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GEOMETRICAL REPRESENTATION OF QUANTUM BIT 
OPERATIONS 

Lucian DRAGNE1 

Reprezentările grafice bazate pe transformări geometrice sunt o metodă 
expresivă foarte bună de simulare a operaţiilor efectuate asupra sistemelor cuantice 
de procesare a informaţiei. Considerând un sistem format dintr-un sigur qubit, 
demonstraţiile prezentate în această lucrare justifică corespondenţa între o clasă de 
operaţii care modifică starea qubitului şi nişte tranformări geometrice pe sfera 
Bloch. 

Operaţiile efectuate asupra qubitului sunt expimate prin exponenţierea 
operatorilor Pauli, în timp ce transformările geometrice corespunzătoare sunt 
rotaţii pe sfera Bloch, în jurul axelor de coordonate. 

Graphical representations based on geometrical transformations are a very 
expressive method of simulating the operations performed on quantum information 
processing systems. Considering a single qubit system, the proofs given in this paper 
justify the correspondence between a class of operations that modify the qubit state 
and some geometrical transformations on the Bloch sphere.  

The single qubit operations are expressed by the exponentiation of Pauli 
operators, whereas the corresponding geometrical transformations are rotations on 
the Bloch sphere around the coordinate axes. 
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1. Introduction 

Quantum computing studies information processing tasks that can be 
implemented based on physical systems obeying the quantum mechanical laws, as 
they are currently formulated in the mainstream physics science. This is a 
relatively new field of study, which was launched following some great 
breakthroughs in the area of theoretical computer science. These allowed 
theoreticians to raise challenges against the strong version of the Church – Turing 
thesis and to propose a different thesis, based on the quantum computing 
paradigme. 

This new thesis [1] is now known as the strong Church – Turing – Deutsch 
thesis and it postulates that any algorithmic physical process can be efficiently 
simulated (or implemented) on a quantum computer. 
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A few algorithms to sustain this thesis have been already demonstrated [2] 
but the quantum computing field itself still has to deal with important issues 
related to physical implementation of the so called quantum computing machines. 
The biggest challenge is represented by the difficult manipulation of quantum 
systems that must ensure errors are kept at reasonable levels [3]. 

Until these implementation challenges are overcome, the obvious 
approach used for advancing the quantum algorithms research is to use 
simulations that use classical machines (ordinary computers) to emulate quantum 
processing tasks. This is where the graphical representation of the operations 
taken place during the simulation may prove useful.  

Starting from the simplest quantum processing system, based on a single 
qubit, the proofs in following chapters justify the correspondence between a class 
of operations that transform the qubit state and the geometry on a sphere, the 
Bloch sphere. 

The qubit operations are expressed by the exponentiation of Pauli 
operators [4], which form an orthogonal basis for the vector space defined by the 
set of linear operators acting on a single qubit. The corresponding geometrical 
transformations are simple rotations on the Bloch sphere around the coordinate 
axes. 

2. Qubits in a pure state – Bloch sphere 

Using the well established Dirac notation [5], the pure state of a qubit, 
defined as a linear superposition of the computational basis states, it is represented 
by the following equation: 

 
                    1,,,10 22 =+∈+= βαβαβαψ       C        ,             (1) 

 
where 0  and 1  are the computational basis states. So, a qubit in a pure state is 
represented by a unit vector in a bi-dimensional complex vector space.  
 For the purpose of geometrical representation, it is more useful to use the 
polar coordinates for complex numbers. Considering also the measuring principle 
from quantum mechanics stating that measuring two quantum states that differ 
only by a global phase factor, provides always the same result ( ψψ φie≅ , 

R∈∀φ ), the state of the qubit can be then expressed as: 
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This equation represents therefore the base starting point that provides for 
a geometrical representation of qubit states, because it proves that there is a 
bijective mapping between the set of measurable pure states of a qubit and the unit 
sphere in the Euclidean tridimensional space.  According to this mapping, each 
and every pure qubit state defined by equation (1) has an associated point P  on 
the unit sphere, a point having the spherical coordinates ( )γϕ,P . The  vector, 
with the origin in the center of the unit sphere, is called “Bloch vector” and has 
the following coordinates in a tri-dimensional Euclidean space [4]: 

 
( ) ( )γγϕγϕ cos,sinsin,sincos,, =zyx ppp                                  (3) 

 

 
Fig. 1. A qubit pure state represented on the Bloch sphere 

3. Qubits in a mixed state – Bloch ball 

As opposed to pure state qubits, where a state vector is used to represent 
their state, when the qubit state is mixed, the density operator is used for 
representing that state. Actually, these two representations are mathematically 
equivalent, but they have different, though similar, physical interpretations. The 
principles that form the base for the quantum mechanics theory can be formulated 
using either of the two approaches: state vectors or density operators. 
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Assuming a quantum system is in an unknown state, but the possible states 
form a finite and discrete set, where the pure state iψ  occurs with the 

probability ip  , the density operator associated with that system is defined by the 
following equation: 

 
 1,10, =≤≤≡ ∑∑

i
ii

i
iii ppp            ψψρ

 
                            (4)    

 
 
The density operator is a self-adjoint (Hermit) positive operator, with unit 

norm: 
 

(5) 
 
  
 
 

According to the quantum mechanics formalism based on density operators, the 
pure states are just a particular case that can be also represented by density 
operators. The density operator of a pure state is defined as: 
 

ψψρ ≡                                                  (6) 
 
 The trace of a general density operator satisfies the following inequality; 
with the equality happening if and only if the respective density operator 
represents a pure state: 
 

( ) 1tr 2 ≤ρ                                                    (7) 
 
