance relation, D = dom(R) = subfield(ker R)
( = dom(ker R)codom(ker R), where dom(ker R) = codom(ker R) = dom(R))
because ker R is reflexive in any a € D - there is b € B such that (a,b) € R and
hence (a,a) ekerR and according to ii; analogously(but dually) coker R is
C-tolerance relation, C = codom(R) = subfield(coker R). Particularly, if R is
left-total (dom(R ) = A), respectively right-total (codom(R) = B), then ker R,
respectively coker R are tolerance relations.
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iv (equivalence) If in addition Re @44, B) is dysfunctional [13], i. e.
R=RR'R(RR'R c R is a sufficient condition) — which is named also i-regulate
or preunivocal(for unification of terminology in the category 2« [14]), then ker R

is D-equivalence and coker R is C-equivalence; in the case R left-total,
respectively right-total these became equivalences. Indeed we have

(kerR)> =(R'R)R'R)=R"(RR'R)=R'R=kerR and analogously for
cokernel.

Theorem 2.1(inclusion, categorical operations) Let be Re (A, B); for
Se Ze(A, B), Sc R implies (co)ker Sc(co)ker R. For Se 24 C, D) we have the
equalities ker (R, S) = ker RN ker S, coker (R, S) = coker (RxS), (co)ker (RxS) =
(co)ker Rx(co)ker S.

Proof . Relative to inclusion we have S'c R, kerS=S"'S ¢

SR R'R=kerRand analogously for cokernel. Relative to categorical
operations we have  ker(RxS)=(RxS) ' (RxS)=(R"'xS")RxS)=
(R'R)x(S7'S)=kerRxkerS and analogously for cokernel. In addition, we
have (a,a’) € ker (R, S) iff there exists (b, d) € Bx D such that (a, (b, d) €(R, S),
((b,d),a)ye(R,S)" iff (a,b),(a’,b)eR,(a,d),(a',d)eS iff (a,a’)e
ker Rnker S, respectively ((b,d),(b',d")) e coker (R,S) iff there exists
aeANnC such that (b,d),a)e(R,S)", (a,(b',d")) e (R, S) iff
(a,b),(a,b’)eR, (a,d),(a,d")eS iff (b,b")ecokerR,(d,d")e coker S iff
((b,d), (b',d")) e coker Rxcoker S.

Definition 2.2(w-composability) The relations Re (A, B), Se 2el(C, D)
are weak composable — for short w-composable if there exist composable pairs of
R, S, i. e. .SR# . Particularly, R is weak self-composable — for short w-self-

composable if R* = RR # & ; more generally, for ne IN" \{l) (implicitly n = 2)
R is n-weak self-composable — for short nw-self-composable if R" # .

Observation 2.2.i (sufficient condition) A relation is w-self-composable if
it is non-banal transitive.

ii (monotony) For m,n e IN \{l) if m< n, then R n-w-self-composable
implies R m-w-self-composable.

iii (the w-self-composability of the (co)kernel) Ker R(and analogously
coker R) is w-self-composable because whichever of the inclusion R < RR™'R or
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A, cker R, D =dom(R) (see the points iii and iv of observation 2.1) imply the
inclusion ker R < (ker R)* with ker R # & .

3. Restrictions and inducing

Definition 3.1 ((co)restriction, induced relation) Let Re (A, B) be a
relation and let X, Y be arbitrary sets; the restriction of R to X and dually, the
corestriction of R to Y and the relation which is induced by R in X, Y are
respectively the relations R|,=RNawy 5, |R=RNaw,,, R, , =RNao, , €

Zu(4, B).

Observation 3.1 (nuances, terminology) More exactly we have R|, e
Zel(ANX, B), ;| Re RelA, BNY) (which are named also the left restriction of R
to X, respectively the right restriction of R to ¥) and R, , € RAANX, BNY); R
is the extension of R|,, ,|R and R, , respectively to 4, B and 4, B. For
Re®lA) Ry =R, , is the relation which is induced by R in X.

