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KINEMATICS OF THE EPICYCLICAL MINUTEMAN
COVER DRIVE

Stefan STAICU!

Articolul stabileste relatii matriceale pentru analiza cinematica a unui tren
de rofi dintate cu un grad de libertate. Mecanismul epiciclic Minuteman este un
sistem cu patru elemente mobile i trei cuplaje prin rofi dintate controlate de un
motor electric. Cunoscand miscarea de rotafie a efectorului, problema de
cinematicd inversd este rezolvatd printr-un procedeu bazat pe relatii de
conectivitate. In final, se obtin cdteva grafice pentru unghiurile de rotatie, vitezele
unghiulare si acceleratiile unghiulare de la intrarea si iegirea din sistemul mecanic.

Matrix relations for the kinematics analysis of a 1-DOF planetary gear
train are established in the paper. The epicyclical mechanism of the Minuteman
cover drive is a system with four moving links and three gear pairs controlled by
one electric motor. Knowing the rotation motion of the effector, the inverse
kinematics problem is solved based of the connectivity relations. Finally, some
simulation graphs for the input and output angles of rotation, angular velocities and
angular accelerations are obtained.
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List of symbols

4,4 - orthogonal relative transformation matrices from the frame x,_,y, ,z,, to
following frame x,y,z,

u,, u,, u,: three orthogonal unit vectors

« : rotation angle of the output link ; ¢, , | relative rotation angle of 7, rigid body
@, ,_, - relative angular velocity of 7, ; @,,: absolute angular velocity of 7,

@, ,_, - skew symmetric matrix associated to the angular velocity @,

&4, - relative angular acceleration of 7 ; &,,: absolute angular acceleration of 7,
&4 - Skew symmetric matrix associated to the angular acceleration &,

7. position vector of the mass centre of 7, rigid body
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1. Introduction

The industrial robots with orienting gear trains can perform several operations
such as welding, flame cutting, spray painting, milling or assembling. Being
comparatively simple and compact in size, the bevel-gear wrist mechanisms can
be sealed in a metallic box that keeps the device out of contamination.
Furthermore, using bevel gear trains for power transmission, the actuators can be
mounted remotely on the forearm, thereby reducing the weight and inertia of a
robot manipulator.

The epicyclical gear trains are incorporated in the structure of industrial robots
and have two or three output rotations. Generally, these mechanical systems have
conical and cylindrical toothed elements in their structure, while the input axes are
parallel and the output axes are orthogonal. The three rotary orientation
movements are usually performed around the axes of a Cartesian orthogonal
frame, having its axes linked to the last arm of the robot’s positioning mechanism.

Numerous methods for kinematics analysis of epicyclical gear trains have
been proposed by several researchers. Planetary gear trains with three degrees of
freedom are adopted as the design concept for robotic wrist (Hsieh and Sheu [1];
Paul and Stevenson [2]; Willis [3]; Ma and Gupta [4]; White [5]. The gear drives
are commonly used for speed reduction and torque amplification in mechanical
systems. If the advantage of the reduced bi-coupled transmissions, namely their
reduced number of gears, is to be fully utilized, then their component
transmissions must contain the smallest possible number of gears.

2. Inverse kinematics model

Recursive relations for kinematics of a 1-DOF orienting gear train are
developed in this paper. The mechanism topology of the Minuteman cover drive
consists of four moving links, four turning pairs and three gear pairs (Fig.1).

First, we wish to find the overall speed reduction ratio of this mechanism. A
matrix methodology for the kinematics analysis based on the concept of
fundamental circuit of an open-loop chain is presented. This method involves the
identification of all open-loop chains and the derivation of the geometric
relationships between the orientation of the output link and the joint angles of the
chains, including the input actuator displacements [6], [7], [8].

Let Oyx,y,z,(T,) be a fixed Cartesian orthogonal frame, about which the

mechanism moves. In the Minuteman cover drive, the first ring gear0 is fixed at
the ground, the sun gear la of radius 7 is the input link connected to linkO,
while the moving ring gear 15 serves as output member.
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Fig. 1 The Minuteman cover drive Fig. 2 Gear fundamental circuit

The compound planet gear 3a =3b =2c¢ meshes with sun gearla as well as the
two ring gears and is supported with a revolute joint by the carrier 2a =2b =1c as
a connected coupling shaft of % in height. The central body 3a is adjacent to
carrier 2aand consists of two cylindrical gears of radiusr,, r,, respectively.
Otherwise, the reduced bi-coupled transmission becomes a simply one-DOF
compounding planetary gear train.

