U.P.B. Sci. Bull., Series C, Vol. 74, Iss. 4, 2012 ISSN 1454-234x

AUTOMATIC WRAPPER SYSTEM FOR SEMI-
STRUCTURED DOCUMENTS BASED ON DATA MINING

Irina RANCEA!, Valentin SGARCIU?

Lumea in care evoluam presupune intelegerea i acumularea unei cantitati
imense de informatie impartita in diferite surse care necesitd integrare si sintezd. A
apdrut necesitatea unor aplicatii inteligente, capabile sa proceseze sau sa colecteze
automat informatiile dorite. Acestea folosesc algoritmi de clusterizare pentru a
descoperi grupuri. Totodatd, datorita experientei obtinute in timp in domeniul
aplicatiilor software tendinta care se impune este de automatizare a proceselor,
economisind astfel timp pretios al dezvoltatorilor, timp care poate fi folosit in
proiectarea de noi concepte, arhitecturi. Lucrarea propune o imbinare intre
descoperirea de informatii in documente si procesarea acestora in vederea
automatizarii proceselor software.

Our world involves understanding and storing of huge information from
different sources that need integration and synthesis. The necessity of smart
applications that can automatically process and collect such information was critic.
These applications use clustering analysis in order to find common groups of data.
Also due to the knowledges in the software applications area, the new trend for this
domain is process automation, saving in this way time for design of new concepts
and architectures. Our paper proposes a combination of discovering and processing
information stored in documents in order to automate software processes.

Keywords: natural language processing, data mining, cluster analysis
1. Introduction

There are various approaches that work with technologies based on natural
language. Even if the complete understanding of natural language is still far away
from the current technologies abilities, the methods used by the IE (information
extraction) approach are more accurate and can recognize different entities and
some relations between them.

The research in the processing natural language area have been inspired
from linguistics — the text is parsed using information described by a formal
grammar and a lexicon; the results are then semantically interpreted and used to
extract information about the topic target.

! Eng., Faculty of Automatic Control and Computers, University of POLITEHNICA Bucharest,
Romania, e-mail: irina.rancea@gmail.com

2 prof., Faculty of Automatic Control and Computers, University of POLITEHNICA Bucharest,
Romania, e-mail: vsgarciu@aii.pub.ro

56 Irina Rancea, Valentin Sgarciu

Text Mining is a new approach and uses methods from the information
identification and statistics areas. Its target is not to understand the text or even a
part of it, but to extract patterns from a huge input documents. The most simple
form of Text Mining is Information Extraction. Other forms include automatically
classify text, topic extraction. [1]

The topic of this paper is designing an IE system that can extract precise
information from a tutorial. A tutorial is part of the semi-structured documents
class. Classic IE systems use NLP techniques such as grammars and lexicons, and
IE systems for web extractions uses Data Mining techniques such as exploiting
syntactic patterns. The technical documents about programming languages
references can be easily structured in a pattern. The final target of the results is to
create data files that can be automatically processed in order to design software
applications for syntactic parsing of a language programming.

Sometimes the information extracted can be a large amount of data that
need to be classified in relevant and not relevant data. In order to identify which
data are relevant, the paper suggests clustering the information extracted, and then
applying a cluster analysis based on a set of defined parameters.

2. Theoretical background

2.1. Information extraction methodology

The most part of the digital information is described in natural language.
There are dedicated methods that can be used in order to obtain from a large
amount of data just the needed information. Information retrieval allows helps in
discovering documents related to the target topic, but doesn't allow to create
queries and receive answers. Information extraction identifies pieces of the target
information described in natural language and offers a structure to store and
process them automatically.

An IE (information extraction) problem is defined by its input and target
data. The input can be documents written in natural language or semi-structured
documents — on-line or off-line. The objective of an extraction can be k-tuple
relation (where k is the attribute number from a record) or a complex object from
an hierarchical structure of data.

The systems that solves IE problems are called wrappers. A wrapper is
system integration component that offers an unified interface for accessing
various information sources. A wrapper usually perform a matching procedure for
one or multiple patterns.

The research in this area was inspired from MUC - Message
Understanding Conferences. The massive contribution of the MUC team has
classified IE approaches in two major classes with the following examples of IE
systems:

Automatic wrapper system for semi-structured documents based on data mining 57

— pre-MUC approach: AutoSolg [2], LIEP [3], PALKA [4], HASTEN [5],

CRYSTAL [6]

— post-MUC approach: WHISK [6], RAPIER [7], SRV [8], WIEN [9],

SoftMealy [10], STALKER [11]

Chang [12] compares IE systems in term of human interaction — systems
that need software developers, systems that need annotations, systems that need
no annotation and semi-supervised systems.