Theorem 3.1 (connections) Let Re Z4(A, B) be a relation and let X, ¥ be
arbitrary sets. We have the equalities R|,=RA,, ,|R=A,R, ,|(R]|;)=
(yIR) [y (=y[ Ry - “associativity”), RX,Y:Y| Rly=R[yNy|R=AyRA,.

Proof. The first two equalities, the last equality and the equalities of the
“associativity” follow at once (by definition or according to the last equality for
the equalities of the “associativity”) — and imply the equality R, ,=,|R|, .
Finally, we have R|, N, |R=(RNay z)N(RNo,)=RNoy ;NO,, =
vl Rlx= RX, Y-

Example 3.1 (restrictions and induced relations of the subtotal and

subdiagonal relations) Relative to the arbitrary sets X, Y we have the following
restrictions and induced relations of the relations @, , € R4, B), A, €

Relsa(A):

Dy y |X: Oy y NOy g =Oyy y = a)U,VAX’ Y| Oy y =0y y N0,y =0y yry =
AYa)U,V’ (a’U,V)X,Y =0y y |me| WOy y =Oynyy NOy yry = Oyny yry =

Ayw, A, - particularly for Xe P'(4), YeP'(B) @, 4 |y=0y 5, y| 0, 5 =@, y,
(0, 5)x.y =@y y,respectively (A,), =A A A=A, - particularly for
Xe?P(4) (A,)y =A,.Inaddition, for Re R4, B) we have R\R, , =R\w, ,
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Theorem 3.2 (relations and operation of Boolean algebra) Let R, Se (A4,
B) be relations and let X, X', ¥, ¥' be arbitrary sets. i (inclusion preserving)
X'c X imply R|,.<R|,, ScR imply S|,< R]|, - and analogously it is the
inclusion preserving relative to corestriction, X'c X, Y'cY imply
Ry y CRyy, SCRImply Sy, Ry y;

ii (union preserving) R|,  =R|, UR|;, (RUS)|,=R|, US, - and
analogously it is the union preserving relative to corestriction,
Ryoxvor =Ry y YRy y URy y URy y, (RUS)X,Y =Ry y USy ys

i (behaviour towards intersection) R, .,=(R|,)y =R|y)y,

(RNS)|[y=R|; NS|y - and analogously for corestriction, R, y ., =

(RU,V)X,Y :(RX,Y)U,V :(RU,Y)X,V :(RX,V)U,Y’ (RmS)X,Y :RX,Y mSX,Y'

Proof. i. It is easy — for example by making use of the expressions of the
restrictions and of the induced relation with subdiagonal relations (as operands of
the composition — see theorem 3.1) and by inclusion preserving by composition.

ii. We have (see theorem 3.1) R|, y=RA, x =R(A, VA,)=
RA, URA, =R|, UR|,, (RUS)|,=(RUS)A, =RA, USA, =R|, US|,
(or by definition and according to the example 1.1) - and analogously for the
preservation of the union relative to corestriction, R,y ,oy=p y| (R|yox) =

VuY|(R |U UR |X):Vuy|(R |U)UVUY|(R |X):V|R|UUY|R|UUV|R|XUY|R|X=
Ry y Ry y URy , URy 4, (RUS) y y=y[(RUS) [y )=y[(R]|y US|y)=
Y|R|XUY|S|X:RX,YUSX,Y‘

iii. We have (by definition) R|, ,=RNa@, x ;=R (0, y Ny z)=
(RNawy z)Nwy , =(R|,)|y -and analogously for the other expression and for
corestriction, R, y .y =RN@y x oy =(RN@y, )Ny, =(R, )y, - and
analogously for the other expressions, (RNS), , =(RNa, ,)N(S Ny )=
Ry y NSy y.
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Observation 3.2 (the taking of the restrictions and of the induced relation
as morphisms) The taking of the restriction p :P(A) x Rel(A, B) — 2el(A, B), y:
Zel(A, B)xP(B)— Z(A, B), respectively of the induced relation z: P(A) x 24,
B) xP(B)— &l(A, B) are order morphisms and lattice morphisms in the relation
argument; they only are the superior semilattice morphisms in the set argument —
respectively in an set argument.

