
U.P.B. Sci. Bull., Series A, Vol. 72, Iss. 1, 2010                                                   ISSN 1223-7027 

ON A PEANO - TYPE AXIOMATICATION FOR FREE 
MONOIDS 

Alina PETRESCU - NIŢĂ 1, Ana NIŢĂ2 

Sunt bine cunoscute Axiomele lui Peano pentru mulţimea numerelor naturale 

. Dacă X este o mulţime nevidă şi *X  este monoidul cuvintelor peste X; *X  
poate fi caracterizat până la un izomorfism de o prioritate de universalitate şi de 

asemenea de proprietăţi interne. Dacă { }1X =  are un singur element, atunci *X  

este practic . In această lucrare se dă o exnsie a axiomelor lui Peano ( de la  

în *X ) şi de asemenea o generalizare la categorii mici libere. 
 
It is well-known the Peano axiomatization for the set  of natural numbers. 

If X is a nonempty set and *X  is the monoid of the words over X, *X  can be 
characterized up to an isomorphism by an universality property and also by some 

internal properties. If { }1X =  hence a singleton, then *X  is practically . In this 

paper, we give an extension of the Peano axioms (from  to *X ) and also a 
generalization to free small categories. 
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1. Introduction 

A free monoid is a monoid together with a specified subset such that any 
function from this subset to another monoid extends uniquely to a morphism of 
monoids. The monoid *X  on an alphabet X is called the free monoid over X; this 
is indeed a free monoid (called an word monoid). Any two monoids which are 
free over the same set are isomorphic. 

We propose to obtain an internal characterization of the free monoids. 
Such characterizations already exist, e.g. [2]. The idea is to show that the word 
monoid does satisfy the characterization and then one carries this, by 
isomorphism, to any other free monoid. Our approach is stronger, since we will 
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not assume the existence of a special free monoid. Such an approach was applied 
in [3] to natural number objects in toposes, where the universality property is 
shown to be equivalent to the Peano's axioms. We intend to do the same for free 
monoids (in a set-theoretic framework) and this can be carried over to a topos. 

2. The Axiomatic Characterization Theorem 

Let W be a monoid X W⊂  a subset. By definition, W is free on X if any 
map :f X M→  (M being any monoid) extends uniquely to a morphism 

:f W M→ . In a categorical setting, we should have started with a map 
:j X W→  instead of the inclusion but j is immediately proven injective. Our 

goal is to prove, in a set-theoretical frame which excludes consequences of the 
existence of a natural numbers sets, the following. 

Theorem 1 of characterisation: 
Fix a nonempty set X. A monoid W is free on X if and only if the following 

conditions hold: 
(m1) e X∉  (e being the unit element in W); 
(m2) if u v X⋅ ∈ , then u e=  or v e= ; 
(m3) if u v e⋅ = , then u e=  or v e= ; 
(m4) if ' 'u v u v⋅ = ; then there is w such that either 'u u w= , 'v wv=  or 

'u uw= , 'v wv= ; 
(m5) any submonoid of W which contains X is equal to W. 
Note. The condition (m4) is called "the subdivision property" and this has 

some significance in Automate theory (by [2]).  
The condition (m5) is equivalent to the following "principle of monoidal 

induction": Suppose that ( )p w  is a predicate depending on w W∈  such that 

( )p x  holds for any x X∈  (induction basis) and moreover, ( )p e  holds and 

whenever ( )p u  and ( )p v  hold, then ( )p uv  holds. Then ( )p w  holds for any 
w W∈ . 

The conditions (m1) and (m2) are concerned with the limited way in which 
the elements of can be computed, that conditions (m3) and (m4) describe the 
relation between the different ways of computing an element and that (m5) is the 
induction characteristic to the monoid structure. Recall the Peano's axioms: 

(p1) 0 cannot be obtained by succession; 
(p2) if m is obtained by succession from n and p, then n p= . 
(p3) induction on natural numbers. It is exactly this correspondence in 

nature between (m1) ÷ (m5) and (p1) ÷ (p3) that made us to call (m1) ÷ (m5) a 
Peano type axiomatization. As we shall see, it is strongly related to a direct 
generalization of Peano's axioms that characterizes free X-dynamics. 
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In order to prove the above theorem, we need some lemmas. 
Lemma 1. Let W (respectively V) be free monoids on X (resp. Y) and 

:h W V→  be a morphism of monoids. The following assertions are equivalent: 
a) ( )h X Y⊂ ; 

b) if ( )h w e= , then w e=  and moreover, whenever ( )h w st= , there are 

,u v  such that ( ),w u v h u s= ⋅ =  and ( )h v t= . 

