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ON A PEANO - TYPE AXIOMATICATION FOR FREE
MONOIDS

Alina PETRESCU - NITA ', Ana NITA?

Sunt bine cunoscute Axiomele lui Peano pentru multimea numerelor naturale

% %
N. Daci X este o multime nevidi si X este monoidul cuvintelor peste X; X
poate fi caracterizat pand la un izomorfism de o prioritate de universalitate si de

%
asemenea de proprietafi interne. Daca X = {1} are un singur element, atunci X
este practic N . In aceastd lucrare se dd o exnsie a axiomelor lui Peano (de la N

*
in X ) side asemenea o generalizare la categorii mici libere.

It is well-known the Peano axiomatization for the set N of natural numbers.

£ *
If X is a nonempty set and X is the monoid of the words over X, X can be
characterized up to an isomorphism by an universality property and also by some

%
internal properties. If X = {1} hence a singleton, then X is practically N . In this

*
paper, we give an extension of the Peano axioms (from N toX ) and also a
generalization to free small categories.
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1. Introduction

A free monoid is a monoid together with a specified subset such that any
function from this subset to another monoid extends uniquely to a morphism of

monoids. The monoid X~ on an alphabet X is called the free monoid over X; this
is indeed a free monoid (called an word monoid). Any two monoids which are
free over the same set are isomorphic.

We propose to obtain an internal characterization of the free monoids.
Such characterizations already exist, e.g. [2]. The idea is to show that the word
monoid does satisfy the characterization and then one carries this, by
isomorphism, to any other free monoid. Our approach is stronger, since we will
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not assume the existence of a special free monoid. Such an approach was applied
in [3] to natural number objects in toposes, where the universality property is
shown to be equivalent to the Peano's axioms. We intend to do the same for free
monoids (in a set-theoretic framework) and this can be carried over to a topos.

2. The Axiomatic Characterization Theorem

Let W be a monoid X — W a subset. By definition, W is free on X if any
map f:X —>M (M being any monoid) extends uniquely to a morphism

f:W —>M. In a categorical setting, we should have started with a map
j: X =W instead of the inclusion but j is immediately proven injective. Our

goal is to prove, in a set-theoretical frame which excludes consequences of the
existence of a natural numbers sets, the following.

Theorem 1 of characterisation:

Fix a nonempty set X. A monoid W is free on X if and only if the following
conditions hold:

(m;) e¢ X (e being the unit element in W);

(mp)if u-veX,then u=e or v=e;

(m3)if u-v=e,then u=e or v=e;

(my) if u-v=u'v'; then there is w such that either u=u'w, v'=wv or
u'=uw, v=wv';

(ms) any submonoid of W which contains X is equal to .

Note. The condition (my) is called "the subdivision property" and this has
some significance in Automate theory (by [2]).

The condition (ms) is equivalent to the following "principle of monoidal

induction": Suppose that p(w) is a predicate depending on we W such that
p(x) holds for any xe X (induction basis) and moreover, p(e) holds and

whenever p(u) and p(v) hold, then p(uv) holds. Then p(w) holds for any

weW.

The conditions (m;) and (my) are concerned with the limited way in which
the elements of can be computed, that conditions (mj3) and (ms) describe the
relation between the different ways of computing an element and that (ms) is the
induction characteristic to the monoid structure. Recall the Peano's axioms:

(p1) 0 cannot be obtained by succession;

(p2) if m is obtained by succession from z and p, then n=p .

(p3) induction on natural numbers. It is exactly this correspondence in
nature between (m;) + (ms) and (p;) + (p3) that made us to call (m;) + (ms) a
Peano type axiomatization. As we shall see, it is strongly related to a direct
generalization of Peano's axioms that characterizes free X-dynamics.
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In order to prove the above theorem, we need some lemmas.
Lemma 1. Let W (respectively V) be free monoids on X (resp. Y) and
h:W — ¥V be a morphism of monoids. The following assertions are equivalent:

a) h(X) cY;

b) if #(w)=e, then w=e and moreover, whenever /(w)=st, there are
u,v such that w=u-v, h(u)=s and h(v)=t¢.

Proof. a)=b) Apply the monoidal induction by w. If h(x):st, then
steY ,so s=e or t=e. In the first case, we can take u =e,v=x and in the
second, u=x,v=e. If h(e)zst, then st=e, so s=e, ft=e¢ and take
u=e,v=e. Suppose now that the assertion holds for w; and w,. If
h(wl,wz) =st, then h(wl)h(wz): st , so there is 7 such that either h(wl) =sr,
t=rh(w) or s=h(w)-r,h(wy)=rt. In the first case, w =u,
h(uy)=s,h(v;)=r, so we can take u =u;,v=vw, and the assention holds also

for wyw, . The second case is similar.
b) = a) First we prove by monoid induction that for any
veV,vze,v=ty,yeY. If xeX, then h(x);te. So h(x)zty,er. But

x=u-v,h(u)=t,h(v)=y. From u-ve X, one deduces u=¢ or v=e. But
v=e implies y=e,so u=e and h(x)=h(v)=yeY.