Theorem 3.3 (generalized categorical operations) Let Re =244, B),
SezC, D) be relations and let U, X, Y, Z be arbitrary sets. i (inversion)

(R|y)"'=4| R™" - and analogously for corestriction, (R, ;)™ =(R™), y;

ii (composition) (SR), =S(R|,) - and analogously for corestriction,
(SR)X,Y =y SRIy);

iii (other operations) (R, S)[y=(R|y.S[y)s yzl (R, S)=(,|R, ,|S),
(R, S)yyxz =Ry y> Sy z)s (RXS) |y =(R[;)*x(S[y) - and analogously for

corestriction, (RxS) .y yoz =Ry y XSy ;-

Proof. i. We have (see theorem 3.1) (R|,)" =(RA,)"' =A R '=,|R™" -
and analogously for corestriction, (R X,Y)’1 =GR =R |y =
(X| Ril) |Y= (Ril)Y,X .

ii. We have successively (see theorem 3.1) (SR)|,=(SR)A, =S(RA,) =
S(R|y) - and analogously for corestriction, (SR), ,=,|((SR) |y )=,[(S(R|y)) =

G ISR

iii. We have successively (see theorem 3.1, example 1.1 and [4])
(R, S) |X= (R, S)Ax = (RAX7 SAX) =(R |X7 S |X)a sz| (R, S)= AYXZ(RJ S)=
(AY x Az)(Ra S)= (AYRﬂ AZS) :(Y| R, z| S), (R, S)X,YXZZszl (R, S) |x) =
ezl (Rlxs S1y) =G IR ys 2l S 1) =(Ry vy, Sxz), respectively  (RxS) |y, =
(RxS)Ay,x = (RXS) Ay xAy) =(RA;)X(SA ) =(R[y)x(S|y) - and
analogously for corestriction, (RXS) yx . vxz=yuz | (RXS) [y ) =
vz (RID)X(S ) = RS |y) = RU,Y XSX,Z'

4. Relational morphisms
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Definition 4.1 (r-(bi)morphism) The inhomogeneous relation Fe (A, B)
is relational morphism — for short r-morphism between the homogeneous
relational structures (4, R,), (B, R;) if it is compatible with R,, R,, i. e. for

each a,a'eAd, b,b'eB with (a,b),(a’,b'’)eF (or equivalently with
((a,a"), (b,b")e F* =FxF), (a,a')eR, implies (b,b") e R,; F is relational
bimorphism(relational semiembedding) for short r-bimorphism(r-semiembedding)
if F, F™" are r-morphisms.

Observation 4.1 (partial — but non-banal compatibility) The compatibility
with R, from the r-morphism condition can be partially — but it is totally non-
banal because a,a’ edom (F); other two distinct conditions with(a',b") e F,
respectively (a, b), (a’,b") € F after implication lead to two partially non-banal
variants.

Definition 4.2 (variants)  The inhomogeneous relation ' € (A4, B) is
r-morphism between the homogeneous relational structures (4, R, ), (B, R;) if
for each a,a'€ A,b € B with (a,b)e F,(a,a")e R, implies for each b’ € B,
(d',b'YeF, (b,b')eR,; F is r-morphism if for each a,a’' € 4, (a,a’)eR,
imply for each b,b"e€B,(a,b),(a',b")eF,(b,b')eR,. F is r-bimorphism
(r'-semiembedding) if F,F™ are r-morphisms — and analogously for
r -bimorphism (r -semiembedding).

