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THE NON-HOMOGENEOUS MULTIVARIATE GREY
MODEL NMGM (1, N) AND ITS APPLICATION

Zhigang LI** Yutian ZHANG!, Zhen YI! and Zhiwen YANG!

There is higher bias on fitting approximation non-homogenous series for
building the traditional MGM (1, n) model by fitting data with homogenous
exponential function. In fact, there is a lot of approximation non-homogenous series.
Based on the modeling principle of the traditional MGM (1, n) model, a
non-homogenous multivariate grey model NMGM (1, n) was put forward. The
parameters were estimated of the proposed model by least square method and the time
respond function was given. Two kinds of optimization models were established: one
is taking the coefficient of the background value as design variable and the minimum
average relative error as the objective function, the other is taking the coefficient of
the background value and the initial value of the response function as the design
variables and the minimum average relative error as the objective function. The
solution program based on Matlab was written. Finally, the example validates new
optimization model has better fitting and prediction accuracy than the traditional
MGM (1,n) model.

Keywords: Grey system theory; non- homogenous; multivariate; optimization;
NMGM (1, n).

1. Introduction

Grey system model is new method researching the uncertainty problem
about a small amount of data and poor information. GM (1,1) is the most commonly
grey system model, which reveals the inherent development law by first-order
differential equation model with single variable [1]. GM (1,1) with single variable
was extended to the multivariate grey model MGM (1, n) [2]. MGM (1,n) is neither
the simple combination of GM (1, n), nor GM (1, n) that establishing only a
first-order differential equation with n variables. In MGM (1,n), n differential
equations with n variables are established and solved, in order that the parameters in
the model can reflect the relationships of mutual influence and restriction among
multiple variables. Many scholars and practitioners have extensively and
profoundly researched from theory to application, and successfully resolved a large
number of practical problems in the production, life and scientific research [3-9].
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Model accuracy is the key and the difficulty of modeling. Many scholars put
forward many methods to improve the accuracy, such as the reconstruction of
background value [6], the coefficient optimization of background value [7], the
optimization on initial value [7-8] and new information optimization model [9].
To some degree, the above methods improve the prediction accuracy of the model,
but they do not fundamentally eliminate errors due to the defects caused by
modeling method. The analysis found that most of the optimizations are for the
parameters of the grey model, that is, that constantly correcting the original model
better fits the data sequence with the pure exponential characteristics. But in real
life, the data complete with pure exponential characteristic is minimal, and more of
the original sequence data meet approximation non-homogeneous exponential law.
Xie N.M. put forward the discrete grey model based on approximate
non-homogeneous exponential sequence and researched the model features to
achieve certain results [10]. Cui J. constructed a kind of grey model based on
approximate non-homogeneous exponential discrete function according to the
classical modeling mechanism of grey model [11]. But this model is very strict with
the data, and when the data does not meet the requirement the error between the
fitting and the prediction is too large. Wang Y.N. put forward the direct modeling
method on approximate non-homogeneous exponential sequence [12]. It has a good
effect when the original data is monotonous rise-fall or concavo-convex in this
model, but in practice the raw data is not necessarily monotone. The
non-homogeneous exponential grey model based on equidistant sequence was
established and the desired effect was achieved [13,14]. But this is for GM (1,1)
with a single variable, and the non-homogeneous multivariate MGM (1, n) model
has not seen in published papers. In this paper, according to the modeling
mechanism of the traditional grey model, firstly the raw data was accumulated to
increase exponential law and reduce the randomness, and then a non-homogeneous
multivariate grey model NMGM (1, n) was built to fit the raw data with
non-homogeneous exponential law. New model can fit and forecast for any
multiple sets of data with non-homogeneous exponential law, and also for
approximated homogeneous exponential data. The parameters were estimated of
the proposed model by least square method and the time respond function was
given. Two kinds of optimization models were established: one is taking the
coefficient of the background value as design variable and the minimum average
relative error as the objective function, the other is taking the coefficient of the
background value and the initial value of the response function as the design
variables and the minimum average relative error as the objective function. The
solution program based on Matlab was written. The example validates new
optimization model has better fitting and prediction accuracy than the traditional
MGM (1,n) model.
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2. Modeling mechanism of multivariate grey model MGM (1, n)