Proof. a)⇒b) Apply the monoidal induction by w. If ( )h x st= , then 
st Y∈ , so s e=  or t e= . In the first case, we can take ,u e v x= =  and in the 
second, ,u x v e= = . If ( )h e st= , then st e= , so s e= , t e=  and take 

,u e v e= = . Suppose now that the assertion holds for 1w  and 2w . If 
( )1 2,h w w st= , then ( ) ( )1 2h w h w st= , so there is r such that either ( )1h w sr= , 

( )1t rh w=  or ( ) ( )1 2,s h w r h w rt= ⋅ = . In the first case, 1 1 1,w u v=  

( ) ( )1 1,h u s h v r= = , so we can take 1 1 2,u u v v w= =  and the assention holds also 
for 1 2w w . The second case is similar. 

b) ⇒  a) First we prove by monoid induction that for any 
, , ,v V v e v ty y Y∈ ≠ = ∈ . If x X∈ , then ( )h x e≠ . So ( ) ,h x ty y Y= ∈ . But 

( ) ( ), ,x u v h u t h v y= ⋅ = = . From u v X⋅ ∈ , one deduces u e=  or v e= . But 

v e=  implies y e= , so u e=  and ( ) ( )h x h v y Y= = ∈ . 

Recall that a X-dynamics ([2], [4]) means a pair ( ),A δ , where A is a set 

and : A X A× →δ  a map. If ( )', 'A δ  is another X-dynamic, a dynamorphism 

between these X-dynamics is a map : 'h A A→  such that ( )' 1Xh h= ×δ δ . A 

subdynamics of ( ),A δ  is a subset S A⊂  such that ( )S X S× ⊂δ ; in this case, 
there is a structure of X-dynamics on S such that the inclusion map :i S A→  
becomes a dynamorfism. A X-dynamics ( ),A δ  is free on 0a A∈  if for any         

X-dynamics ( )', 'A δ  and any 'a A∈ , there is and is unique a dynamorphism 

: 'h A A→  such that ( )0 'h a a= . 
Lemma 2. The monoid W is free on X if and only if the X-dynamics 

( ),W σ  is free on e (where ( ),w x wx=σ  and e is the unit element in W). 
Proof. Suppose that W is free on X; then any submonoid S such that 

X S W⊂ ⊂  equals W (indeed, the inclusion map :j X S→  extends to a 
morphism :j W S→ ; the inclusion map :i S W→  is also a morphism. Since 
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i j  and 1W  coincide on X, then they are equal. Particularly, i is surjective, hence 
S W= ). Similarly, one can prove that whenever a X-dynamics ( ),A δ  is free on 

0a , then any subdynamics containing 0a  is equal to A. We thus retain the 
following induction principle, that we call the successor induction: if p is a 
predicate, ( )0p a  and ( ) ( ){ ,a A p a∀ ∈ ⇒  ( ) ( )( )}, ,x X p a x∀ ∈ δ , then 

( ) ( ),a A p a∀ ∈ . 

If W is free on X, ( ),A δ  is a X-dynamic and a A∈ , then the map             

X-dynamics : A X A× →δ  defines 1 : AX A→δ . But AA  is a monoid, so 1δ  

extends to a morphism 1 : AW A→δ  and define :h W A→  ( ) ( )( )1h w w a= δ . 

Obviously, h is a dynamorphism and ( )h e a= . (The uniqueness follows by 
making use of the successon induction). 

Conversely, suppose that ( ),W σ  is foll on e and M be another with unit 
'e  and :f X M→ . Then M is a X-dynamics by ' : M X M× →δ , 
( ) ( )' ,m x m f x=δ . Then one can prove by monoidal induction after v then 

( ) ( ) ( ) ( ),v W f ur f u f r∀ ∈ =  for all u W∈ . The uniqueness follow, from the 
fact that any morphism that extends f is a dynamorphism. 

