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APPLICATION OF GREEN’S FUNCTIONS IN ANALYSIS OF 
THE RESPONSE OF AN INFINITE HOMOGENOUS 

STRUCTURE TO MOVING LOAD 

Traian MAZILU1 

Scopul acestui articol este de a prezenta o metodă numerică bazată pe 
funcţiile Green pentru a calcula răspunsul unei structuri infinite omogene cauzat de 
o forţă în mişcare. Structura are două grinzi rezemate continuu pe straturi elastice 
şi reprezintă modelul obişnuit al căii ferate  pe plăci de beton. Este dovedită marea 
precizie a metodei. Este analizat răspunsul structurii la forţe armonice cu suport fix 
şi cu suport mobil atât în domeniul frecvenţei, cât şi în domeniul timp. 

 The aim of this paper is to present a numerical method based on the Green’s 
functions to calculate the response of an infinite homogenous structure to moving 
load. The structure has two beams continuously supported by elastic layers and 
represents the common model of the slab track. The high accuracy of the method is 
proved. The structure response due to stationary and moving harmonic loads is 
analyzed for both frequency and time domains.  
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1. Introduction 

The present paper deals with the response of an infinite homogeneous 
structure consisting of two beams continuously supported by elastic layers to 
moving load. Such a structure represents a common model for the slab track that 
has been employed in the study of the interaction between a moving vehicle and 
the slab track [1]. In addition, similar models were used to calculate the slab track 
response to a moving load [2, 3]. The upper beam describes a rail, the lower one 
models the slab, while the two elastic layers reflect the properties of the rail pad 
and the track subsoil.  

The railway track structure can be modeled by two kind of mechanical 
models: the continuous models and the periodical models with discrete supports 
[4, 5]. One of the oldest models for the railway track, known as a beam on elastic 
foundation, in fact, a continuous model, was presented by Winkler in 1867 [6]. 
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The continuous models are used for the slab track, but under some conditions, this 
type of model is proper for the ballasted track as well [7, 8].     

In order to solve the equations of the motion for continuous models, many 
methods have been proposed. For instance, the direct method, the Fourier 
transformation method and the coupling in the wave-number frequency-domain 
method are presented by Hussein and Hunt [2] for the case of the non-moving 
oscillating load. In addition, they have applied the double Fourier transform from 
the space-time domain to the wave number-frequency domain for the track subject 
to a moving oscillating load. On the other hand, Wu and Thompson [7, 8] have 
developed many equivalent multiple degree of freedom (MDOF) models for the 
track dynamics having as a starting point the receptance of the rail calculated for a 
unit stationary harmonic load. 

In this paper, starting from previous author’s researches [9, 10], the Green’s 
functions method is developed to study the response of the slab track due to the 
moving load. To this end, a numerical approach to obtain the Green’s functions of 
the structure is presented. In order to verify the accuracy of the method, the results 
from the analytical and numerical method are compared considering the steady-
state behaviour of the structure under moving harmonic load. We should have to 
underline that the Green’s functions of the structure are able to simulate the 
wheel/rail interaction taking into account the nonlinearities of the contact [11].   

2. Governing equations 

The structure of the slab track is composed of a massive concrete slab, into 
which the rails are embedded by means of Corkelast. Assuming that the two rails 
are symmetrically loaded, only half-track is required for modelling (fig. 1). 

In fact, the slab track model may be reduced to a structure consisting of 
two Euler-Bernoulli beams coupled by Winkler foundation as the rail and the slab 
and the rail-pad, respectively. The track is supported by the ground that is taken as 
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a Winkler foundation as well. One has to emphasize that the Euler-Bernoulli 
beams model gives satisfactory results as long as the cross-sectional dimensions 
are small compared to the bending wavelength [12] and this hypothesis is 
considered in the following lines.  

The parameters for the track model are: the mass per length unit m1,2 (the 
index 1 for the upper beam and the index 2 for the under beam) and the bending 
stiffness EI1,2. The two Winkler foundations have the elastic constants k1,2 per 
length unit and the viscous damping factors c1,2 per length unit. 