Supposed the non-negative sequence X @ =[x @),---,x? (j),-++, x© (m)],
where i =12,---,n  j=2,---,m, n is the number of variables and m is the
sequence number of each variable, X0 =[xP@),---, x2(j),---, xP(m)] is first-order
accumulated generation of X, and it is denoted by 1-AGO, where

k
X (k)= xO(j)(j=12,--,m] 1)
j=1
Let multivariate raw data matrix is:
x @) x(2) X (m)
XO = {x® X xO = ;@) %(2) X; (M) @)
(1) x(2) Xy (M)
The equations of MGM (1, n) are first-order albino differential equations
with n variables.

dx o o, &
i T R D
dx®
di =a, X" +a,xV +---+a, x¥ +b, 3)
.
dgt =a,x" +a,x" +-+a,x” +b,
Supposed
X (k) = (¢ k), x5 (), xP (k) Tand X (k) = (7 (k), x5 (), X (k)T
a; a, - a, by
a, a, - a b
A= 77 1, B=| *|, Eq.(3) can be expressed as:
anl an2 ann bn
@
X _AX® 4B 4
dt

Taken the first component x (1) of the sequence x(j)(j =12,---,m) as
an initial condition of the grey differential equation, the continuous time response of
Eq.(4) is as:

XO@)=e"XYD)+ At -1)B (5)
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2. A . . .
Where, e* =1 +Z—|tk,l is an unit matrix.
k=1

With known matrix A and time t, we can easily calculate exponent

matrix e” without appearing singular matrix with function expm.m in Matlab
software.

In order to identify A and B, Eq. (3) is discretized and X© = AZ” +B can
be obtained throughthe difference grey derivative in [k-1Kk]

Takenz" (k) = 05*(x” (k) + x” (k -1)), the following equation can be obtained:
x@ (k) = Z;%(xgl)(k) +xP(k-1)+b,(i=12---,nk =23,--,m) (6)
j=
Supposed a =(a,,a,,,a,b)"(i=12n), the identified value & of a, can

In?

be obtained through the least square method:

4=(d,4, 4 .b) =Z"2)"2",i=12-n )
Where, )
SOP@ W) G D) e S0 W)
7 - é<xf”<3> + x0@) %<X§><3> Fx0@) éu;”@) a0y 1] 8)
1
é(xfn(m) +x(m - 1)) %(Xil)(m) + x(m-1)) - é(XfID(m) +xP(m-1) 1
Y, = [x7(2),x7(3),--, ()] ©)
Then the identified values of A and B can be get:
4, &, - 4, b
Al B2 7 B g b (10)
énl é\‘nZ énn 6n
The calculated value in MGM (1, n) is:
X O (k) =ertDX D) + A1 D —1)B,k =1,2,---,m (12)
X @ is restored to the original sequence X
- XD (1) k=1
XOK)y=4 A A e 12
i ( ) {(Xi(l)(l)'i‘ Ale)(eAk _eA(k—l))k :1’2’_“’m ( )

The absolute error of the ith variable:
g; (k) = X9 (k) - x? (k) (13)
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The relative error of the ith variable (%):
_ K2 (k) — % (k)

e (k)= 14
== (14)
The mean of the relative error of the ith variable:
l m
= lei (k)| (15)
mi=

The average error of all the data:

1 n m
— 2 (2 (k) (16)
o 2 (2 (K)

The background value of the above model is generated by the mean, denoted
as MGM-1. After amended and taken advantage of known information, the
background value can be get:
ax (@) + (1= DxP (M) @+ - x0) - @+ 0-x"0 1
ax’3) + (1= Dx"(@2) @+ 1-Dx’@ - @)+ 0-Ax0Q) 1

1
1

f =

17)
7 =
ax(m) + U= D" =1 Ax’(m) + 0= Dx"(m =1 Ax)(m) + 0= Dx(m = 1)
where 1 <[0,] "8,
That Eqg.(17) substituting Eq.(8) can obtain A through the optimization
method. The MGM model is referred to as MGM-2.
In MGM-1, the first column of data is taken as the initial value of the

solution x® (1) = x”(1). After it is amended, that x® (1) + g takes the place of
x(1) , where g is a vector whose dimension is equal to x®(1), that is,

p= [ﬂl,ﬂz,--~,ﬂn]T . Eq.(11) is changed as:

X O (k) = eAD(X D)+ B) + At AP —1)B,k=1,2,---,m (18)
It is restored to obtain the fitting value of the original sequence.
- @ =
Xi(O)(k) — Xll (1) + ﬂ A s k=1 (19)
XO@Q+ B+ A'B) ™ - Pk =12,---,m

That Eq.(17) substituting Eq.(8) and Eq.(18) substituting Eg.(11) can obtain
A and g by using the optimization method. The MGM model is referred to as
MGM-3.

After analyzing Eq.(12), it is found X has homogeneous exponent
characteristic. Because the collected data in the practical application are often
approximate non-homogeneous, the non-homogeneous exponent sequence is used
to fit the original data in this paper.
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3. Modeling mechanism of the non-homogeneous multivariate grey
model NMGM (1, n)

Supposed the non-negative sequence X @ =[x (),---,x9(j),---,x?(m)],
where i=12,---,n, j=2,---,m, n is the number of variables and m is the
sequence number of each variable, X® =[x®(),---,x®(j),-+-,x®(m)] is called as
is one-time accumulated generation of X, denoted as 1-AGO. Supposed that

Z%9(t) is the background value of X®(t), X ()= AZ®(t)+ B, + B,t is defined as the
differential equation of NMGM (1, n) under the optimization on the grey action.

dx,” &) & W
Tzan)ﬁ TaRX " e A Xy +b1+b21t
dx” & 8 &
ot =8, X +8uX, ++ 8, X+, + Dyt (20)
dx®
—d; =a,xY +a,x"+---+a, xP +b +h, t
Noting X © (k) = () (k), ¢ (), X (k)" »
a; ap v A, b,
a, &, - Ay, b.
XV = (0. XN A== B =]
anl an2 a'nn bn
11
B, =| “| Eq.(20) can be expressed as:
bnn
@
d)(;t =AX® + B +B,t (21)

Taken the first component x (1) of the sequence x(j)(j =12,---,m) as

an initial condition of the grey differential equation, that is x (1) = x” (1), the
continuous time response of Eq.(5) is as:
XOt)=(X"@Q)+A"B,+A"B, + A?B,)e" ™ ~A"B, - A'B,t - A?B, (22)
© k
where, e = +Z%t" , where 1 is an unit matrix.
k=1 ™=
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In order to identify A, B, and B,, Eq.(20) is discreted and the following
equation can be obtained:
XO(t) = AZ9(t) + B, + Bt taken 2% (k) =0.5* (x (k) + x" (k -1)),
n 3.
xQ (k) = Zl“%(xf) (k) + xf) (k=1)+b, +b,t(i=12,---,n;k =2,3,---,m) (23)
=
The definite integral is taken on both sides of the equation in [k-1,k]:

X (k)(k - (k-1) = (k- (k —mi%(xﬁ”(k) +xP(k=1)) + (k - (k~1)b,

+by (k72— (k=1)12)/2,(i=1,2,---,mk =2,3,---,m)
that is:

x? (k) = Z%(x}l’(k) +xP(k=1)+by +by(2k -1)/2,(i=12,--,m;k =2,3,---,m)
j=1
Noting a =(a,,a,,",a,,b,,b,) (i=12-n), theidentified value &, of a, can

be obtained through the least square method:

4 =(4,4a, & b,b) =(@Z'2)"Z",i=12n (24)
) where:
L@ La0@ s a0 Lav@+x2m) 1 372
2 2 2 (25)
L Lereeatey  Lere s ste) Lev@+axf@) 1 572
Z=1 3 2 2
é( O(n) + x(m - 1)) %u;”(m) Fxm=1) - %(;(;”(m) Fx%m-D) 1 @n-1/2
Yi = [Xi(O) (2), Xi(O) (3)’...'Xi(0)(m)]T (26)
Then the identified values of A, B, and B, can be get:
é11 éiz é1n 611 621
. |a. 4&a. - & N -
A — 21 22 2n , B1 — b12 ' 82 — b22 (27)
é\‘nl an2 t é\‘nn Bln 62n
The calculated value in NMGM(1,n) is:
XOK)=(X"@)+A'B,+A'B,+A?B,)e Y —A'B ~A'Bk-A"’B, (28)
X ® s restored to the original sequence X ©.
, X0 k=1
X(O)(k): 1 AR L Al Az(A) Ak-) _ A-lp _ A-lR A-2R (29)
(X®@Q)+A'B +A"B,+A’B,)e Y~ A'B - A"Bk-A7B, k=23,m
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After analyzing the above equation, it is found )Zi(o) has non-homogeneous