Note. The concept of X-dynamics generalizes the basic structure existing 
on , namely the successor structure. When { }1X =  is a singleton, then  is a 
X-dynamics which is free on a specified element, namely O. 

Lemma 3. A X-dynamics ( ),A δ  is free on 0a  if and only if and only if 
the following conditions (generalized Peano axioms) hold  

(d1) ( )0a A X∉ ×δ  
(d2) δ  is injective 
(d3) any subdynamics containing 0a  is equal to A. 
Proof. Suppose that ( ),A δ  is free on 0a . The condition (d3) follows from 

the proof of Lemma 2. For (d1), consider the X-dynamics B, with ' : X× →B Bδ , 

( )' , 1b x =δ . Then there is a dynomorphism :h A→ B  such that ( )0 0h a = . If 

( )0 ,a a x= δ , then ( ) ( )( )0 ' , 1h a h a x= =δ ; contradiction. Prove now that δ  is 
injective. For this, we not that A X×  becomes a X-dynamics, with 

( )1 :X A X X A X× × × → ×δ , such that δ  becomes a dynamorphism. Consider 

two dynamorphism , 'h h  defined on A X× , coinciding on { }0a X× . One can 
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prove by successor induction by a, that for all ( ) ( ), , ',a A h a x h a x∈ = , for any 

x X∈ . Hence 'h h= . Now, let us add an extraelement '
0a A X∉ × ; take 

{ }'
0'A A X a= × ∪  and define ' : ' 'A X A× →δ , putting ( ) ( )( )' , ,t x t x=δ δ  if 

t A X∈ ×  and ( ) 0' , ,t x a x=δ  if '
0t a= . Then the inclusion : 'e A X A× →  is a 

dynamorphism and since ( ),A δ  is free on 0a , we will get a dynamorphisn 

: 'h A A→  such that ( ) '
0 0h a a= . Since h δ  and i coincide on { }0a X× , they 

will be equal. Thus, δ  is injective. 
Conversely, assume that (d1) ÷ (d3) bold and consider another X-dynamics 

( )', 'A δ  and 'a A∈ . Denote by R the set of all binary relations 'A A⊂ ×ρ  such 

that ( )0, 'a a ∈ρ  and whenever ( ), "a a ∈ρ , then ( ) ( )( ), , ' ",a x a x ∈δ δ ρ  for all 
x X∈ . Obviously, 'A A R× ∈ . Denote by h the intersection of all relations      
from R. By successor induction, one can prove that for any a A∈  the set 

( ){ }" ' | , "a A a a h∈ ∈  has exactly one element only. Hence h is in fact a function 
and this is the checked dynamorphism. The uniqueness is immediate by successor 
induction. 

Proof of the Theorem of Characterisation 

Apply the lemmas 2 and 3 for the X-dynamics ( ),W σ  and e W∈ . 
We first note that the assertions (d3) and (m5) are equivalent. Indeed, 

suppose (m5) and let S be a subdynamics of ( ),W σ . By monoid induction after w, 
one proves that for all w W∈  and ,s S sw S∈ ∈ . If S contains e, the S W= . 
Conversely, any submonoid which contains X is a subdynamics. 

(d) ⇒  (m) One first shows, by successor induction, that for all w W∈ , if 
w e≠ , then there are ,u W x X∈ ∈  such that w ux= ; then (m1), (m2), (m3) easily 
follow. To prove (m4), fix , 'u u  and use the successor induction by v to check that 
for all v W∈ , we have the subdivision property for all 'v W∈ . 

(m) ⇒  (d) (d1) is direct; for (d2), if ux vy= , then by (m4), there is w such 
that u v w= , y wx=  or ,v uw x wy= = . By (m2), if y wx= , then w e=  (since 
x e≠  by (m1)) and if x wy= , then also w e= . Thus, ,u v x y= = . What concerns 
(d3), this is equivalent to (m5), as we have seen. This completes the proof. 
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3. A Generalization to Free Categories 

Let Z  be a fixed set of vertices. A Z-graph means a set A of arcs, an initial 
vertex map :Ai A Z→  and a terminal vertex map :At A Z→ . A morphism of 
graphs is a map :f A B→  such that ,B A B Ai f i t f t= = . A subgraph of A is a 
subset of A (which is naturally a Z-graph). Define also the concatenation between 
a A∈  and b B∈  by a b∗  if ( ) ( )A Bt a i b= . 

