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KINEMATICS OF THE EPICYCLICAL MINUTEMAN 
COVER DRIVE 

Stefan STAICU1 

Articolul stabileşte relaţii matriceale pentru analiza cinematică a unui tren 
de roţi dinţate cu un grad de libertate. Mecanismul epiciclic Minuteman este un 
sistem cu patru elemente mobile şi trei cuplaje prin roţi dinţate controlate de un 
motor electric. Cunoscând mişcarea de rotaţie a efectorului, problema de 
cinematică inversă este rezolvată printr-un procedeu bazat pe relaţii de 
conectivitate. În final, se obţin câteva grafice pentru unghiurile de rotaţie, vitezele 
unghiulare şi acceleraţiile unghiulare de la intrarea şi ieşirea din sistemul mecanic. 

Matrix relations for the kinematics analysis of a 1-DOF planetary gear 
train are established in the paper. The epicyclical mechanism of the Minuteman 
cover drive is a system with four moving links and three gear pairs controlled by 
one electric motor. Knowing the rotation motion of the effector, the inverse 
kinematics problem is solved based of the connectivity relations. Finally, some 
simulation graphs for the input and output angles of rotation, angular velocities and 
angular accelerations are obtained.  
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List of symbols 

1, −kkq : orthogonal relative transformation matrices from the frame 111 −−− kkk zyx  to 
following frame kkk zyx  

321 ,, uuu : three orthogonal unit vectors 
α : rotation angle of the output link ; 1, −kkϕ : relative rotation angle of kT rigid body 

1, −kkω : relative angular velocity of kT ; 0kω :   absolute angular velocity of kT  

1,
~

−kkω : skew symmetric matrix associated to the angular velocity 1, −kkω  

1, −kkε : relative angular acceleration of kT ; 0
~

kε : absolute angular acceleration of kT  

1,
~

−kkε : skew symmetric matrix associated to the angular acceleration 1, −kkε  
C

kr :   position vector of the mass centre of kT  rigid body  
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1. Introduction 

The industrial robots with orienting gear trains can perform several operations 
such as welding, flame cutting, spray painting, milling or assembling. Being 
comparatively simple and compact in size, the bevel-gear wrist mechanisms can 
be sealed in a metallic box that keeps the device out of contamination. 
Furthermore, using bevel gear trains for power transmission, the actuators can be 
mounted remotely on the forearm, thereby reducing the weight and inertia of a 
robot manipulator. 

The epicyclical gear trains are incorporated in the structure of industrial robots 
and have two or three output rotations. Generally, these mechanical systems have 
conical and cylindrical toothed elements in their structure, while the input axes are 
parallel and the output axes are orthogonal. The three rotary orientation 
movements are usually performed around the axes of a Cartesian orthogonal 
frame, having its axes linked to the last arm of the robot’s positioning mechanism. 

Numerous methods for kinematics analysis of epicyclical gear trains have 
been proposed by several researchers. Planetary gear trains with three degrees of 
freedom are adopted as the design concept for robotic wrist (Hsieh and Sheu [1]; 
Paul and Stevenson [2]; Willis [3]; Ma and Gupta [4]; White [5]. The gear drives 
are commonly used for speed reduction and torque amplification in mechanical 
systems. If the advantage of the reduced bi-coupled transmissions, namely their 
reduced number of gears, is to be fully utilized, then their component 
transmissions must contain the smallest possible number of gears. 

2. Inverse kinematics model 

Recursive relations for kinematics of a 1-DOF orienting gear train are 
developed in this paper. The mechanism topology of the Minuteman cover drive 
consists of four moving links, four turning pairs and three gear pairs (Fig.1). 

First, we wish to find the overall speed reduction ratio of this mechanism. A 
matrix methodology for the kinematics analysis based on the concept of 
fundamental circuit of an open-loop chain is presented. This method involves the 
identification of all open-loop chains and the derivation of the geometric 
relationships between the orientation of the output link and the joint angles of the 
chains, including the input actuator displacements [6], [7], [8]. 