exponent characteristic. There, the above MGM (1, n) is referred to NMGM(1,n),
where N represents non-homogeneous exponent.
The absolute error of the ith variable:

G; (k) = )zi(O)(k) - Xi(o)(k) (30)
The relative error of the ith variable (%):
6 ()= XWX
X (k)
The mean of the relative error of the ith variable:

MAPLE(i):%Zm]ei (k)| <100 (32)

=1

(31)

The average error of all the data:
f= iZ(Z|ei (K)) %100 (33)
nm-i= =
The background value of the above model is generated by the mean, denoted
as NMGM-1. After amended and taken advantage of known information, the
background value can be get:
Y (2)+ -0 ) AOQ+-AxPQ - Q-0 1 302

n

S| M@ - - /Ix;“(3)+(1—/1)x§“(2) 1 502 (34)

AOM+ - M- APm+C-Pm-1 - xOm+C-x"m-1) 1 @m-1/2
where, 1e[01] "8,
That EQq.(34) substituting Eqg.(25) can obtain A through the optimization

method. The NMGM model is referred to as NMGM-2.
In NMGM-1, the first column of data is taken as the initial value of the

solution x (1) = x”(1). After it is amended, that x® (1) + g takes the place of
x(1) , where g is a vector whose dimension is equal to x®(1), that is,

B=p.5 ] . Eq.(29) is changed as:
XO(K)=(XY(1)+p+A'B +A "B, +AB,)e Y _A'B ~A'Bk-A?B, (35)
It is restored to the fitting value of the raw sequence:
. X0 k=1
X(O)(k): 1 AR 4 Al ()“Tzé Ak-) _ pp _ AR L A-2R (36)
(XU +p+A"B +A"B,+A’B,)e Y - A'B - A'Bk-A?B,k=23,m
That EQ.(34) substituting EQ.(25) and Eq.(35) substituting EQ.(28) can
obtain 4 and g through the optimization method such as genetic optimization
function ga.m in MATLAB, quantum chaos particle swarm optimization 1151 and
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other modern intelligent optimization method. The NMGM model is referred to as
NMGM-3. After solving the model, the model should be tested to determine
whether the model is appropriate. There are commonly three methods for testing
MGM (1, n) 3): residual test, relational coefficient test and post-error examine.
NMGM (1, n) also is test by the method in MGM (1, n) to test.

In this paper, NMGM (1, n) becomes a grey MGM (1, n) model when
B, =0.NMGM (1, n) is the promotion of MGM (1, n), and MGM (1, n) is a special
case of NMGM (1, n) when B, =0. This model with important theoretical and
practical value widens application of grey prediction theory.

4. Examples

In the project of Xiong’ao metro section in Beijing Metro Line 10, the
open-cut method is used for construction. The cast-in-place pile with
e800mm@ 1400 is supporting structure of foundation pit. The deepest depth of
foundation pit is 20m. Due to the geological conditions in the project is complex,
the depth of foundation digging is deeper. In order to ensure the safety of the
structure and surrounding buildings, the deformation of foundation pit need be
predicted. By comparison and screening to the raw data, three groups of the raw
data sequence with representative and truly reflecting the deformation of foundation
pit were obtained. In this paper three groups of nine data behind the raw data
sequence reflecting the deformation of foundation pit were selected as shown in
Table 1 [16]. The proposed grey MGM (1, n) model in this paper and the traditional
multi-variable model were established, and the simulated predictions were
respectively conducted to the deformation of supporting structure of deep

foundation pit.
Table 1.
Three groups of the raw data sequence reflecting the deformation of foundation pit

k 1 2 3 4 5 6 7 8 9

X 8.48 12.77 1510 17.87 1966 2230 2432 26.10 28.90
X 9.29 13.67 1623 19.00 20.84 2333 2539 2722 29.35

X{? 10.07 1452 1728 20.05 2184 2428 2634 28.15 30.4

In this paper, the previous seven data in Table 1 were used to model and the
following two data were used to predict to test the predicted effect. The parameters
of each model are as follows:

6.0461 -14.7184 8.6881 9.6664

MGM-1: A=]9.1062 -21.2487 12.1549,B =|10.3281|,4=0.5

12.1097 -27.5473 15.4514 11.0004
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6.1741 -14.9721 8.8148 9.6499
MGM-2: A=|9.1985 -21.4326 12.2474|,B =|10.3113|, 4 =0.50509
2.2006 -27.7300 15.5439 10.9822

MGM-3:
57678 -14.1661 8.4130 9.7014 1.2088985¢ - 05
A=]8.9001 -20.8369 11.9487|,B=10.3640, 5 =| -1515.7966 |.4 =0.48920486
11.9033 -27.1316 15.2417 11.0395 -3.1087836
47979 -11.1491 6.3435 9.2742 1.2217
NMGM-1: A=6.4762 -13.7178 7.2155/,B, =(9.5018|, B, =|2.5740|, 4 = 0.5000
7.7115 -14.9466 7.1914 9.6185 4.3047
-0.41710 0.7349 -0.3512 8.8331 2.8854
NMGM-2: A=| 19275 -3.3713 1.4004 |,B, =|9.0803, B, =|3.9361|, 4 = 0.38447
29522 -4.2921 12818 9.1536 5.4734
6.1418 -14.3186 8.1909 9.3729 0.6575
NMGM-3: A=75613 -16.2772 8.7095), B, =|9.5934(, B, =|2.1332|,
8.8158 -17.5002 8.6598 9.7208 3.9335

4.1228258e - 06
B=| 4989.4922 |, A=0.53024657

-1392.2162
Table 2
Comparison of the fitting values of the traditional model
MGM-1 MGM-2 MGM-3
k Xl(o) X 50) )23(0) Xl(o) X 50) Xs(o) )21(0) X 50) )2;0)
8.48 9.29 10.07 8.48 9.29 10.07 8.48001  9.29001 10.07

12.8217 13.766  14.6617 12.8129 13.7564 14.6512 12.8624 13.8096  14.708
15.1825 16.2634 17.2628 15.1812  16.2621  17.2619 152306 16.3134 17.3136
17.5811 18.7244  19.759 17.591 18.7367  19.7735  17.6354 18.7774  19.8102
19.8958 21.0289 22.0381 19.9171 21.0536 22.0656  19.9635 21.0946 22.1029
22.0854 23.1606 24.1131 22.114 23.1914  24.1448 22181  23.2593 24.2164

~N o o B~ O w NP

242201 25.2362 26.1461 24.2533 25.2682  26.1764  24.3552 25.3828  26.3043
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Comparison of the accuracy of the traditional model