It is assumed that the track is subjected to a moving load Q(t) depending 
on the time t, which moves at a constant speed V.  

To describe the track evolution under the moving load, the absolutely 
integrable C4 functions w1,2(x,t) termed the rail and slab displacement are 
introduced so that 

                              RR →2
2,1 :w , 0)0,(2,1 =<txw ,                                   (1) 

where x is the coordinate along the track. The latest condition refers to the 
character of the causality. Next, the two functions w1,2(x,t) are encapsulated in the 
column vector w(x,t)=[w1(x,t) w2(x,t)]T termed the column vector of the 
displacements.  

According to the Newton’s second law, the column vector w(x,t) verifies 
the PDE 

                                        ),(),(, txtxtx qwL =                                             (2) 
with the boundary and initial conditions  
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where Lx,t stands for the matrix differential operator 
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and q(x, t)=[Q(t)δ(x-Vt) 0]T is the column vector of the forces on the track with 
δ(.) the Dirac’s delta function. 
            Theoreme 1. The boundary value problem formed by the equation (2) and 
the associated initial conditions (3) has the solution 
                                            ∫ −=

t
ttQttVtxtx

0
'd)'()',',(),( gw ,                                (4) 

where the column vector g(x,x',t-t')=[g1(x,x',t-t') g2(x,x',t-t')]T verifies the equation 
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 Proof. In order to solve the equation (2), one can apply the 2D Fourier 
transform with respect to time and spatial coordinate: 
                                              ),(),(, ωξ=ωξωξ QWL ,                                            (6) 
where  

     ∫ ∫
∞

∞−

∞

∞−
ξ+ω−=ωξ txxttx dd)](iexp[),(),( wW , 

       ∫ ∫
∞

∞−

∞

∞−
ξ+ω−=ωξ txxttx dd)](iexp[),(),( qQ , 

(where the integrals with respect to t verify ∫∫
∞∞

∞−
=

0
) and 

 

⎥
⎦

⎤
⎢
⎣

⎡
+ω+++ω−ξω−−

ω−−ω++ω−ξ
=ωξ )(ii

ii

21211
24

211

11111
24

1
, cckkmEIck

ckckmEI
L  

 
is the 2D Fourier transform with respect to time and spatial coordinate of the 
matrix operator Lx,t, ξ is the coordinate of the wave-number-domain, ω is the 
coordinate of the frequency-domain and i2 = −1. The components of the matrix 
Lξ,ω are in C[ξ,ω]. 
 From Eq. (6) one reads 
                                                 ),(),( 1

, ωξ=ωξ −
ωξ QLW ,                                         (7) 

where the components of the inverse matrix 1
,

−
ωξL are in C(ξ,ω). 

 Let the matrix Γ(x,t)∈M2×2 so that 
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Performing the inverse Fourier transform in Eq. (7) and according to the 
convolution theorem, and the causality condition of the mechanical model, one 
obtains the column vector of the displacements 
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The matrix Γ(x-x',t-t') represents the solution of the equation  

2, )'()'()','( EΓL ttxxttxxtx −δ−δ=−−                             (11) 
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where E2 stands for the 2×2 unit matrix. Indeed, performing the Fourier 
transform, one obtains the necessary equality 
          2

1
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The matrix Γ(x-x',t-t') is termed as the Green’s matrix associated to the 
operator Lx,t through the equation (11) and will be write as Γ(x,x',t-t'). Taking into 
account the particular column vector q(x,t), one needs only the first column of the  
matrix Γ(x,x',t-t'), denoted as g(x,x',t-t') = [g1(x,x',t-t')  g2(x,x',t-t')]T, which 
contains the time-domain Green’s functions of the rail and the slab. These 
functions describe the responses of the rail and the slab, in the section x at the 
moment t-t', if an impulse force occurred at the moment t' in the section x' along 
the rail. Therefore, g(x,x',t-t') will be called the column vector of the time-domain 
Green’s functions of the track.  
 In these circumstances, the column vector of the displacements can be 
calculated as follows 
          ∫∫ ∫ −=−δ−=
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From Eq. (11), it follows that the column vector g(x,x',t-t') satisfies the 
equation (5).                                                                                                             □      

