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APPLICATION OF GREEN’S FUNCTIONS IN ANALYSIS OF
THE RESPONSE OF AN INFINITE HOMOGENOUS
STRUCTURE TO MOVING LOAD

Traian MAZILU'

Scopul acestui articol este de a prezenta o metodd numerica bazatd pe
Sfunctiile Green pentru a calcula raspunsul unei structuri infinite omogene cauzat de
o forta in miscare. Structura are doud grinzi rezemate continuu pe straturi elastice
§i reprezinta modelul obignuit al caii ferate pe placi de beton. Este dovedita marea
precizie a metodei. Este analizat raspunsul structurii la forte armonice cu suport fix
§i cu suport mobil atat in domeniul frecventei, cdt si in domeniul timp.

The aim of this paper is to present a numerical method based on the Green’s
functions to calculate the response of an infinite homogenous structure to moving
load. The structure has two beams continuously supported by elastic layers and
represents the common model of the slab track. The high accuracy of the method is
proved. The structure response due to stationary and moving harmonic loads is
analyzed for both frequency and time domains.
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1. Introduction

The present paper deals with the response of an infinite homogeneous
structure consisting of two beams continuously supported by elastic layers to
moving load. Such a structure represents a common model for the slab track that
has been employed in the study of the interaction between a moving vehicle and
the slab track [1]. In addition, similar models were used to calculate the slab track
response to a moving load [2, 3]. The upper beam describes a rail, the lower one
models the slab, while the two elastic layers reflect the properties of the rail pad
and the track subsoil.

The railway track structure can be modeled by two kind of mechanical
models: the continuous models and the periodical models with discrete supports
[4, 5]. One of the oldest models for the railway track, known as a beam on elastic
foundation, in fact, a continuous model, was presented by Winkler in 1867 [6].
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The continuous models are used for the slab track, but under some conditions, this
type of model is proper for the ballasted track as well [7, 8].

In order to solve the equations of the motion for continuous models, many
methods have been proposed. For instance, the direct method, the Fourier
transformation method and the coupling in the wave-number frequency-domain
method are presented by Hussein and Hunt [2] for the case of the non-moving
oscillating load. In addition, they have applied the double Fourier transform from
the space-time domain to the wave number-frequency domain for the track subject
to a moving oscillating load. On the other hand, Wu and Thompson [7, 8] have
developed many equivalent multiple degree of freedom (MDOF) models for the
track dynamics having as a starting point the receptance of the rail calculated for a
unit stationary harmonic load.

In this paper, starting from previous author’s researches [9, 10], the Green’s
functions method is developed to study the response of the slab track due to the
moving load. To this end, a numerical approach to obtain the Green’s functions of
the structure is presented. In order to verify the accuracy of the method, the results
from the analytical and numerical method are compared considering the steady-
state behaviour of the structure under moving harmonic load. We should have to
underline that the Green’s functions of the structure are able to simulate the
wheel/rail interaction taking into account the nonlinearities of the contact [11].

2. Governing equations

The structure of the slab track is composed of a massive concrete slab, into
which the rails are embedded by means of Corkelast. Assuming that the two rails
are symmetrically loaded, only half-track is required for modelling (fig. 1).
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Figure 1. Mechanical model: 1. rail, 2. rail pad; 3. slab; 4. elastic foundation.

In fact, the slab track model may be reduced to a structure consisting of
two Euler-Bernoulli beams coupled by Winkler foundation as the rail and the slab
and the rail-pad, respectively. The track is supported by the ground that is taken as
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a Winkler foundation as well. One has to emphasize that the Euler-Bernoulli
beams model gives satisfactory results as long as the cross-sectional dimensions
are small compared to the bending wavelength [12] and this hypothesis is
considered in the following lines.

The parameters for the track model are: the mass per length unit m; » (the
index 1 for the upper beam and the index 2 for the under beam) and the bending
stiffness El;,. The two Winkler foundations have the elastic constants k;, per
length unit and the viscous damping factors ¢ ; per length unit.

It is assumed that the track is subjected to a moving load Q(¢) depending
on the time 7, which moves at a constant speed V.

To describe the track evolution under the moving load, the absolutely
integrable C* functions wia(x,t) termed the rail and slab displacement are
introduced so that

w,:R* >R, w,(x,<0)=0, (D)
where x is the coordinate along the track. The latest condition refers to the
character of the causality. Next, the two functions w; »(x,f) are encapsulated in the
column vector w(x,))=[wi(x,f) wa(x,)]" termed the column vector of the
displacements.