Theorem 4.1 Let be (4, R,), (B, R, ), FF € R(A, B). 1 (connections) The

condition of r-bimorphism is equivalent with the condition of r-morphism with
equivalence (instead of implication). The condition of F r-morphism with

equivalence imply F~' r-morphism between (4,(R,)),(B,(R,)""); the
condition of F r -morphism with equivalence imply F~' r-morphism.

ii (hierarchy) We have the implications F r-morphism imply F
r'-morphism imply F r -morphism — with equivalences if dom(F) o field (R R
analogously for the relational bimorphisms — with the equivalences condition in
hierarchy completed with codom(F) o field (Rj).

Proof. i. The statements follow at once (by definition).

ii. We have r(a,a’)—>r'(a,a’) > r"(a,a’), where F r-morphism iff
Va,a' € A, r(a,a'), F r-morphism iff Va,a' € 4, r'(a,a’), F r-morphism iff
Va,a' € A, r"(a,a"), r(a,a)y=t(a)~t'(@)n(pla,a’)—>q), r'(a,a’)=t(a)A
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(p(a,a’) > (@) rnq)) = t(a) A(pla,a’) > 1'(a) r(pla,a’) > q), r'(a,a’)=
pla,a”) > (H(a) ~t'(a, a") Aq) = (pla, a’) > t(a)) A(p(a, a’) > 1'(a’)) A
(p(a,a’)—>q), pla,a’)y=(a,a")eR,,q=Vb,b" € B, (b,b") e Ry,
t(a)=VbeB,(a,b)eF,t'(a")=Vb'eB,(a',b")eF.

The conditioned equivalences by dom (F) o field (R,) are consequences of the
above implications and of the total non-banality of the implication from the
condition of r-morphism because for (b, b")=(b,b") e R,, r(a,a’)=Vb,b <
codom(F), p(a,a’)y— q(b,b"), r"(a,a") = p(a,a’) — Vb, b" e codom(F), q(b, b")
we have r(a,a")=r"(a,a’).

In the case of the relational bimorphisms the above results are valid for the inverse
relation F~' € Z «B, A) — with codom(F) = dom( F ') field (R}).

Observation 4.2.i (categorical composition) The categorical composite of
two (w-composable) r-morphisms is r-morphism; analogously for the other
relational morphisms and for the relational bimorphisms — w-composed under the
conditions of the equivalences in relational bimorphisms hierarchy.

ii (the case of the left-total and right-total relations) The left-total relations
satisfy the equivalences condition in relational morphisms hierarchy.; the left-total
and right-total relations satisfy the equivalences condition in relational
bimorphisms hierarchy.

iii (duality) The condition (b, b") € (R,)™" (instead of (b, b") € R,) lead to
dual r-(bi)morphism — with invariant, respectively partial variant composite
towards dualizing.

iv (the inhomogeneous case — vs. the homogeneous case) In the
inhomogeneous case relative to the inhomogeneous relational structures
(4, 4,R, ), (B,B",R; ;) a (inhomogeneous ) r-morphism is a ordered pair
(F,F'Ye®ml(A, B)x@l(A', B) (with (F,F)~FxF'e mt(AxA,BxB"))
which satisfies the compatibility condition with R, ,, R, ,, 1. e. for each
acA,a'eA',beB, b eB" with (a,b)e F, (a',b") e F'(or equivalently with
((a,a’),(b,b")e FxF'"), (a,a’)eR, , implies (b,b)e R, ,; in fact, in
homogeneous case a r-morphism is a singlet {F}~(F, F), noted F which
satisfies the compatibility condition. The other relational morphisms and the
relational bimorphisms can be defined similarly. In addition in the
inhomogeneous case are valid theorem 4.1 and points i-iii, where