Muslea [13] (has developed RISE — Repository of On-line Information
Sources in Information Extraction Tasks) classifies extractors in three classes
based on the input document type and the structures and constraints of the
extraction rule. The first extractors class uses uses extraction patterns based on
syntactic/semantic constraints; the second class called WI — wrapper induction
uses rules based on delimitations and the third class uses both delimitations and
syntactic/semantic constraints.

IE systems can be analyzed taking into consideration the following
parameters: the problem difficulty, the technologies used, the user effort for the
training process and the necessity of porting the system on different domains.

2.2. Clustering methods

The goal of clustering methods is to group elements sharing common
information. The purpose of clustering is to gather the elements that are most
similar between them, but less similar to all the others. [14] Clustering methods
can be divided in two classes: partitioning methods and hierarchical methods.
Each of the class consists of a set of different algorithms for identifying clusters.
[15] [16]

Hierarchical methods proceed by stages producing a sequence of
partitions, each corresponding to a different number of clusters. They can be
‘agglomerative’, meaning that groups are merged, or 'divisive', in which one or
more groups are split at each stage.

Partitioning methods move observations iteratively from one group to
another, starting from an initial partition. The number of partitions can be
specified in advance and does not change during the iteration. One of the most
common partitioning is the K-means algorithm [17], that will be used in our
cluster analysis during the paper work.

The basic k-means algorithm for finding K clusters have the following
stages:

— 1. select K points as the initial centroids

— 2. assign all points to the closest centroid

— 3. recompute the centroid of each cluster

— 4. repeat steps 2 and 3 until the centroids won't change
The cluster population is: [17]

58 Irina Rancea, Valentin Sgarciu

P={p}i1x (1)
where p, = {v/xv € Clusterj} and
X =[x,x,,x,] @™ (2)

is the data points organized as a matrix column .
The cluster centroid is the point where the parameter value is the average
of all the parameters values: [18]

cj.:i-ZxV 3)

where "/ is number of elements from 7/ .
The distance used by the K-means algorithm is the Euclidean Distance:
[19]

d(i, j) = \/q Xy —=x, P H|x, —x, P 4ot]x,—x,) (4)
3. System Architecture
Information extraction applied on input documents is performed by an IE

System [20] that consists of a set of original algorithms. Our IE system has the
following features: (Fig. 1)

Semi-supervised Method

Documents [Targered Insrmcrinns}—a
H Usar

i L
S

Select Algorithm ﬂ
Extraction Algorithm) I:::‘.:— :
(Wrapper) Extracted data

Fig. 1. IE System Architecture

- IE method: our system uses a semi-supervised method — receives a
general pattern on which builds the regular expression

- Top-down approach: it starts from the most general regular expressions
applying specific terms on its results

Automatic wrapper system for semi-structured documents based on data mining 59

- Training algorithm: defined by pattern extraction

- Pattern: is the generic name for a language programming instruction ; no
sub-patterns are allowed

- Tokening: word level

- Extraction rule type: described by a regular expression and a text
window that covers an area of tokens before the text target and an area of tokens
after the text target

Our IE System receives input documents that represent language
programming tutorials; these kind of input documents can be classified as semi-
structured. The target information are the syntax structures for various lexical and
syntactical constructions allowed by the programming language.

The IE system contains a set of four wrapper algorithms, one for each
class of structure identified in a programming language. Our extraction algorithms
covers the following classes of lexical and syntactic structures :

- Lexical structures: keywords, operators and their precedence, comments
- Syntactic structures: based on the language programming lexicon

As case studies for the IE system described above we will present in this
paper only two algorithms — the one for keywords extraction and the one for
syntactic structures extraction. Our algorithms have the following phases.