 For the quantum system representing one qubit, the associated density 
operator ρ  belongs to the complex vector space defined by the set of all operators 
generated by the Pauli operators. Therefore that density operator can be 
decomposed as a linear superposition of the Pauli operators, using complex 
coefficients: 
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 The complex coefficients can be further refined by imposing the 
restrictions that apply to density operators: self-adjoint, positive and unitary. 
Hence the equation above can be transformed such that it allows for a geometrical 
representation: 
 

( ) ( )σσσσρ ⋅+=+++= rIrrrI zzyyxx 22 2
1

2
1                         (9)  

 
whereas r  is a vector in the real tri-dimensional Euclidian space. Considering the 
matrix associated with this density operator in the computational basis state, and 
by forcing its eigenvalues to be real positive numbers (this is allowed because the 
operator is itself positive), it follows that the r  vector is restricted to a unitary 
ball, centered in the origin: 
 
   11222 ≤⇔≤++ rrrr zyx                                (10) 

 
Again, the equality happens if and only if the respective density operator 
represents a pure state. The north and south poles of the ball represent two 
particular pure states: the computational basis states. 
  

 
Fig. 2. A density operator represented on the Bloch ball 
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4. Rotation operators 

 The Pauli operators can be used to define a special set of operators, which 
have a very special meaning for the quantum computation: the rotation operators. 
These definitions rely on the properties of matrix exponentiation, which is defined 
using the Taylor-Maclaurin series. 

The complex exponential function can be defined on the space of square 
matrices with dimension n x n using a Taylor-Maclaurin formula analogous to 
scalar complex functions: 
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If furthermore, A is a special matrix whose square power is the identity 
matrix: 
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then the Taylor-Maclaurin (11) can be further refined as follows:  
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Using the Taylor-Maclaurin formulas for trigonometric functions: 
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it can be deducted that the two series in equation (13) are convergent and their 
sums are the trigonometric functions as defined by (14): 
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Now, because the Pauli matrices satisfy the equation (12), it means they can be 
substituted in equation (15), the resulting exponentials being the very rotation 
matrices, whose corresponding operators can be thus defined as: 
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4.1. Rotation operator on z axis 

For the k = 3 case in equation (16), the operator and its associated matrix, 
according to the computational basis state, defined by the following equation: 
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has the following geometrical interpretation: for a qubit in a pure state, described 
by the equation (2), upon which an operation defined by equation (17) is 
performed such that the qubit transformed state is: 
 

( ) 1e
2

sin0
2

cos 111
01

ϕγγψθψ i
zR +==                                (18) 

 
and if the corresponding points on the Bloch sphere, P0 and P1, for the initial state 
and respectively for the transformed state are defined by equation (3), then P1 can 
be deducted geometrically by rotating P0 with angle θ  around the z axis. 
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Fig. 3. Geometrical representation of the Rz operator 

 This interpretation can be validated by simply applying the operator on the 
qubit in initial state:  

 

                   (19) 
 
 
 
 
 
 

 
and observing on the Fig. 3. the parameters for the transformed state: 
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4.2. Rotation operator on x axis 
 

For the k = 1 case in equation (16), the operator and its associated matrix, 
according to the computational basis state, defined by the following equation: 
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has the following geometrical interpretation: for a qubit in a pure state, described 
by the equation (2), upon which an operation defined by equation (17) is 
performed such that the qubit transformed state is: 
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and if the corresponding points on the Bloch sphere, P0 and P1, for the initial state 
and respectively for the transformed state are defined by equation (3), then P1 can 
be deducted geometrically by rotating P0 with angle θ  around the x axis.

  

 

Fig. 4. Geometrical representation of the Rx operator
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4.3. Rotation operator on y axis 

For the k = 2 case in equation (16), the operator and its associated matrix, 
according to the computational basis state, defined by the following equation:
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has the following geometrical interpretation: for a qubit in a pure state, described 
by the equation (2), upon which an operation defined by equation (17) is 
performed such that the qubit transformed state is: 
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and if the corresponding points on the Bloch sphere, P0 and P1, for the initial state 
and respectively for the transformed state are defined by equation (3), then P1 can 
be deducted geometrically by rotating P0 with angle θ  around the y axis. 
 

 
Fig. 5. Geometrical representation of the Ry operator 
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 For validating this last geometrical representation, one can make use of the 
two representations demonstrated in the previous two chapters, for Rx and Rz. Any 
rotation with angle θ  around the y axis can be factored out into three rotations 
made in the following order: 

- one rotation with angle 
2
π

−  around the z  axis 

- one rotation with angle θ  around the x axis 

- one rotation with angle 
2
π   around the z  axis 

Then, according to the previous two geometrical representations, these 
three rotations can be written using the respective operators: 
 

 

6. Conclusions 
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qubit, the proofs together with the diagrams presented above, justify the 
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state and the geometry on a sphere, the Bloch sphere. 
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and any kind of rotation on the Bloch sphere (i.e. the rotation axis doesn’t need to 
be a coordinate axis). 
 There is one limitation to this geometrical representation model though: it 
can be used only for operators on one qubit. There is no known generalization for 
quantum information processing systems composed of an arbitrary number of 
qubits.  
 But as long as the processing tasks that take place can be split in 
independent operators that transform only just one single qubit, a graphical 
representation can be given that consists of several Bloch spheres that are rotated 
in parallel. And there are indications that this assumption is not very farfetched, 
because according to the quantum circuit model, the single qubit gates together 
with the CNOT gates form a universal set for quantum computation [6]. That is, 
any quantum computation could be simulated using only single qubit operators 
and CNOT operators. And therefore a vast majority of the operations that take 
place in a multiple qubits computational task can be given a geometrical 
representation on multiple Bloch spheres. 
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