One can observe that the column vector of the time-domain Green’s 
functions of the rail and the slab are attenuated in space and time-domains: 
                                  0),',(lim),',(lim

'
=τ−=τ−

∞→τ−∞→−
txxtxx

txx
gg .                         (14) 

Using the Fourier transform, the column vector G(x,x',ω)=[G1(x,x',ω) 
G2(x,x',ω)]T can be associated to the column vector of the time-domain Green’s 
functions 
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 The components of the column vector {G(x,x',ω)} are the frequency-
domain Green’s functions of the rail and the slab. These functions, termed the 
receptances, represent the response of the rail and the slab in the section x, 
provoked by a unitary harmonic impulse by an angular frequency ω, occurring in 
the section x' of the rail. Next, the column vector {G(x,x',ω)} is called the column 
vector of the frequency-domain Green’s functions of the track.  
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Theoreme 2. The column vector of the frequency-domain Green’s 
functions G(x,x',ω) has the following properties: 

a) it verifies the equation  
       [ ]T

, 01)'(),',( xxxxx −δ=ωωGL ,                                (16) 
b) it verifies the equality 
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where Lx,ω stands for the Fourier transform of the matrix operator Lx,t, Lx,ω is the 
adjoint matrix of the matrix Lx,ω and the function GD(x,x',ω) remains to be 
specified later. 
 Proof. The first two conditions result by applying the Fourier transform to 
the equation (5) and the limits (14). In order to arrive to the form (18), Eq. (16) is 
modified by applying the adjoint matrix operator *

,ωxL , 
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has the complex coefficients a0, a4 and a8 depending on the track’s parameters and 
the angular frequency 
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Finally, the column vector of the frequency-domain Green’s functions 
results from Eqs. (19) and takes the form (18), where GD(x,x',ω) is the Green’s 
function of the operator D.                                                                                       □ 

To perform the integral from Eq. (18), the Green’s function of the operator 
D is required. In fact, this function verifies the equation 
                                                )'(),',( xxxxDGD −δ=ω                                       (22) 
and the boundary conditions 
                                                  0),',(lim =ω
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xxGDx
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due to the damping of the track. 
This kind of equation is usually solved by applying the Fourier transform 

from the space-domain to the wave-number domain and then, by using the inverse 
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Fourier transform via the contour integration given by the theory of the functions 
of complex variables [2]. 

In this paper, a different solution is considered and the Green’s function of 
the D operator is obtained using its outstanding features [13]. The ODE Dy=0  has 
the following solutions 

  )exp()( xAxy iii λ=  with i = 1 ÷ 8,                               (24) 
where λi = λi(ω) are eigenvalues of the operator D. It can be seen that if λi is one 
solution of the characteristic equation, then −λi and ± iλi are solutions as well. 
Practically, each quadrant contains two solutions of the D operator characteristic 
equation. 

In fact, λi describes the bending wave, which propagates through the track 
structure. The bending wave is a propagating one when λi is an imaginary 
quantity. This wave propagates from the left to the right when Im λi > 0, and vice 
versa when Im λi < 0. The bending wave attenuates when λi is a complex number. 
According to the boundary conditions, the attenuated wave decreases with 
distance (Reλi > 0 for x → – ∞ and Reλi < 0 for x → ∞). Finally, the bending 
wave is an evanescent one when λi is a real quantity. In addition, the evanescent 
wave has to propagate following the same rule as the attenuated one, according to 
the boundary conditions.  