According to the Newton’s second law, the column vector w(x,f) verifies
the PDE

L, w(x,t)=q(x,1) 2)
with the boundary and initial conditions
lim w(x,0)=[0 0]", w(x,0)=[0 0]". (3)

‘x—Vt‘—)oo
where L, stands for the matrix differential operator
0 0
D,y +c,—+k, —c,——k,
_ ot ot
Lx,t - a

0
_cla_kl D532+(cl+cz)5+(k1+kz)

that includes the differential operator of the Euler-Bernoulli beams,

o* 0?
DEBI,Z :EI, A4 Py

and q(x, N=[Q()8(x-V1) 0]" is the column vector of the forces on the track with
0(.) the Dirac’s delta function.

Theoreme 1. The boundary value problem formed by the equation (2) and
the associated initial conditions (3) has the solution

w(xt) = [ gCo Vet —)Q)dr )

where the column vector g(x.x',t-t")=[g1(x,x"t-t") g2(x.x"t-t")]" verifies the equation
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L, g(x,x,t—1)=8(x—x")3( -1 0] . (5)
Proof. In order to solve the equation (2), one can apply the 2D Fourier
transform with respect to time and spatial coordinate:

Li,mW(Eﬁ(D) = Q(E.w())) P (6)

where

W(E) = [ [ wxt)expl-i(or+Ex)]dxdt,
Qo) =| [ aCxt)expl-i(or+&x)ldxdr,

(where the integrals with respect to ¢ verify J:w = Lw ) and

| ELE —0?m, +k, +iwc, —k, —ioc,

L, =
—k, —ioc, ELE* —o*m, +k, +k, +io(c, +¢,)

g,m

is the 2D Fourier transform with respect to time and spatial coordinate of the
matrix operator L,, & is the coordinate of the wave-number-domain, ® is the
coordinate of the frequency-domain and i* = —1. The components of the matrix
L¢, are in C[§,m].

From Eq. (6) one reads

W(E o)=L Q¢ ), (7)
where the components of the inverse matrix L’gw are in C(§,m).

Let the matrix I'(x,f) € M»x; so that
1 = = .
I(x,t)= e jm J._OOLEI@ expli(w? +Ex)]dwdE (8)

and

LY, = [ [ PGenexpl-ior +&v)drdx. ©)

Performing the inverse Fourier transform in Eq. (7) and according to the
convolution theorem, and the causality condition of the mechanical model, one
obtains the column vector of the displacements

Wt =—[ [ L, QEw)expli(or+En)dedo
4q? Jod—o > (10)
_ jo j “Tx—xt—1){q(x', ") dx'dr.
The matrix I'(x-x',z-¢') represents the solution of the equation
L, I(x-x.t-t)=08(x-x"0(t-1"E, (11)
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where E, stands for the 2x2 unit matrix. Indeed, performing the Fourier
transform, one obtains the necessary equality

expl-i(or+&)Ly L, =expl-i(or+&r)IE, (12)
because
[ rGe—x't =) expl-i(ot + &x)]drdx =
J.:J.:r(u,v)exp {HA[o@w+t")+EWV+x")]}dudv = eXP[—i(O)f'+E}X')]L’éw
and

[ 8x=x)5(t—')expl-i(ot + £x)Idedx = exp[-i(wr'+Ex')]

The matrix T'(x-x'",¢-¢") is termed as the Green’s matrix associated to the
operator L., through the equation (11) and will be write as I'(x,x,z-#'). Taking into
account the particular column vector q(x,?), one needs only the first column of the
matrix T(xx',t-f'), denoted as g(x,x't-t") = [gi(xx't-t") @ (xx't-¢)]", which
contains the time-domain Green’s functions of the rail and the slab. These
functions describe the responses of the rail and the slab, in the section x at the
moment #-¢', if an impulse force occurred at the moment ¢’ in the section x’ along
the rail. Therefore, g(x,x"t-¢") will be called the column vector of the time-domain
Green'’s functions of the track.