(F,FY'=F", (FY",(G,G)F,F")=(GF,GF"), (codom (F, F) =
((co)dom(F), (co)dom(F")).
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v (bi)simulation) A simulation Se€ 244, B) between the homogeneous
relational structures (4, R,), (B, R;) is defined by a non-banal existential variant
of the compatibility condition with R,, R, of a rmorphism, i. e. for each
a,a'e 4,be B with (a,b)eS,(a,a’)eR, implies there existsd' e B,
(a',b")e S, (b,b") € R, - which is equivalently with the usual condition(see [10],
[11]) “for each ae d,be B with (a,b)e S and for each a'€ 4, (a,a")e R,
implies there exists b'€ B, (a',b")e S, (b,b") € R,”; but it is weaker than the

r-morphism condition which is conditioned equivalently with the r-morphism
condition(see theorem 4.1 and point i) — with (a’, ") € S. There is analogously

for bisimulation vs. r’-bimorphism, respectively r-bimorphism — with the mention
of the non-equivalence between the bisimulation condition and the simulation
condition with equivalence instead of implication.

Definition 4.3 ((bi)simulation in the inhomogeneous case) A simulation
between the inhomogeneous relational structures (4, 4, R, ,), (B, B', R, ) is

a ordered pair (S,S")e@ldA, B)xZlA', B (with  (S,S)~SxS'e
Zet(Ax A', Bx B")) which satisfies the non-banal existential variant of the
compatibility condition with R, ,, R, 5 ,i.e. foreach ae 4,a" € A',be B with
(a,b)e S, (a,a")eR, , implies  there exists b'e€B, (a’,b)es',
(b,b")e R, »5 (S, S") is bisimulation if it is simulation — along with (S, S")™".
Observation 4.3.i (equivalence) The compatibility condition is
equivalently with the condition “for each ae€ 4,be B with (a,b)€ S and for
each a'e€A',(a,a’)eR, , implies there exists b'eB', (a',b)eS',
(b,b")e Ry ;,” — a inhomogeneous analogue of the usual condition in

homogeneous case (see observation 4.2.v).

ii (two-way similarity) In addition can be defined similarity, bisimilarity,
two-way similarity respectively <, <>, —€ KA, B) by a<b iff there exists
(S,S") e 2lA, ByxZe(A', B") simulation with (a, b) € S, a<>b iff there exists
(S, S") e 24U A, B)xRel(A', B") bisimulation with (a,b)e S, a—b iff a<b, b<a,
i. e. there exists (S, S')e @A, B)xRlA', B"), (I,T")celB, A)xRelB’, A"
simulations with (a, b) € S, (b, @) € T - with the inclusion <> c —.

iii (strict inclusion) Generally, the inclusion is strictly (see next example),
hence we have not equality — possibly we have only conditioned equality.
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Example 4.1 (counterexample) For A={a}, A'={a’,a"}, A'={a"},
B=1{b},B'={b"},R, , =, ,, Ry 5 =, , and the simulations (S,S")e
262(‘45 B)Xzee(A'a B,)’ S:a)A,B’S':a)A',B’J (T, T,)E 266(35 A)de(Bra A')a

T=w, ,,T'=w, , wehave a—b andnon a<>b.

5. Conclusions

In the first two addenda of this part of the paper we define the notions of
kernel and restriction (which are dualized), respectively the notion of induced
relation, where the last two are in arbitrary sets - in connection with Boolean
algebra operations and generalized categorical operations (see the theorems 2.1,
3.1, 3.2, 3.3 and the observation 3.2 ); so that we have done a unification of
functional and order approach and more generally an association of the
multivocity and partiality concept — existent in some domains of the theoretical
computer science. These generalizations (relative to categorical operations,
restrictions and inducing in sets) are categorical valid [8], [9].

The last addendum refers to a hierarchy of relational morphisms in parallel
in homogeneous and inhomogeneous cases - with equivalence conditions (see the
theorem 4.1 and the observation 4.2.iv); the notion of (bi)simulation (generalized
for the inhomogeneous case) is reported to this hierarchy and it is important in
concurrency programming [10], [11] along with the notion of (bi)similarity which
it induces.
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