In what follows, we introduce a matrix approach which utilizes the theory of
fundamental circuits developed by Tsai [6]. There exists a real or fictitious carrier
for every gear pair in a planetary gear train and a fundamental matrix equation for
each loop can be written:

Gsrgor = Deoraisors Posar = Mg Prps (@ =a,b,¢), (1)
where @, ,_ and ¢, , denote two successive relative angles of rotation of the

carrier 7, and the planet gear 7,,,, respectively. The gear ratios of a gear pair is
defined as
Miviat = Vi ! Tt = Zan 1 24 (2)
wherer, |, r,,,andz, |, z,, are the radius and the number of teeth of two gears,
respectively (Fig. 2).
We consider the rotation angles ¢,; of the actuator 4, as single variable giving

the instantaneous position of the mechanism (Fig. 3). Pursuing three serial
kinematical circuits0—1la—-2a—3a, 0—-1b—2b—3b, 0—1c—2c, we obtain some
successive matrices of transformation for relative parallel rotations [9], [10]:
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— 0 — 0 — 0
a,, =a\,b,, ay =a30,,a;, =aj
_ 70 _ 70 _ 70
by, = b0, b, =b],, by, =30, (3)
) ")
Clp =¢lp0), ¢ = €3,0,,

where one denoted

0 0 -1 -1 0 0
=01 0,6,={0 1 0
1 0 0 0 0 -1
cos ¢Ii,k—1 sin 4011;,/{71 0
4y =|—sing,,, cosg,, 0], (k=123 “4)
0 0 1

k
qko :qu_ﬁ_l’k_j s (q:a, b9 C), (l:A: B7 C)

s=1
The upper index i corresponds successively to three circuits 4, B,C. We note that

the element 3a=3b=2c constitute the common body of three concurrent
kinematical chains.

Let us suppose that the absolute motion of the end-effector attached at the
output link 15 is a rotation expressed by the analytical function

V4
P =a =oy[l- COS(gt)] : )
The value 2¢, is a parameter characterizing the final position of the end-effector.

Starting from absolute matrices as, = a5,d,,a,9, by, =b3,0,,D0,0, €y =C5Cyp »
some constraint rotation conditions for the central planet gear 3a =3b=2c are
given by the following identities

a3 = by =y (6)

On the other hand, the constraint geometric conditions established along above
three kinematical chains are expressed by matrix equations

3 75y =iy = Cofy » (7

where, for example, one denoted

1 0 0 0 -1 0
0 0 1 0 0 O
Ry =Ty =7y =hii, h=r+r,. ®)
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From the equations (6), (7), we obtain easily the real-time evolution of all
characteristic joint angles, as follows:

B _ 4 _ B _ c_ O B _ c
Do =0, Q3 =P =Py = s P = Py
n, —n,
4 c 4 _ c c _ c
@io = (1, + 1)1, @3 =1Py1, Py =130y, )
I V- 7
nlz_z, n2: 22 . n}:—3 .
}"1 7"1+ 7"2 }”1+r2+r3

In the design of power transmission mechanisms such as speed reducers or
automotive transmissions, it is necessary to analyze the speed ratios between their
input and output members and, sometimes, angular velocities or angular

accelerations of all intermediate members.
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Fig. 3 Kinematical scheme of the mechanism

The analysis of the kinematics of bevel-gear wrist mechanisms of gyroscopic
structure, for example, is very complex due to the fact that the carriers and planet
gears may possess simultaneous angular velocities about nonparallel axes. The
conventional tabular or analytical method, which concentrates on planar
epicyclical gear trains, is no longer applicable. To overcome this difficulty,
Freudenstein, Longman and Chen [11} applied the dual relative velocity and dual
matrix of transformation for the analysis of epicyclical bevel-gear trains. The most
straightforward approaches make use of the theory of fundamental circuits
introduced by Freudenstein and Yang [12]. Tsai, Chen and Lin [13], Chang and
Tsai [14] and Hedman [15] showed that the kinematical analysis of geared robotic
mechanisms can be accomplished by applying these systematic methods [16],
[17], [18].