In these circumstances, the column vector of the displacements can be
calculated as follows

w(x,t)= jo j Zg(x,x’,t — O3 (x'—Vt')dx'df' = jo’g(x,Vf,t —MHO@E)dr. (13)

From Eq. (11), it follows that the column vector g(x,x’-t") satisfies the
equation (5). ]
One can observe that the column vector of the time-domain Green’s

functions of the rail and the slab are attenuated in space and time-domains:
lim g(x,x',t—r)ztlir_r)l g(x,x',t—1)=0. (14)

‘x—x"—)oo
Using the Fourier transform, the column vector G(xx',)=[Gi(xx',®)

Gz(x,x',co)]T can be associated to the column vector of the time-domain Green’s
functions

G(x,x',0) = [ {g(x,x,)}exp(-ion)dr (15)

The components of the column vector {G(x,x',»)} are the frequency-
domain Green’s functions of the rail and the slab. These functions, termed the
receptances, represent the response of the rail and the slab in the section x,
provoked by a unitary harmonic impulse by an angular frequency ®, occurring in
the section x' of the rail. Next, the column vector {G(x,x',®)} is called the column
vector of the frequency-domain Green’s functions of the track.
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Theoreme 2. The column vector of the frequency-domain Green’s
functions G(x,x',) has the following properties:
a) it verifies the equation

L., G(x,x,®)=8(x-x"[1 0], (16)
b) it verifies the equality
| llr‘n G(x,x',0)= lir£1 G(x,x',0)=0 17
c) it has the form
G(x,x',0) = [ G (x.%,,0)L", ,[8(x, - x) 0] dx, , (18)

where Ly , stands for the Fourier transform of the matrix operator Ly, Ly, is the
adjoint matrix of the matrix L, ,and the function Gp(xx',®) remains to be
specified later.

Proof. The first two conditions result by applying the Fourier transform to
the equation (5) and the limits (14). In order to arrive to the form (18), Eq. (16) is

*

modified by applying the adjoint matrix operator L

diag(D,D){G(x,x", )} =L,  [8(x—x") 0]", (19)
where the differential operator
d? d*

D=a0@+a4@+a8 (20)
has the complex coefficients ay, a4 and ag depending on the track’s parameters and
the angular frequency

a, = ELEL,,
a, = ELJk, +ky —’my +ia(c, +¢3) |+ EL (k - o’m, +ioc,),

ag =0*mm, —iw? [ml(cl +cz)-|-m2cl]—0)2[ml (ky +ky)+myk, +clcz]+

21)

Finally, the column vector of the frequency-domain Green’s functions
results from Egs. (19) and takes the form (18), where Gp(x,x',®) is the Green’s
function of the operator D. mi

To perform the integral from Eq. (18), the Green’s function of the operator
D is required. In fact, this function verifies the equation

+io(k,c, +kyc)) +kik,.

DG, (x,x',®)=5(x—x") (22)
and the boundary conditions
lirp Gy(x,x',m)=0 (23)

due to the damping of the track.
This kind of equation is usually solved by applying the Fourier transform
from the space-domain to the wave-number domain and then, by using the inverse
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Fourier transform via the contour integration given by the theory of the functions
of complex variables [2].

In this paper, a different solution is considered and the Green’s function of
the D operator is obtained using its outstanding features [13]. The ODE Dy=0 has
the following solutions

v, (x) = A4, exp(h,x) withi=1+8§, (24)
where A; = A(w) are eigenvalues of the operator D. It can be seen that if A; is one
solution of the characteristic equation, then —A; and + i\; are solutions as well.
Practically, each quadrant contains two solutions of the D operator characteristic
equation.

In fact, A; describes the bending wave, which propagates through the track
structure. The bending wave is a propagating one when A; is an imaginary
quantity. This wave propagates from the left to the right when Im A; > 0, and vice
versa when Im A; < 0. The bending wave attenuates when 2, is a complex number.
According to the boundary conditions, the attenuated wave decreases with
distance (ReA; > 0 for x — — o and ReA; < 0 for x — o0). Finally, the bending
wave is an evanescent one when 2, is a real quantity. In addition, the evanescent
wave has to propagate following the same rule as the attenuated one, according to
the boundary conditions.

According to previous considerations, the Green’s function of the operator
D has the forms

4
G, (x,x,,0) = ZAi (x,)exp(A,x) for —oo <x <Xy,

i=1

8
G (x,%0,0) = > A,(xy)exp(h,x) for xo <x < oo, (25)
i=5
with ReA; >0 fori=1+4 and ReA; <0 fori =5+ 8.
On the other hand, the Green function is continuous at x = xj and its first 6
derivates are continuous as well

n - n +

d'G
Gy (x4,%,,®) = G} (x4, %), ®) ?}f)(xo,xo,m) :?’f’(xo,xo,(o) ,n=1+6. (26)

Further on, the 7" derivative of the Green’s function has a discontinuity at
X=X0
7 5 7Gl_) 1
o (x, +0,x,,0)— o (xO—O,xo,co)za—o. 27)

All these conditions lead to the next matrix equation
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11 .. 17X 0
Mok M| Xo|_| O %)
Now, x| |-

where X; = A,(xo)exp(Aixo) for i =1 + 4 and X; = -4,(xo)exp(Lixo) for i =5 + 8.
Obviously, the matrix from Eq. (28) has the Vandermonde determinant and in
fact, all Cramer’s determinants are Vandermonde determinants, as well.