IE Algorithm for keywords extractions
Step 1: Load input document
Step 2: Identify area for the target pattern

- identify looking pattern

- store all the occurrences of the pattern and then identify the most relevant
occurrence

- define a window text based on a proposed estimation
Step 3: Extract keywords

- extract the most relevant result using clustering methods

- make cluster analysis based on a set of proposed parameters
Algorithm for syntactic structures
Step 1: Load input document
Step 2: Identify area for the target pattern

- identify looking pattern

- store all the occurrences of the pattern and then identify the most relevant
occurrence

- define a window text based on a proposed estimation
Step 3: Extract syntax

- look for special characters that can indicate that the piece of text is
containing the syntax of the given structured. These special characters include:

- [] - marks in general the optionals

60 Irina Rancea, Valentin Sgarciu

- {} - marks as usual blocks delimits
- ; - marks in general instruction's ending
- format the results
- code the special characters to a predefined set
- identify reserved words and mark them as special ones
- identify all the identifiers and mark them uniquely

4. Experimental results

4.1. Keywords extraction
The proposed algorithm has been applied on a set of four input documents,
listed below:
1) Draft Standard for the Functional Verification Language e [21]
2) C++ Language Tutorial [22]
3) The JavaTM Language Specification Third Edition [23]
4) SystemVerilog 3.1a Language Reference Manual [24]
The algorithm extracts a number of results, as described by Table 1.

Table 1
Extracted results for language programming keywords
Document Number of extracted results
Draft Standard for the Functional Verification Language e 39
C++ Language Tutorial 43
The JavaTM Language Specification Third Edition 83
SystemVerilog 3.1a Language Reference Manual 119

In order to identify the most relevant section extracted we have applied a
clustering algorithm on the results. The clustering algorithm was K-means [16]

with the K parameter chosen as in the following table:
Table 2

K-parameter values

Document K parameter

Draft Standard for the Functional Verification Language e 6
C++ Language Tutorial 6
The JavaTM Language Specification Third Edition 11
SystemVerilog 3.1a Language Reference Manual 9

We have chosen the K-means algorithm because of its simplicity and good

time and space complexity. The space complexity is ©'#7nlwhere m is the
number of points and » is the number of attributes. The time requirements are

Automatic wrapper system for semi-structured documents based on data mining 61

OUILIKUm nl\where I is the number of iterations requires for convergence. 7 is
typically a small value (5-10) and can be easily bounded as most changes occur in
the first few iterations. The algorithm is linear in m, the number of points, and is
efficient and simple, as long as the number of clusters is significantly less than m.

Cluster analysis is performed on a set of qualities indexes. [25] [26] For
the purpose of our case studies we proposed the following set of such parameters:

a) Cluster density - this parameter has the following interpretation: the larger the
gap the smaller the similarity between members.

b) Cluster relevance based on centroids positions versus the observations
averages - the higher the difference between the two parameters, the higher the
cluster probability to contain irrelevant points. Fig.2 shows the results of
computed centroids versus observations averages for each input document.

& - Centroid vs. average observations

C++ - Centroid vs. average observations
30 0

«

L]
]

-

a]
" Avarage
15 = Average) =observations
_;Dbservations"" =rantroid
10 Centraid 30
%
0 [
0 1 2 3 4 3] 7 1] 1 2 3 4] & T
Cluster number Cluster number
Java - Centraid vs. average ohservations 3% - Centroid vs. average observations
piii] 40
aw
Ji
Average
5 Average ahserya-
=ghservations ations
100 “Centroid =Centroid

01 ! 3 4 5§ 6 T & 9 M0
Cluster number

701 4 i 6
Cluster number

Fig. 2. Centroids values vs. Observations averages

c) Cluster size — the closer to a threshold value, the higher the similarity.
We propose the following size weights regarding the keywords of a

language programming (Table 3):

62 Irina Rancea, Valentin Sgarciu

Table 3
Keywords — cluster size weights
Cluster size Size weights - keywords
[1.2] 0.10
[3..7] 0.40
[7..10] 0.80
[10..15] 0.50
[15 .. 30] 0.30
[30..50] 0.10

d) Cluster relevance — we propose the following distance for computing the
cluster relevance and we will call it REL:
RELC.=%-in*PI,,j=1..N 4)
J i=1

where:

N = number of clusters

k = number of points inside a cluster

x = observations, defined as the number of lines from each cluster point

P = cluster size weights, as defined in Table 3.