Since a kinematical chain is an assemblage of links and joints, these can be
symbolized in a more abstract form known as equivalent graph representation
(Fig. 4). So, we use the associated graph to represent the topology of the
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mechanism. From this equivalent graph, the fundamental circuits can be easily
identified.
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Fig. 4 Associated graph of the mechanism

In the kinematical graph representation we denote the links by vertices and the
joints by edges (Yan and Hsieh [19], [20]). Two small concentric circles label the
vertex denoting the fixed link 0. To distinguish the difference between the pairs
connections, the gear pairsla-3a,1b-3b,0-2care designed by thick edges and
the revolute jointsO-1la,la-2a,2a-3a,la-1bby thin edges. Four edged paths,
which start from the base link 0 and end at the central link 3a =3b =2c¢ consist of
following verticesla, 2a, 3a ,1b, 2b, 3band ¢, 2¢ .There are three independent loops,
three fundamental circuits (1a, 2a, 3a) , (15, 2b, 3b), (0, 1c, 2¢) and we identify two

fictitious carriers.
The kinematics of an element for each circuit is characterized by skew-
symmetric matrices given by the recursive relations [21], [22], [23]:

C’N)/fo = qk,k—laN)/i—l,quT,k—l + 5/&/(71 > QN)Ii,k—l = gbli,k—lﬁ} > (10)
where,is a skew-symmetric matrix associated with the unit vector u,. These
matrices are associated to the angular velocities

a_jiio = Qk,k—la_.)li—l,o + C?)Ii,k—l > a_}li,k—l = (bli,k—lﬁ.?: . (11)

Knowing the rotation motion of the output link1bby the relations (5), one
develops the inverse kinematical problem and determines the velocities v,,,@,,
and the accelerations 7,,,&,,of each of the moving links.

Based on the important remark characterising the gear ratio

Op k1t = i1 1 O g > (12)
the derivatives with respect to time of the relations (9) lead to the relative angular
velocities of all links as function of the angular velocity ¢ = ¢ of the output gear:
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a)li,k—l =¢)Ii,k—l’ (i:A9 B9 C) (k=19 27 3) (13)
Concerning the relative angular accelerations of the compounding elements of

the mechanism, these are immediately given by deriving the relations on the
velocities (13): ¢, , =@y}, -

45 .

40 H

e o e S

0 --

25 -

20~

Rotation angle {rad)
Angular velocity (radfs)

Minuteman cover drive ()

Fig. 5 Input and output rotation angles (01% R (pﬁ) Fig. 6 Input and output angular velocities a);é R a),%

5 ‘ T T 25

20 0---

o

=]

Angular acceleration (rac/s2)
Rotation angle (rad)

0 1 2 3 4 5 [ 1} 1 2 3 4 5 B
Minuteman cover drive 1(s) Minuternan cover drive t(s)

. 1 1 . A B . 1 | £ . C C

Fig. 7 Input and output angular accelerations &£/, &, Fig. 8 Absolute angles of rotation @, , @,

The angular accelerations £;,and the useful square matrices @;,@,, +&,,are
calculated with the following recursive formulae [24], [25], [26]:
Ero = Qk,k—lgli—l,o + gli,k—lﬁS + wli,k—lqk,k—lC'N)Ii—l,oqz,k—lﬁ3
5)/i051i() +gkl() = qk,k*l (5271,00/\);4,0 + Ekl;l,() h/z:kfl + (14)

i P~ i~ i ~i T~
O O Uty + Ep U 205 G, O oG U

For simulation purposes let us consider a mechanism which has the following
characteristics

1, =0.03m, r,=0.02m,r, =0.04m, o, =7, h=d =0.05m, Ar=6s.
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To solve the inverse kinematics of the epicyclical gear train, a program which
implements the suggested algorithm is developed in MATLAB. For illustration, it
is assumed that for a period of six second the end-effector starts at rest from its
initial position and is moving in a known rotation motion.
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Fig. 9 Absolute angular velocities a)lf) s COZCO Fig. 10 Absolute angular accelerations Eﬁ) s Ezco

A numerical study of the kinematics is carried out by computation of the input
and output angles of rotationg/}, ., (Fig. 5), angular velocities @), @) (Fig. 6)

and angular accelerations &/, &7 (Fig. 7). We add, also, the time-history evolution
of absolute angles of rotation g, ¢S, (Fig. 8), angular velocities @, w5, (Fig. 9)

and angular accelerations £, &5, (Fig. 10) of the coupling shaft lc and the central
gear 2c, respectively.

1 Conclusions

Within the inverse kinematics analysis, some exact matrix relations giving the
position, velocity and acceleration of each link for a 1-DOF epicyclical gear train
have been established.

Based on the matrix relations of connectivity, the new approach described
above is very efficient and establishes a direct recursive determination of the
variation in real-time of input and output angles of rotation, angular velocities and
angular accelerations.
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