Recall that a X-dynamics ([2], [4]) means a pair (A,5 ), where 4 is a set
and 0:4xX > A a map. If (A',5 ') is another X-dynamic, a dynamorphism
between these X-dynamics is a map h: A4 — A" such that hoo = 5'o(h><1X). A
subdynamics of (A,é‘) is a subset S © A4 such that é‘(SxX) < §; in this case,

there is a structure of X-dynamics on S such that the inclusion map i:S — 4
becomes a dynamorfism. A X-dynamics (A,5) is free on ape A if for any
X-dynamics (A',é' ') and any a'e A, there is and is unique a dynamorphism
h:A— A" suchthat h(ag)=a'.

Lemma 2. The monoid W is free on X if and only if the X-dynamics
(W,o) is free on e (where o (w,x)=wx and e is the unit element in ).

Proof. Suppose that W is free on X; then any submonoid S such that
XcScW equals W (indeed, the inclusion map j:X — S extends to a

morphism j :W — S ; the inclusion map i:S — W is also a morphism. Since
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ioj and ly coincide on X, then they are equal. Particularly, i is surjective, hence
S =W). Similarly, one can prove that whenever a X-dynamics (A,é' ) is free on
ap, then any subdynamics containing a; is equal to 4. We thus retain the
following induction principle, that we call the successor induction: if p is a
predicate, p(ay) and {(‘v’)a ed,p(la)= (V)xeX, p(é'(a,x))} , then

(V)aeA,p(a).
If W is free on X, (A,é‘) is a X-dynamic and a e A, then the map

X-dynamics 6:AxX — A defines : X —> 4% But 4 is a monoid, so 0
extends to a morphism & :W — 4 and define h:W — 4 h(w)=61(w)(a).
Obviously, % is a dynamorphism and h(e)=a. (The uniqueness follows by

making use of the successon induction).
Conversely, suppose that (W,G) is foll on e and M be another with unit

e and f:X—>M. Then M is a X-dynamics by 6" :MxX->M,
o '(m,x)zm f (x) Then one can prove by monoidal induction after v then
(V)veW, f(ur)=f(u)f(r) for all ueW . The uniqueness follow, from the

fact that any morphism that extends f'is a dynamorphism.
Note. The concept of X-dynamics generalizes the basic structure existing

on N, namely the successor structure. When X = {1} is a singleton, then N is a

X-dynamics which is free on a specified element, namely O.
Lemma 3. A X-dynamics (A4,8) is free on g if and only if and only if

the following conditions (generalized Peano axioms) hold
(di) ag g 5(AxX)
(dp) o 1is injective
(d3) any subdynamics containing a is equal to 4.

Proof. Suppose that (4,5) is free on ag. The condition (ds) follows from
the proof of Lemma 2. For (d,), consider the X-dynamics B, with 6":Bx X —> B,
8'(b,x)=1. Then there is a dynomorphism h:A4 — B such that (ap)=0. If
ag =6(a,x), then h(ag)= 5'(h(a),x) =1; contradiction. Prove now that & is

injective. For this, we not that AxX becomes a X-dynamics, with
oxly :(AxX )><X — Ax X, such that 6 becomes a dynamorphism. Consider

two dynamorphism /4, #' defined on 4Ax X, coinciding on {ao}xX . One can
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prove by successor induction by a, that for all ae 4, h(a,x)=h(a',x), for any
xeX. Hence h=h'. Now, let us add an extraclement ab ¢z Ax X ; take
A'=A><Xu{ab} and define J6':A'x X — A', putting 5'(t,x)=(5(l),x) if

teAxX and §'(t,x)=ay,x if t:ab. Then the inclusion e: AxX — A4' is a

dynamorphism and since (A,5) is free on ap, we will get a dynamorphisn

h:A— A" such that h(ao)zab. Since hod and i coincide on {ag}x X, they
will be equal. Thus, J is injective.

Conversely, assume that (d;) + (d3) bold and consider another X-dynamics
(4',6') and a'e 4. Denote by R the set of all binary relations p < Ax 4" such

that (ao,a') € p and whenever (a,a")ep, then (§(a,x),§'(a",x))ep for all
xe X . Obviously, AxA'e R. Denote by & the intersection of all relations
from R. By successor induction, one can prove that for any a4 the set
{a" € A'|(a,a") € h} has exactly one element only. Hence % is in fact a function

and this is the checked dynamorphism. The uniqueness is immediate by successor
induction.

Proof of the Theorem of Characterisation

Apply the lemmas 2 and 3 for the X-dynamics (W, 0') and eclV.

We first note that the assertions (d;) and (ms) are equivalent. Indeed,
suppose (ms) and let S be a subdynamics of (W, 0') . By monoid induction after w,
one proves that for all welWW and seS§,sweS. If S contains e, the S=W .