Let )( 00000 TzyxO  be a fixed Cartesian orthogonal frame, about which the 
mechanism moves. In the Minuteman cover drive, the first ring gear 0 is fixed at 
the ground, the sun gear a1  of radius 1r  is the input link connected to link 0 , 
while the moving ring gear b1  serves as output member. 
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     Fig. 1 The Minuteman cover drive                                   Fig. 2 Gear fundamental circuit 
 
The compound planet gear cba 233 ==  meshes with sun gear a1 as well as the 

two ring gears and is supported with a revolute joint by the carrier cba 122 == as 
a connected coupling shaft of h  in height. The central body a3  is adjacent to 
carrier a2 and consists of two cylindrical gears of radius 32 , rr , respectively. 
Otherwise, the reduced bi-coupled transmission becomes a simply one-DOF 
compounding planetary gear train. 

In what follows, we introduce a matrix approach which utilizes the theory of 
fundamental circuits developed by Tsai [6]. There exists a real or fictitious carrier 
for every gear pair in a planetary gear train and a fundamental matrix equation for 
each loop can be written:  
                      ,, ,11,11,1,,11,1 kkkkkkkkkkkk nqqq +−+−−+−+ == ϕϕϕ   ),,( cbaq = ,                 (1) 
where 1, −kkϕ and kk ,1+ϕ denote two successive relative angles of rotation of the 
carrier kT and the planet gear 1+kT , respectively. The gear ratios of a gear pair is 
defined as 
                                            11111,1 // −+−+−+ == kkkkkk zzrrn ,                                    (2) 
where 11, +− kk rr and 11, +− kk zz are the radius and the number of teeth of two gears, 
respectively (Fig. 2). 

We consider the rotation angles A
10ϕ of the actuator 1A as single variable giving 

the instantaneous position of the mechanism (Fig. 3). Pursuing three serial 
kinematical circuits aaa 3210 −−− , bbb 3210 −−− , cc 210 −− , we obtain some 
successive matrices of transformation for relative parallel rotations [9], [10]:  
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                                       ϕϕϕ θθ 32322212111010 ,, aaaaaa ===    

                                       23232212111010 ,, θθ ϕϕϕ bbbbbb ===                                   (3) 

                                       2212111010 , θθ ϕϕ cccc == , 
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The upper index i  corresponds successively to three circuits CBA ,, . We note that 
the element cba 233 ==  constitute the common body of three concurrent 
kinematical chains. 

Let us suppose that the absolute motion of the end-effector attached at the 
output link b1  is a rotation expressed by the analytical function 

                                          )]
6

cos(1[010 tB πααϕ −== .                                    (5) 

The value 02α is a parameter characterizing the final position of the end-effector.  
Starting from absolute matrices 10213230 aaaa = , 10213230 bbbb = , 102120 ccc = , 

some constraint rotation conditions for the central planet gear cba 233 ==  are 
given by the following identities 
                                                       203030 cba == .                                              (6) 
On the other hand, the constraint geometric conditions established along above 
three kinematical chains are expressed by matrix equations 
                                                   CTBTAT rcrbra 212032303220 == ,                                       (7) 
where, for example, one denoted                                             
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From the equations (6), (7), we obtain easily the real-time evolution of all 
characteristic joint angles, as follows: 
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10 , 

23
213232 nn
CBA
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===

αϕϕϕ , CB n 21221 ϕϕ =  

                           CA nn 213110 )( ϕϕ += , CA n 21121 ϕϕ = , CC n 21310 ϕϕ =                                (9) 
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In the design of power transmission mechanisms such as speed reducers or 
automotive transmissions, it is necessary to analyze the speed ratios between their 
input and output members and, sometimes, angular velocities or angular 
accelerations of all intermediate members. 

 
 
 
 
 
 
 
 
 
 
 
 
                                Fig. 3 Kinematical scheme of the mechanism 
 
The analysis of the kinematics of bevel-gear wrist mechanisms of gyroscopic 

structure, for example, is very complex due to the fact that the carriers and planet 
gears may possess simultaneous angular velocities about nonparallel axes. The 
conventional tabular or analytical method, which concentrates on planar 
epicyclical gear trains, is no longer applicable. To overcome this difficulty, 
Freudenstein, Longman and Chen [11} applied the dual relative velocity and dual 
matrix of transformation for the analysis of epicyclical bevel-gear trains. The most 
straightforward approaches make use of the theory of fundamental circuits 
introduced by Freudenstein and Yang [12]. Tsai, Chen and Lin [13], Chang and 
Tsai [14] and Hedman [15] showed that the kinematical analysis of geared robotic 
mechanisms can be accomplished by applying these systematic methods [16], 
[17], [18]. 