The computed relevance parameter are listed in Table 4.
Table 4
Cluster relevance parameter for keywords

DR Cluster number Cluster relevance REL

1.37
3.34
3.30
1.05
8.96
5.93
22.28
14
9.5
15.2
10.72
24.21

Draft Standard for the
Functional Verification
Language e

C++ Language Tutorial

ool IN PO | W|IDN|PF

Automatic wrapper system for semi-structured documents based on data mining 63

DgEE! Cluster number Cluster relevance REL

The JavaTM Language
Specification Third Edition

19.56
24.60
6.44
8.17
5
12.92
3.9
47.64
57.49

SystemVerilog 3.1a Language
Reference Manual

0.40
0.31
0.18
1.47
0.50
0.20
0.20
0.20
55.59

ool NjO|lO | Dl WOIN|PIO|lO|IN O[O IN|PF

The following cluster analysis has been done based on the results of the

above defined parameters :
a) Draft Standard for the Functional Verification Language e

very small cluster size: @imC ;=2

higher scattering degree: €s and Ce - more than 6000 units

extreme values for the relevance parameter: €1 and €4 (very small
values), Cs (very high value)

extreme value for centroids vs. observations average (high value) for
cluster Cs

the most relevant cluster becomes €2

b) C++ Language Tutorial

very small cluster size: @imC;=dimC =1
higher scattering degree: €s and Cs - more than 1000 units

64 Irina Rancea, Valentin Sgarciu

— extreme values for the relevance parameter: €3 (the smallest value)
— the most relevant clusters became €1 and €2 - we also take into

consideration cluster €1 because it has a good density even if it
represents an extreme value for the parameter centroids vs. observations
average

¢) The JavaTM Language Specification Third Edition

— very small cluster size: Cs:Cs-Co
higher scattering degree: €2 and Cs - more than 5000 units

extreme values for the relevance parameter: €3-C4.C5.C7 (the smallest
values)

extreme value for centroids vs. observations average for cluster Cs
the most relevant cluster becomes €1
d) SystemVerilog 3.1a Language Reference Manual
— very small cluster size: dimC,,C,,C;,C,,C, <10, the rest having an
average size of 20
— the centroids values vs. observations average are very small (up to 10), the
only cluster with a high value being €9
— the most relevant cluster becomes €

4.2. Syntactic structures extraction

The proposed algorithm has been applied on a Draft Standard for the
Functional Verification Language e [21] document. The algorithm works on a
predefined concepts lexicon of the programming language. This lexicon contains
data structures and actions that can be implemented in a source code. The
concepts defined in the input document have the following hierarchy. (Fig. 3) The
algorithm has been applied on a set from each concept.

| Statements |
—>| Struct members |
—>| Actions |
=|. Expressions |

Fig. 3. Key concepts of the 'e' language programming
In Table 5 he have the algorithm results only for a subset of the statements
concept:

Automatic wrapper system for semi-structured documents based on data mining 65

Table 5
Extracted syntax for syntactic structures of the input document

Structure syntax as written in the input document | Structure syntax after being identified
and processed

struct struct-type [like base-struct-type] | |'struct’ ID LBRACKET 'like' ID

[struct-member; ...]) RBRACKET LBRACE LBRACKET ID
DOT ID
extend [struct-subtype] base-struct-type | | '©xtend’ LBRACKET ID RBRACKET

[struct-member; ...]} ID LBRACE LBRACKET ID DOT ID

unit unit-type [like base-unit-type] | 'unit' ID LBRACKET 'like' ID
[unit-member; ...} RBRACKET LBRACE LBRACKET ID
DOT ID

6. Conclusions

The IE system algorithms produced good results for all the lexical and
syntactic structures of the language programming. Our system proved that even if
we have very different input documents it can decide which section is about
lexical structures without any prior information. As an overview of the quality
indexes parameters proposed in this paper we may conclude that the the distance
proposed — REL — is a very good indicator of clusters relevance for the lexical
structure analyzed.

As future developments we propose the extension of clustering analysis
with other clustering algorithms and new distances in order to perform a
comparative analysis.

Acknowledgements

The work has been funded by the Sectoral Operational Program Human
resources Development 2007-2013 of the Romanian Ministry of Labor, Family
and Social Protection Through the Financial Agreement POSDRU/6/1.5/S/16.