According to previous considerations, the Green’s function of the operator 
D has the forms 
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with Reλi > 0 for i = 1 ÷ 4 and Reλi < 0 for i =5 ÷ 8.  
On the other hand, the Green function is continuous at x = x0 and its first 6 

derivates are continuous as well 
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Further on, the 7th derivative of the Green’s function has a discontinuity at 
x=x0 
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All these conditions lead to the next matrix equation 
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where Xi = Ai(x0)exp(λix0) for i = 1 ÷ 4 and Xi = -Ai(x0)exp(λix0) for i = 5 ÷ 8. 
Obviously, the matrix from Eq. (28) has the Vandermonde determinant and in 
fact, all Cramer’s determinants are Vandermonde determinants, as well.   

Eq. (28) has the following solution 
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Introducing the Green’s function of the D operator from Eq. (30) in Eq. 
(18) and performing the integral, one obtains 
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where λ1,2 are contained in the first quadrant and 
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 It is important to emphasize that the time-domain Green’s functions of the 
rail and the slab will be computed from the corresponding frequency-domain 
Green’s functions.  

Performing the inverse Fourier transform applied to the frequency-domain 
Green’s functions, it follows that the time-domain Green’s functions for the track 
are 
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The last expression resides from the causal character of the track model 
and it is used effectively for the computation. More precisely, the time-domain 
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Green’s functions are calculated by numerical integration with the help of the 
cubic spline functions invoking the following properties.  

According to the attenuation in time-domain, there is a certain T for which 
the norm of the Green’s functions is “concentrated” in the [0, T] interval. 
Therefore, the column vector of the displacements at loading section (x = Vt) 
results as   

                    ∫ τττ−τ=
t

QtVVttVt
0

d)(),,(),( gw , for 0 ≤ t < T                        (33)   

                                   ∫ −
τττ−τ≅

t

Tt
QtVVttVt d)(),,(),( gw , for t ≥ T.                  (34) 

It may be observed that for any contact section point x = Vt, there is a 
corresponding column vector of the Green’s functions g(Vt, Vτ, t-τ) which 
depends on 0 ≤ τ ≤ t and it is calculated from g(x, x', t-τ). For the particular case 
when t > T, only the history for τ∈ [t – T, t] is necessary, according to the 
attenuation in time-domain. Moreover, all contact points x = Vt with t > T have the 
same sequence of column vector of the time-domain Green’s functions because 
the track has the homogeneous structure.  

From the numerical integration point of view, there are two steps to 
follow: the first refers to 0 ≤ t < T - the ‘transitory’ period of numeric integration, 
while the second assumes T ≤ t, which means the ‘stationary’ period of numerical 
integration. As results, the numerical simulation length has to be higher than the 
transitory T period. 

When is used the small time-steps method on short Δt time intervals in 
order to integrate the equations of motion, the time-domain Green’s functions will 
be calculated in N = T/Δt + 1 and all the obtained values may be encapsulated in 
the so-called track’s Green matrix which depends on the speed value V. This 
matrix includes the required values for the transitory period of numerical 
integration.  

More specific, a time partition - t0, t1, … tn with  t0=0, tn=t and Δt=ti - ti-1 
where i = 1 ÷ n - should be considered. The track’s Green matrix has the form 
                                                   [ ]Ni

t ggggg ......21= ,                                     (36) 
where gi=g(VtN, Vti, tN-ti).  

The column vector of the displacements at the loading section may be 
defined as 
                                       ∑∫

= −

τττ−τ=
n

i

t

t nnnn
i

i

QtVVttVt
1 1

d)(),,(),( gw .                        (37)   

Assuming that in the time interval [ti-1, ti], the Green functions and the 
normal contact force Q(τ) have a linear variation, the previous integrations may be 
performed 
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where Qi = Q(ti) and gi is taken from the track’s Green matrix. For tn > T, the rail 
and slab displacements will be calculated by summing N terms only, according to 
Eq. (34). For the column vector of the displacements at a particular section of the 
track, the similar formulae have to be computed.  

3. Numerical results 

Further on, both frequency and time-domain numerical analysis of a 
particular slab track under a moving load is presented.  