Conversely, any submonoid which contains X is a subdynamics.
(d) = (m) One first shows, by successor induction, that for all we W, if
w# e, then there are u € W, x € X such that w=ux; then (m;), (my), (m3) easily

follow. To prove (my), fix u,u" and use the successor induction by v to check that
for all ve W, we have the subdivision property for all v'e W .

(m) = (d) (d)) is direct; for (dy), if ux =vy, then by (m4), there is w such
that u=vw, y=wx or v=uw,x=wy. By (m), if y=wx, then w=e (since
x #e by (m;)) and if x =wy, then also w=e. Thus, u =v, x =y . What concerns
(d3), this is equivalent to (ms), as we have seen. This completes the proof.
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3. A Generalization to Free Categories

Let Z be a fixed set of vertices. A Z-graph means a set A of arcs, an initial
vertex map iy:A—> Z and a terminal vertex map t4:4— Z. A morphism of

graphsisamap f:4— B suchthat igo f =iy, tpof=t,. A subgraph of 4is a
subset of 4 (which is naturally a Z-graph). Define also the concatenation between
acAd and be B by a*b if t,(a)=ig(b).

A Z-category [5] conmsists of a Z-graph C, an associative partial
composition defined only for concatenable arcs a and b such that a*b; denote

this by (a,b)— ab; moreover, for any zeZ, there is an identity u,, with
i(uy)=t(u,)=z and Clly(c) = Ui(c)C =C s for any ceC. A Z-function between

two Z-categories is a morphism of graphs which commutes with composition and
preserves the identities. A subcategory of C is a subgraph, which is closed under
composition and contains all identities.

We introduce the following concepts. A Z-category C is free on a
subgraph X c C if for other Z-category C', any morphism of graphs f: X — C'

extends uniquely to a Z-function f:C — C'. If X is a Z-graph, a X-dynamics is a
Z-graph A, together a morphism of graphs O0:4A®X —> A4; here
AR X = {(a,x) |a *x} , l'(a,x) =iy (a) and t(a,x) =ty (x) . A dynomorphism
h:(A,&) - (A',5') is a morphism of graphs h:A4—> A" such that
h(§(a,x)):é"(h(a),x), forany a € 4, x € X such that a*x.

A subdynamics of (A,5) is a subgraph S < 4 such that wherever s S, then
5(s,x)e S forany x € X such that s*x:

A Z-family of elements of a Z-graph A consists, for any ze X, of an element
e, € A, such that i(ez) = t(ez) =z . Finally, a X-dynamics (A,&) 1S free on a Z-
family of elements {e,} of 4 if for any other X-dynamics (4',6') and any Z-

family of elements {e'z} of A', there is a unique dynamorphism %4: 4 — A' such

that h(ez)zelz, forany ze Z.

Note. If Z is a singleton, then one obtains the corresponding notions used
in §2.
In order to generalize the proof of the Lemma 3, one should take the

disjoint union Z U Z xZ instead of B. In generalizing for proof of Lemma 2, we
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need a construction of type A4 such that 5: A® X — A defines o X—> 44
and 44 is a Z-category. Indeed, the arcs A4 will be triples (z,z.9);z€Z,
z'e Z, where qo:tjl (z) —>t21 (z') with initial vertex z and terminal vertex z'.
The map & is given by & (x)=(z,z.¢), where z=iy(x),z'=t4(x) and
¢(a)=05(a,x) (since a ery! (z),a*x) A1 becomes a Z-category with
(z,z',gp)(z',z",(p')=(z,z",(p’o¢)) and u, =(z,z,1).

The Z-graphs and the morphism of graphs form a new category, that we
denote by Z-Graph. The product ® and the unity Z-graph (Z,I:Z —>Z,

1:Z>7 ) define an Z-Graph a structure of monoidal category. The construction

A% can be generalized such that for any Z-graph O, there exists a function
A— 49; (f:A—)B)—)(fQ : 49 —>BQ), which is a right adjoint to the

function A—Q®4; (,f:A—)B)—>(1Q®f:Q®A—>Q®B). Therefore,

Z-Graph is an "almost closed" category (it lacks only symmetry, because
generally 4® B is not isomorphic to B® A4 ).

4. Conclusions

A monoid is free on a subset if it satisfies the well-known universality
property. This papers refers to an internal characterization for the free monoids
(theorem 1), which is similar in nature with the Peano's axiomatization of the
natural numbers. This characterization is stated and proved independently on the
existence of free monoids (that implying the independence of the existence of
natural numbers). The proof requires the concept of dynamics, inspired from that
of "transition of states" from Automata Theory and that of free dynamics. Lemma
2 describes the free monoids in terms of dynamics and lemma 3 explicits the
generalized Peano axioms for free dynamics. In §3 we propose a generalization of
the above results to free small categories.
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