Table 3

Average relative error (%) of

Average relative error (%) of

Average relative error (%) of

MGM-1 MGM-2 MGM-3
)21(0) )2;0) XS(O) )21(0) )2 2(o) )23(0> )21(0) )2;0) XS(O)
0.73433 0.65662 0.69397  0.69293 0.61635 0.65689 0.7319 0.60854  0.61241
0.69497 0.65539 0.65095
Table 4
Predictive value of the traditional model
Predicted value of MGM-1 Predicted value of MGM-2 Predicted value of MGM-3
K X 1(0) X ;0) X 3(0> X 1(0) X ;0) X 3(0> X 1(0) X 50) X 3(0)
8  26.4887 27.5014 28.4352 26.5351 27.5451 28.4775 26.6521 27.681 28.6272
9 29.1738  30.294 31.3641 29.2663 30.3899 31.4674 29.3096 30.436  31.5028
Table 5
Accuracy of the traditional model
Average relative error (%) of Average relative error (%) of Average relative error (%) of
K MGM-1 MGM-2 MGM-3
X 1(0) X 50) X 3(0> X 1(0) X 50) X 3(0> X 1(0) X 50) X 3(0>
8 -1.4893 -1.0338 -1.0131  -1.6670 -1.1943 -1.1634 -2.1153  -1.6936  -1.6952
9 -0.9474 -3.2164 -3.1714  -1.2675 -3.5431 -3.5112 -1.4173  -3.7002 -3.6276
Table 6
Fitting values of new mode
NMGM-1 NMGM-2 NMGM-3
k )21(0) )2 éo) XS(O) )21(0) )2 2(0) >23(0) )21(0) )2 2(0) )2350)
1 8.48 9.29 10.07 8.48 9.29 10.07 8.48 9.29 10.07
2 125646 13.4813 14.3526 12.735 13.5732 14.3542 12.7311 13.6781 14.5798
3 149213 16.0354 17.0746 15.2055 16.2731 17.2716  15.2948 16.4245 17.4758
4 17.1635 18.3107 19.3447 17.6114 18.7394 19.7629  17.7398 18.8939  19.9298
5 19.2224 20.3432 21.3384 19.9469 21.0611 22.0592 19.9708 21.0948 22.0854
6 21.2007 22.2843 23.2486 22.2066  23.2907 24.2588 22.128 23.2102 24.1662
7 231782 242276  25.172 24.3906  25.4443 26.3854  24.3499 253914  26.3275
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Table 7
Comparison of the accuracy of new model
Average relative error (%) of Average relative error (%) of Average relative error (%) of
NMGM-1 NMGM-2 NMGM-3
)21(0) >2 2(0) )250) )21(0) )220) XA3(0) )21(0) X\;O) )23(0)

2.6567 2.5216 2.4054 0.6554 0.54124 0.55514 0.68559  0.50825  0.54065

2.5279 0.58393 0.57816
Table 8
Comparison of the predicted values of new model
Predicted value of NMGM-1 Predicted value of NMGM-2 Predicted value of NMGM-3
k )21(0) X;m Xs(o) >21(0) X;m )2350) )21(0) )2 50) )23(0)

8 251900 26.2088 27.1389 26.5009 27.5262  28.4425 26.7253 27.7282  28.6537
9 27.2458 28.2353  29.1529  28.5400 29.5385 30.431  29.3038 30.2682  31.1872

Table 9
Comparison of the accuracy of predictive value in new model
Average relative error (%) of Average relative error (%) of Average relative error (%) of
K NMGM-1 NMGM-2 NMGM-3
)21(0) X;O) )23(0) >21(0) X;m X;o) )21(0) >2 50) XA3(O)

8 3.4866  3.7149 35918  -1.5360 -1.1249 -1.0391  -2.3958 -1.8670 -1.7893
9 5.7239  3.7980 4.1023 1.2457  -0.6422 -0.1020  -1.3972  -3.1284  -2.5895

The calculation results of six models are shown in Table 2- Table 9. Thus,
the optimized model is better than the original model. The more the optimization
parameters, the better the optimization results. The accuracy of MGM-3 is better
than of MGM-2, and one of MGM-2 is better than of MGM-1. The accuracy of
NMGM-3 is better than of NMGM-2, and one of NMGM-2 is better than of
NMGM-1. In these models, the precision of NMGM-3 is the best.

5. Conclusions

(1) In the traditional MGM (1, n) model, the homogeneous exponential
data is used to fit the raw data. Based on the modeling principle of the traditional
MGM (1, n) model, a non-homogeneous exponential multivariate grey model
NMGM (1, n) was put forward, in which the homogeneous exponential data is used
to fit the raw data. The parameters were estimated of the proposed model by least
square method and the time respond function was given.
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(2) Two kinds of optimization models were established: one is taking the
coefficient of the background value as design variable and the minimum average
relative error as the objective function, the other is taking the coefficient of the
background value and the initial value of the response function as the design
variables and the minimum average relative error as the objective function. The
solution program based on Matlab was written.

(3) NMGM (1, n) becomes a grey MGM (1, n) model whenB, =0. NMGM
(1, n) is the promotion of MGM (1, n), and MGM (1, n) is a special case of NMGM
(1, n) whenB, =0. This model with important theoretical and practical value

widens application of grey prediction theory.
(4) The example validates new optimization model has better fitting and
prediction accuracy than the traditional MGM (1, n) model.
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