Eq. (28) has the following solution

1
X =
aOH(A‘k _}\’1)

k#i

and finally, the Green’s function of the D operator is obtained

with i, k= 1+8 (29)

] expl, (x—x,)]
Gy (x,x,,0)= for —o < x < xp,
pee OZ;IRK -1
k#i
8
G (x,%,,0) = ZGXPD‘ C=x)] g X0 <x < o0, (30)

a5 [T =2

k#i
Introducing the Green’s function of the D operator from Eq. (30) in Eq.
(18) and performing the integral, one obtains

2 . exp(—ki|x—x’|)—iexp(iki |x —x'|)
G2 n]_| K ECD PR : 31
G,(x,x\0) | exp(—2 ,|x—x'|)—iexp(i7»,. lx —x'|) > O

2
SKY (1) ’ .
i=1

where A, are contained in the first quadrant and
T =4ELEL,(\Y-M), p=EL,, r=k +k, —o’m, +io(c, +¢,), s =k, +ioc, .
It is important to emphasize that the time-domain Green’s functions of the
rail and the slab will be computed from the corresponding frequency-domain
Green’s functions.
Performing the inverse Fourier transform applied to the frequency-domain
Green’s functions, it follows that the time-domain Green’s functions for the track
are

g(x,x',t—1)= LJ.OO G(x,x',w)exp[ion(t—1)]dw
o (32)
= —JmReG(x,x',oa)cos[m(t —17)]dw
TE 0

The last expression resides from the causal character of the track model
and it is used effectively for the computation. More precisely, the time-domain
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Green’s functions are calculated by numerical integration with the help of the
cubic spline functions invoking the following properties.

According to the attenuation in time-domain, there is a certain 7 for which
the norm of the Green’s functions is “concentrated” in the [0, 7] interval.
Therefore, the column vector of the displacements at loading section (x = FV7)
results as

w0 = [ gt ri-nQ(de, for 0< < T (33)

w0 = | iTg(Vt,Vr,t —0)0(t)dt, for t>T. (34)

It may be observed that for any contact section point x = V%, there is a
corresponding column vector of the Green’s functions g(Vt, Vz, t-t) which
depends on 0 < t <t and it is calculated from g(x, x', #-1). For the particular case
when ¢ > T, only the history for te [t — T, #] is necessary, according to the
attenuation in time-domain. Moreover, all contact points x = V¢ with ¢ > T have the
same sequence of column vector of the time-domain Green’s functions because
the track has the homogeneous structure.

From the numerical integration point of view, there are two steps to
follow: the first refers to 0 < ¢ < T - the ‘transitory’ period of numeric integration,
while the second assumes 7T < ¢, which means the ‘stationary’ period of numerical
integration. As results, the numerical simulation length has to be higher than the
transitory 7 period.

When is used the small time-steps method on short Az time intervals in
order to integrate the equations of motion, the time-domain Green’s functions will
be calculated in N= T/At + 1 and all the obtained values may be encapsulated in
the so-called track’s Green matrix which depends on the speed value V. This
matrix includes the required values for the transitory period of numerical
integration.

More specific, a time partition - %y, #;, ... t, with #=0, ¢,=t and Ar=t; - 1,
where i = 1 = n - should be considered. The track’s Green matrix has the form

g =lg'g>..g ..g"] (36)
where g'=g(Vty, Vt;, t-t;).

The column vector of the displacements at the loading section may be

defined as

w(Vt,t,)= 2 J', ’ g(Vt, Vtt, —1)0(t)dr - (37)
i=1

Assuming that in the time interval [#.;, #], the Green functions and the
normal contact force Q(t) have a linear variation, the previous integrations may be
performed
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n i-1 i i -l _
Wit )= AtZ[g 0 x 0., (g'-¢ )§Q,- 0., )} RETS:
i=l1
where Q;= O(t;) and g' is taken from the track’s Green matrix. For #,> T, the rail
and slab displacements will be calculated by summing N terms only, according to
Eq. (34). For the column vector of the displacements at a particular section of the
track, the similar formulae have to be computed.

3. Numerical results

Further on, both frequency and time-domain numerical analysis of a
particular slab track under a moving load is presented.