Since a kinematical chain is an assemblage of links and joints, these can be 
symbolized in a more abstract form known as equivalent graph representation 
(Fig. 4). So, we use the associated graph to represent the topology of the 
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mechanism. From this equivalent graph, the fundamental circuits can be easily 
identified. 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                        Fig. 4 Associated graph of the mechanism 
 
In the kinematical graph representation we denote the links by vertices and the 

joints by edges (Yan and Hsieh [19], [20]). Two small concentric circles label the 
vertex denoting the fixed link 0 . To distinguish the difference between the pairs 
connections, the gear pairs a1 - a3 , b1 - b3 , 0 - c2 are designed by thick edges and 
the revolute joints 0 - a1 , a1 - a2 , a2 - a3 , a1 - b1 by thin edges. Four edged paths, 
which start from the base link 0 and end at the central link cba 233 ==  consist of 
following vertices aaa 3,2,1 , bbb 3,2,1 and cc 2,1 .There are three independent loops, 
three fundamental circuits )3,2,1( aaa , )3,2,1( bbb , )2,1,0( cc  and we identify two 
fictitious carriers. 

The kinematics of an element for each circuit is characterized by skew-
symmetric matrices given by the recursive relations [21], [22], [23]: 
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where 3
~u is a skew-symmetric matrix associated with the unit vector 3u . These 

matrices are associated to the angular velocities 
                                31,1,1,0,11,0 , uq i

kk
i

kk
i

kk
i
kkk

i
k −−−−− =+= ϕωωωω .                            (11) 

Knowing the rotation motion of the output link b1 by the relations (5), one 
develops the inverse kinematical problem and determines the velocities i

k
i
kv 00 ,ω  

and the accelerations i
k

i
k 00 ,εγ of each of the moving links. 

Based on the important remark characterising the gear ratio 
                                             kkkkkk n ,11,11, +−+− = ωω ,                                       (12) 

the derivatives with respect to time of the relations (9) lead to the relative angular 
velocities of all links as function of the angular velocity αϕ =B

10 of the output gear:     
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                                    )3,2,1(),,(,1,1, === −− kCBAii
kk

i
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Concerning the relative angular accelerations of the compounding elements of 
the mechanism, these are immediately given by deriving the relations on the 
velocities (13): i

kk
i

kk 1,1, −− = ωε . 

 
       Fig. 5 Input and output rotation angles A

10ϕ , B
10ϕ         Fig. 6 Input and output angular velocities A

10ω , B
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 Fig. 7 Input and output angular accelerations A

10ε , B
10ε            Fig. 8 Absolute angles of rotation C

10ϕ , C
20ϕ          

 

The angular accelerations i
k 0ε and the useful square matrices i

k
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calculated with the following recursive formulae [24], [25], [26]: 
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For simulation purposes let us consider a mechanism which has the following 

characteristics 
            03.01 =r m, 02.02 =r m, 04.03 =r m, πα =0 , 05.0== dh m, 6=Δt s. 
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To solve the inverse kinematics of the epicyclical gear train, a program which 
implements the suggested algorithm is developed in MATLAB. For illustration, it 
is assumed that for a period of six second the end-effector starts at rest from its 
initial position and is moving in a known rotation motion. 

 
   

Fig. 9 Absolute angular velocities C
10ω , C

20ω               Fig. 10 Absolute angular accelerations c
10ε , C

20ε              
 
A numerical study of the kinematics is carried out by computation of the input 

and output angles of rotation ,10
Aϕ B

10ϕ  (Fig. 5), angular velocities A
10ω , B

10ω  (Fig. 6) 
and angular accelerations A

10ε , B
10ε  (Fig. 7). We add, also, the time-history evolution 

of absolute angles of rotation ,10
Cϕ C

20ϕ  (Fig. 8), angular velocities C
10ω , C

20ω  (Fig. 9) 
and angular accelerations C

10ε , C
20ε  (Fig. 10) of the coupling shaft c1  and the central 

gear c2 , respectively. 

1 Conclusions 

Within the inverse kinematics analysis, some exact matrix relations giving the 
position, velocity and acceleration of each link for a 1-DOF epicyclical gear train 
have been established. 

Based on the matrix relations of connectivity, the new approach described 
above is very efficient and establishes a direct recursive determination of the 
variation in real-time of input and output angles of rotation, angular velocities and 
angular accelerations.  
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