Physical parameters of the track model used in these computations are as 
follows: m1 = 60 kg/m, EI1 = 6.42 MNm2, m2 = 1750 kg/m, EI2 = 274 MNm2, k1 = 
52 MN/m2, c1 = 7 kNs/m2, k2 = 60 MN/m2 and c2 = 40 kNs/m2.  

 
Fig. 2 presents the frequency-domain Green’s functions of the track, i.e. 

the rail and slab receptances, which have been computed at the point of a unitary 
harmonic impulse force. As it can be observed, the track response has two peaks 
at 29 and 150 Hz because the rail and the slab vibrate as a discrete system with 
two degrees of freedom. At the first resonance frequency, the rail and the slab are 
in phase and then, they vibrate in anti-phase. The first peak belongs to the slab 
resonance, and the second one is the effect of the rail’s resonance. The two 
frequencies of resonance may be approximately calculated using the formula from 
the single-degree-of freedom system consisting of an equivalent mass and a spring 
with equivalent stiffness 
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The rail receptance is significantly higher than the slab receptance due to 
its low inertia and the elasticity of the rail-pad. The diagram of the track’s 
receptances is similar with the results from the preceding related researches [3, 5].  

Fig. 3 shows the influence of the speed of the moving harmonic load on 
the receptance of the rail. In order to calculate the receptance of the rail due to 
moving harmonic load, the equations of motion have been solved introducing the 
moving frame and then, following the same method. It can be seen that by 
increasing the speed of moving harmonic load, the resonance frequencies of the 
track decrease. In addition, the receptance of the rail lows around resonance 
frequencies due to the speed of the harmonic excitation.   

The Green’s functions of the track for the time-domain analysis may be 
calculated by the numerical integration of Eq. (31) from 0 to 5 kHz with the step 
integration of 2 Hz.  

 
Fig. 4 presents the displacement of the loading point for the frequency of 

the unitary harmonic load of 30 Hz and for two values of the speed, 60 and 120 
m/s. To this end, Eq. (38) has been used. The results of the steady-state behaviour 
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given by the analytical solution are presented as well for comparison. It may 
observe the transitory behaviour in the case of the numerical solution. The two 
solutions are very similar. Indeed, the difference between the amplitudes obtained 
by the two methods is 0.385 % at 60 m/s and 0.102% at 120 m/s.  

Fig. 5 presents the displacement of the fixing point belonging to the 
section of the rail situated at 24 m from the frame, when a unitary harmonic load 
with the frequency of 30 Hz travels along the rail at 60 m/s. In this case, Eq. (6) is 
applied. The simulation of the steady-state behaviour is shown using an analytical 
method. Once again, the results from the numerical and analytical method are 
matched. The relative error between the results given by the two methods is 0.283 
% for the displacement obtained at t = 0,4 s, when the harmonic load passes over 
the fixing point. It has underline that the fixing point vibrates more intense in the 
trace of the moving load.  

 

Fig. 6 displays the displacement of the loading point and the displacement 
of the fixed point previously presented. The displacement of the loading point and 
the displacement of the fixed point have the same value only when the moving 
load passes over the section of the fixed point. At 30 Hz, the bending wave of the 
rail is a propagating one that propagates from the moving load to the fixing point. 
Due to this, the history of the fixed point is later than the loading point’s except in 
the joining moment. For instance, one can observe that all peaks of the fixed point 
are later than the corresponding ones of the loading point. Consequently, the fixed 
point has a frequency higher than the loading point’s one before the joining and 
then, after joining, this trend reverses. In other words, this is the Doppler effect. 
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 4. Conclusions 

The response of the slab track under a moving load has been studied, 
considering the model of an infinite homogenous structure consisting of two 
Euler-Bernoulli beams continuously supported by elastic layers. 

To this aim, the method of Green’s functions has been applied following 
the numerical approach. The high accuracy of the presented method has been 
verified. The proposed method is important because allows us to simulate the 
wheel/rail interaction under nonlinear conditions.   

The structure response due to stationary and moving harmonic loads has 
been investigated for both frequency and time domains.   
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