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GEOMETRICAL REPRESENTATION OF QUANTUM BIT
OPERATIONS

Lucian DRAGNE!

Reprezentarile grafice bazate pe transformari geometrice sunt o metodd
expresivd foarte bund de simulare a operatiilor efectuate asupra sistemelor cuantice
de procesare a informatiei. Considerdnd un sistem format dintr-un sigur qubit,
demonstratiile prezentate in aceasta lucrare justifica corespondenta intre o clasa de
operatii care modifica starea qubitului si niste tranformdri geometrice pe sfera
Bloch.

Operatiile efectuate asupra qubitului sunt expimate prin exponentierea
operatorilor Pauli, in timp ce transformdrile geometrice corespunzitoare sunt
rotatii pe sfera Bloch, in jurul axelor de coordonate.

Graphical representations based on geometrical transformations are a very
expressive method of simulating the operations performed on quantum information
processing systems. Considering a single qubit system, the proofs given in this paper
Justify the correspondence between a class of operations that modify the qubit state
and some geometrical transformations on the Bloch sphere.

The single qubit operations are expressed by the exponentiation of Pauli
operators, whereas the corresponding geometrical transformations are rotations on
the Bloch sphere around the coordinate axes.
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1. Introduction

Quantum computing studies information processing tasks that can be
implemented based on physical systems obeying the quantum mechanical laws, as
they are currently formulated in the mainstream physics science. This is a
relatively new field of study, which was launched following some great
breakthroughs in the area of theoretical computer science. These allowed
theoreticians to raise challenges against the strong version of the Church — Turing
thesis and to propose a different thesis, based on the quantum computing
paradigme.

This new thesis [1] is now known as the strong Church — Turing — Deutsch
thesis and it postulates that any algorithmic physical process can be efficiently
simulated (or implemented) on a quantum computer.
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A few algorithms to sustain this thesis have been already demonstrated [2]
but the quantum computing field itself still has to deal with important issues
related to physical implementation of the so called quantum computing machines.
The biggest challenge is represented by the difficult manipulation of quantum
systems that must ensure errors are kept at reasonable levels [3].

Until these implementation challenges are overcome, the obvious
approach used for advancing the quantum algorithms research is to use
simulations that use classical machines (ordinary computers) to emulate quantum
processing tasks. This is where the graphical representation of the operations
taken place during the simulation may prove useful.

Starting from the simplest quantum processing system, based on a single
qubit, the proofs in following chapters justify the correspondence between a class
of operations that transform the qubit state and the geometry on a sphere, the
Bloch sphere.

The qubit operations are expressed by the exponentiation of Pauli
operators [4], which form an orthogonal basis for the vector space defined by the
set of linear operators acting on a single qubit. The corresponding geometrical
transformations are simple rotations on the Bloch sphere around the coordinate
axes.

2. Qubits in a pure state — Bloch sphere

Using the well established Dirac notation [5], the pure state of a qubit,
defined as a linear superposition of the computational basis states, it is represented
by the following equation:

W)=a|0)+ A1),  apeC, |of +|8* =1, (1)

where |O> and |1> are the computational basis states. So, a qubit in a pure state is

represented by a unit vector in a bi-dimensional complex vector space.

For the purpose of geometrical representation, it is more useful to use the
polar coordinates for complex numbers. Considering also the measuring principle
from quantum mechanics stating that measuring two quantum states that differ

only by a global phase factor, provides always the same result (|z,//> = ei¢|1//>,
V¢ € R), the state of the qubit can be then expressed as:

lw) =cos%|0>+sin%ei¢|l> yelo,z] pelo,27) (2)
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This equation represents therefore the base starting point that provides for
a geometrical representation of qubit states, because it proves that there is a
bijective mapping between the set of measurable pure states of a qubit and the unit
sphere in the Euclidean tridimensional space. According to this mapping, each
and every pure qubit state defined by equation (1) has an associated point P on
the unit sphere, a point having the spherical coordinates P((o,y). The GF vector,

with the origin in the center of the unit sphere, is called “Bloch vector” and has
the following coordinates in a tri-dimensional Euclidean space [4]:

(px,py,pz)z(cosgosin;/,sin(osin}/,cosy) 3)

v

Fig. 1. A qubit pure state represented on the Bloch sphere

3. Qubits in a mixed state — Bloch ball

As opposed to pure state qubits, where a state vector is used to represent
their state, when the qubit state is mixed, the density operator is used for
representing that state. Actually, these two representations are mathematically
equivalent, but they have different, though similar, physical interpretations. The
principles that form the base for the quantum mechanics theory can be formulated
using either of the two approaches: state vectors or density operators.
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Assuming a quantum system is in an unknown state, but the possible states
form a finite and discrete set, where the pure state y/l-> occurs with the

probability p; , the density operator associated with that system is defined by the
following equation:

PEZPi|‘//i><‘//i

1

, 0<p;<l, Y pi=1 4)
i

The density operator is a self-adjoint (Hermit) positive operator, with unit
norm:

PT = zpi*|V/i><V/i | = Zpi|l//i><l//i | =p
i i

wlolw) =X pilw villwilw) = X pilw vl lvi)" = X pillw v 20 )

tr(p)= tr(z pilvi)wi |} = Zpi trq Nz |)= ZP;’ =1

According to the quantum mechanics formalism based on density operators, the
pure states are just a particular case that can be also represented by density
operators. The density operator of a pure state is defined as:

p=l)y| ©)

The trace of a general density operator satisfies the following inequality;
with the equality happening if and only if the respective density operator
represents a pure state:

tr(pz)ﬁl @)

For the quantum system representing one qubit, the associated density
operator p belongs to the complex vector space defined by the set of all operators
generated by the Pauli operators. Therefore that density operator can be
decomposed as a linear superposition of the Pauli operators, using complex
coefficients:

p=aly +bo,+coy, +do,, a,b,c,d eC (8)
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The complex coefficients can be further refined by imposing the
restrictions that apply to density operators: self-adjoint, positive and unitary.
Hence the equation above can be transformed such that it allows for a geometrical
representation:

p:%(h +rx0x+ry0'y+rzaz):%(12 +I_"E) )

whereas 7 is a vector in the real tri-dimensional Euclidian space. Considering the
matrix associated with this density operator in the computational basis state, and
by forcing its eigenvalues to be real positive numbers (this is allowed because the

operator is itself positive), it follows that the  vector is restricted to a unitary
ball, centered in the origin:

rszrryzﬁLrZ2 £1<:>||;||£1 (10)
Again, the equality happens if and only if the respective density operator
represents a pure state. The north and south poles of the ball represent two
particular pure states: the computational basis states.

oo

Fig. 2. A density operator represented on the Bloch ball
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4. Rotation operators

The Pauli operators can be used to define a special set of operators, which
have a very special meaning for the quantum computation: the rotation operators.
These definitions rely on the properties of matrix exponentiation, which is defined
using the Taylor-Maclaurin series.

The complex exponential function can be defined on the space of square
matrices with dimension n x n using a Taylor-Maclaurin formula analogous to
scalar complex functions:

0

xeR (11)

exp zAx k' nns
k=0

If furthermore, 4 is a special matrix whose square power is the identity
matrix:

AP =1, =A% =1 ;4% = 4 VkeN 12)
n n

then the Taylor-Maclaurin (11) can be further refined as follows:
exp(iAx) =1, + liAx + l1'2/12)62 + l1'3A3x3 + l1'4A4x4 + l1'5A5x5 +oe
1! 2! 3! 4! 5!
- 1
z 2k 2k1 I 2k+l 2k+1A
2k) (2k + 1)

- R kol ok (13)
Z::( )x 1, +1( 1) (2k+1)!x AJ

Using the Taylor-Maclaurin formulas for trigonometric functions:

- 1 1 1 1
cos(x)z z (—l)k S T L L

k=0 (2k) 2! 41 6!
sin(x)z i (_1)k ;xzkﬂ = x—lx3 +lx5 _lx7 + (14)
k=0 (2k + 1)‘ 3] 5' 7' .....

it can be deducted that the two series in equation (13) are convergent and their

sums are the trigonometric functions as defined by (14):
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expoAx):[i(_ e }n . {§<_ s JA i

= = (2k +1
=cos(x)I,, +isin(x)4 (13)

Now, because the Pauli matrices satisfy the equation (12), it means they can be
substituted in equation (15), the resulting exponentials being the very rotation
matrices, whose corresponding operators can be thus defined as:

—i6
Rk(H)Eexp( lzakacosglz—isingak,Vk=O,3 (16)

4.1. Rotation operator on z axis

For the £ = 3 case in equation (16), the operator and its associated matrix,
according to the computational basis state, defined by the following equation:
—i0
7 2
R,(6)=exp iz :cosglz—isingZ: ¢ (.)9 (17)
2 2 2 !
0 e?

has the following geometrical interpretation: for a qubit in a pure state, described
by the equation (2), upon which an operation defined by equation (17) is
performed such that the qubit transformed state is:

)= R(0)o) =cos 20} +sin 291 (13

and if the corresponding points on the Bloch sphere, P, and P,, for the initial state
and respectively for the transformed state are defined by equation (3), then P, can
be deducted geometrically by rotating P, with angle € around the z axis.