Physical parameters of the track model used in these computations are as
follows: m; = 60 kg/m, EI, = 6.42 MNm?, m, = 1750 kg/m, EL, = 274 MNn?*, k; =
52 MN/mz, =7 st/mz, k=60 MN/m? and ¢y =40 kNs/m>.
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Figure 2. Green's functions of the slab track for the frequnecy-domain analysis: —, radl; - ---, slab.

Fig. 2 presents the frequency-domain Green’s functions of the track, i.e.
the rail and slab receptances, which have been computed at the point of a unitary
harmonic impulse force. As it can be observed, the track response has two peaks
at 29 and 150 Hz because the rail and the slab vibrate as a discrete system with
two degrees of freedom. At the first resonance frequency, the rail and the slab are
in phase and then, they vibrate in anti-phase. The first peak belongs to the slab
resonance, and the second one is the effect of the rail’s resonance. The two
frequencies of resonance may be approximately calculated using the formula from
the single-degree-of freedom system consisting of an equivalent mass and a spring

with equivalent stiffness
1 kl,2
2= 2n V m , '
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The rail receptance is significantly higher than the slab receptance due to
its low inertia and the elasticity of the rail-pad. The diagram of the track’s
receptances is similar with the results from the preceding related researches [3, 5].

Fig. 3 shows the influence of the speed of the moving harmonic load on
the receptance of the rail. In order to calculate the receptance of the rail due to
moving harmonic load, the equations of motion have been solved introducing the
moving frame and then, following the same method. It can be seen that by
increasing the speed of moving harmonic load, the resonance frequencies of the
track decrease. In addition, the receptance of the rail lows around resonance
frequencies due to the speed of the harmonic excitation.

The Green’s functions of the track for the time-domain analysis may be

calculated by the numerical integration of Eq. (31) from 0 to 5 kHz with the step
integration of 2 Hz.
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Figure 3. Receptance of the rail at different speeds:
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Figure 4. Displacement of the loading point (a) at 60 mfs and (b) at 120 mfs: —, the numerical solution; ----
the steady-state behaviour.

Fig. 4 presents the displacement of the loading point for the frequency of
the unitary harmonic load of 30 Hz and for two values of the speed, 60 and 120
m/s. To this end, Eq. (38) has been used. The results of the steady-state behaviour
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given by the analytical solution are presented as well for comparison. It may
observe the transitory behaviour in the case of the numerical solution. The two
solutions are very similar. Indeed, the difference between the amplitudes obtained
by the two methods is 0.385 % at 60 m/s and 0.102% at 120 m/s.

Fig. 5 presents the displacement of the fixing point belonging to the
section of the rail situated at 24 m from the frame, when a unitary harmonic load
with the frequency of 30 Hz travels along the rail at 60 m/s. In this case, Eq. (6) is
applied. The simulation of the steady-state behaviour is shown using an analytical
method. Once again, the results from the numerical and analytical method are
matched. The relative error between the results given by the two methods is 0.283
% for the displacement obtained at ¢ = 0,4 s, when the harmonic load passes over
the fixing point. It has underline that the fixing point vibrates more intense in the
trace of the moving load.
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Figure 5. Displacement of the fizing point: — , numerical Figure 6. Displacement of the rail: — |, fising point,
solution,  ----, steady-state behaviour. — —, loading pomt.

Fig. 6 displays the displacement of the loading point and the displacement
of the fixed point previously presented. The displacement of the loading point and
the displacement of the fixed point have the same value only when the moving
load passes over the section of the fixed point. At 30 Hz, the bending wave of the
rail is a propagating one that propagates from the moving load to the fixing point.
Due to this, the history of the fixed point is later than the loading point’s except in
the joining moment. For instance, one can observe that all peaks of the fixed point
are later than the corresponding ones of the loading point. Consequently, the fixed
point has a frequency higher than the loading point’s one before the joining and
then, after joining, this trend reverses. In other words, this is the Doppler effect.



Application of Green’s functions in analysis of the response [...] structure to moving load 151

4. Conclusions

The response of the slab track under a moving load has been studied,
considering the model of an infinite homogenous structure consisting of two
Euler-Bernoulli beams continuously supported by elastic layers.

To this aim, the method of Green’s functions has been applied following
the numerical approach. The high accuracy of the presented method has been
verified. The proposed method is important because allows us to simulate the
wheel/rail interaction under nonlinear conditions.

The structure response due to stationary and moving harmonic loads has
been investigated for both frequency and time domains.
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