REFERENCES

[1] R. Baeza-Yates, B. Ribeiro-Neto, “Modern Information Retrieval”, ACM Press, New York,
1999

[2] E. Riloff, “Automatically constructing a dictionary for information extraction tasks”,
Proceedings of the 11" National Conference of Artificial Intelligence (AAAI-93), 00.811-
816, AAAI Press/ The MIT Press, 1993

[3] S. Huffinan, “Learning information extraction patterns from examples. Connections, statistical,
and symbolic Approaches to Learning for Natural Language Processing”, Spingler-Verlag,
1996

66 Irina Rancea, Valentin Sgarciu

[4] J. Kim, D. Moldovan, “Acquisition of linguistic patterns for knowledge-based information
extraction”, IEEE Transactions on Knowledge and Data Engineering 7(5): 713-724, 1995

[5] G. Krupka, “Description of the SRA system as used for MUC6”, Proceedings of the 6"
Message Understanding Conference (MUCS), pp. 221-235, 1995

[6] K. Slonnenger, B. Kurtz, “Formal Syntax and Semantics of Programming Language”,
Addison-Wesley Publishing Company, ISBN 0-201-65697-3, 1995

[7]1 S. Soderland, “Learning information extraction rules for semi-structured and free text”, Journal
of Machine Learning, 34(1-3), pp. 233-272, 1999

[8] M. Califf, R. Mooney, “Relational learning of pattern-match rules for information extraction”,
Proceedings of AAAI Spring Symposium on Applying Machine Learning to Discourse
Processing Standford, California, 1998

[9] D. Freitag, “Information extraction from HTML: Application of a general learning approach”,
Proceedings of the 15" International Conference on Artificial Intelligence (IJCAI), 1998

[10] N. Kushmerick, D. Weld, R. Doorenbos, “Wrapper induction for information extraction”,
Proceedings of the 15" International Conference on Artificial Intelligence (IJCAL), 1998

[11] C.N., Hsu, M. Dung, “Generating finite-state transducers for semi-structured data extraction
from the web”, Journal on Information Systems 23(8), pp. 521-538, 1998

[12] C.H. Chang, C.N. Hsu, S.C. Lui, “Automatic information extraction from semi-structured
Web pages by pattern discovery”, Decision Support Systems Journal, 35(1), pp. 129-147,
2003

[13] I Muslea, S. Minton, C. Knoblock, “A hierarchical approach to wrapper induction”,
Proceedings of the 3" International Conference on Autonomous Agents (AA-99), 1999

[14] M. Murty, A. Jain, P. Flyn, “Data clustering: A review”, ACM Computing Surveys 31(3),
1999

[15] J.A. Hartigan, “Clustering Algorithms”, Wiley, New York, 1975

[16] L. Kaufinan, P.J. Rousseeuw, “Finding Groups of Data”, Wiley, New York, 1990

[17] J.B. MacQueen, “Some Methods for Classification and Analysis of Multivariate
Observations”, Proceedings of the 5™ Berkeley Symposium on Mathematical Statistics and
Probability, Berkeley, University of California Press, pp. 281-297, 1967

[18] J. Ye, “Numerical Linear Algebra for Data Exploration — Clustering”, CSE 494 CSE/CBS
598. 2007

[19] ****Wolfiam Mathematica Documentation Center, “Distance and Similarity Measures”,
2011
http://reference.wolfram.com/mathematica/quide/DistanceAndSimilarityMeasures.html

[20] J. Hobbs, “The Generic Information Extraction System”, Proceedings of the 5" Message
Understanding Conference (MUC-5), Morgan Kaufman Publishers, San Mateo, California,
1994

[21] **** Design Automation Standard Committee of the IEEE Computer Science, “|EEE
P1647™/D9 Draft Standard for the Functional Verification Language e”.
www.ieeel1647.org/downloads/P1647 Draft 6_071214.pdf

[22] J. Soulie, “C++ Language Tutorial”, 2007 http://www.cplusplus.com/doc/tutorial/

[23] J. Gosling, B. Joy, G. Steele, G. Bracha, The Java™ Language Specification Third Edition,
ISSN 0-321-24678-0, Santa Clara, California, 2005

[24] **** Accellera Organization, “SystemVerilog 3.1a Language Reference Manual”
www.eda.org/sv/SystemVerilog 3.1a.pdf

[25] B. Raskuti, C. Leckie, “An Evaluation of Criteria for Measuring the Quality of Clusters”,
Proceedings of the 16" International Joint Conference on Atrtificial Intelligence, pp. 905-
910, ISBN 1-55860-613-0, 1999

[26] R.C. Dubes, A.K. Jain, “Validity Studies in Clustering Methodologies”, Pattern Recognition,
11, pp. 235-254, 1979.