194 Lucian Dragne

Fig. 3. Geometrical representation of the R, operator

This interpretation can be validated by simply applying the operator on the
qubit in initial state:

» -i0
i -
2 0 cos%) cos%e 2
R, (0)wo)= i0 = io |~
5 | sin 220 Y0 iy H
0 e? 2 Sin761¢0€2 (19)
—i0 cosy—0 —i0 cos% —i0

e e —e 2 |y =)

and observing on the Fig. 3. the parameters for the transformed state:

Fh—>PSy=rsip=¢,+0 (20)
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4.2. Rotation operator on x axis

For the k= 1 case in equation (16), the operator and its associated matrix,
according to the computational basis state, defined by the following equation:
0 .
cos— —isin—

R.(0)= exp(%}zcosglz—isingX: (21)

—isin— cosS—
2 2

has the following geometrical interpretation: for a qubit in a pure state, described
by the equation (2), upon which an operation defined by equation (17) is

performed such that the qubit transformed state is:

71

[¥1)= Ru(0) o) = cosZH[0) +sin 7L 1) (22)

and if the corresponding points on the Bloch sphere, P, and P,, for the initial state
and respectively for the transformed state are defined by equation (3), then P, can
be deducted geometrically by rotating P, with angle 6 around the x axis.

12 ] OR = (cosgysin o Je = (cosy sin 7y
HEHCOS(Q + a)};
ﬁ“siﬂ(@ + a)];’

[P

PR :(COS?’O)E =

‘PO @:(sinwosinyo)}:u
ﬁHcos a);
ﬁ“siﬂ a];

B, = (sin gy sin 7 )y :Q

Fig. 4. Geometrical representation of the R, operator
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4.3. Rotation operator on y axis

For the k= 2 case in equation (16), the operator and its associated matrix,
according to the computational basis state, defined by the following equation:

0 . 6
gy 9 0 cos— —sin=
Ry(H)zexp(Tj—coszlz —zsmEY— 0 (23)

.0
sin— cos—
2 2

has the following geometrical interpretation: for a qubit in a pure state, described
by the equation (2), upon which an operation defined by equation (17) is
performed such that the qubit transformed state is:

|l//1>=Ry(9)|vfo>=COS%|O>+Sin%ei¢l|l> (24)

and if the corresponding points on the Bloch sphere, P, and P,, for the initial state
and respectively for the transformed state are defined by equation (3), then P, can
be deducted geometrically by rotating P, with angle € around the y axis.

Fig. 5. Geometrical representation of the R, operator
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For validating this last geometrical representation, one can make use of the
two representations demonstrated in the previous two chapters, for R, and R.. Any
rotation with angle @ around the y axis can be factored out into three rotations
made in the following order:

. . V4 - .
- one rotation with angle Y around the z axis

- one rotation with angle @ around the x axis
. . V2 - .
- one rotation with angle 7 around the z axis

Then, according to the previous two geometrical representations, these
three rotations can be written using the respective operators:

_iT 0 . iz
- . Jh cos— —isin_| I, 0
R, 5 Rx(g) z _5 - T 2] x|~
% 9 _iT
0 o4 |—isin cos 0 e
T L L . .
—i— e 4 cos— —e 4sin— cos— —sin—
-c "0 7,(0)
- 2 LA o |~ %
—i— —i— sin—  cos—
0 e4|e 4sine e 4 COSE

6. Conclusions

Starting from the simplest quantum processing system, based on a single
qubit, the proofs together with the diagrams presented above, justify the
correspondence between an important class of operations that transform the qubit
state and the geometry on a sphere, the Bloch sphere.

The qubit operations are expressed by the exponentiation of Pauli
operators, which form an orthogonal basis for the vector space defined by the set
of linear operators acting on a single qubit. Because the Pauli operators form such
a basis set, it follows that they can be used to factor any unitary operator. And
therefore, any single qubit operator can be given a geometrical representation.

The corresponding geometrical transformations are simple rotations on the
Bloch sphere around the coordinate axes. And because these rotations can be
composed into any arbitrary rotation on the Bloch sphere, it follows that the
geometrical representation can be generalized to any type of one qubit operator
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and any kind of rotation on the Bloch sphere (i.e. the rotation axis doesn’t need to
be a coordinate axis).

There is one limitation to this geometrical representation model though: it
can be used only for operators on one qubit. There is no known generalization for
quantum information processing systems composed of an arbitrary number of
qubits.

But as long as the processing tasks that take place can be split in
independent operators that transform only just one single qubit, a graphical
representation can be given that consists of several Bloch spheres that are rotated
in parallel. And there are indications that this assumption is not very farfetched,
because according to the quantum circuit model, the single qubit gates together
with the CNOT gates form a universal set for quantum computation [6]. That is,
any quantum computation could be simulated using only single qubit operators
and CNOT operators. And therefore a vast majority of the operations that take
place in a multiple qubits computational task can be given a geometrical
representation on multiple Bloch spheres.
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