A Z-category [5] consists of a Z-graph C, an associative partial 
composition defined only for concatenable arcs a and b such that a b∗ ; denote 
this by ( ),a b ab→ ; moreover, for any z Z∈ , there is an identity zu , with 

( ) ( )z zi u t u z= =  and ( ) ( )i ct ccu u c c= = , for any c C∈ . A Z-function between 

two Z-categories is a morphism of graphs which commutes with composition and 
preserves the identities. A subcategory of C is a subgraph, which is closed under 
composition and contains all identities. 

We introduce the following concepts. A Z-category C is free on a 
subgraph X C⊂  if for other Z-category 'C , any morphism of graphs : 'f X C→  
extends uniquely to a Z-function : 'f C C→ . If X is a Z-graph, a X-dynamics is a 
Z-graph A, together a morphism of graphs : A X A⊗ →δ ; here 

( ){ }, |A X a x a x⊗ = ∗ , ( ) ( ), Ai a x i a=  and ( ) ( ), Xt a x t x= . A dynomorphism 

( ) ( ): , ', 'h A A→δ δ  is a morphism of graphs : 'h A A→  such that 

( )( ) ( )( ), ' ,h a x h a x=δ δ , for any ,a A x X∈ ∈  such that a x∗ . 

A subdynamics of ( ),A δ  is a subgraph S A⊂  such that wherever s S∈ , then 

( ),s x S∈δ  for any x X∈  such that s x∗ : 
A Z-family of elements of a Z-graph A consists, for any z X∈ , of an element 

ze A∈ , such that ( ) ( )z zi e t e z= = . Finally, a X-dynamics ( ),A δ  is free on a Z-

family of elements { }ze  of A if for any other X-dynamics ( )', 'A δ  and any Z-

family of elements { }'
ze  of A', there is a unique dynamorphism : 'h A A→  such 

that ( ) '
z zh e e= , for any z Z∈ . 

Note. If Z is a singleton, then one obtains the corresponding notions used  
in §2. 

In order to generalize the proof of the Lemma 3, one should take the 
disjoint union Z Z Z∪ ×  instead of B. In generalizing for proof of Lemma 2, we 
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need a construction of type AA  such that : A X A⊗ →δ  defines 1 : AX A→δ  

and AA  is a Z-category. Indeed, the arcs AA  will be triples ( ), ', ; ,z z z Z∈ϕ  

'z Z∈ , where ( ) ( )1 1: 'A At z t z− −→ϕ  with initial vertex z and terminal vertex z'. 

The map 1δ  is given by ( ) ( )1 , ',x z z=δ ϕ , where ( ) ( ), 'A Az i x z t x= =  and 

( ) ( ),a a x=ϕ δ  (since ( )1 ,Aa t z a x−∈ ∗ ) AA  becomes a Z-category with 

( )( ) ( ), ', ', ", ' , ", 'z z z z z z=ϕ ϕ ϕ ϕ  and ( ), ,1zu z z= . 
The Z-graphs and the morphism of graphs form a new category, that we 

denote by Z-Graph. The product ⊗  and the unity Z-graph ( ,1: ,Z Z Z→  

)1: Z Z→  define an Z-Graph a structure of monoidal category. The construction 
AA  can be generalized such that for any Z-graph Q, there exists a function 

QA A→ ; ( ) ( ): :Q Q Qf A B f A B→ → → , which is a right adjoint to the 

function ;A Q A→ ⊗  ( ) ( ): 1 :Qf A B f Q A Q B→ → ⊗ ⊗ → ⊗ . Therefore,       

Z-Graph is an "almost closed" category (it lacks only symmetry, because 
generally A B⊗  is not isomorphic to B A⊗ ). 

4. Conclusions 

A monoid is free on a subset if it satisfies the well-known universality 
property. This papers refers to an internal characterization for the free monoids 
(theorem 1), which is similar in nature with the Peano's axiomatization of the 
natural numbers. This characterization is stated and proved independently on the 
existence of free monoids (that implying the independence of the existence of 
natural numbers). The proof requires the concept of dynamics, inspired from that 
of "transition of states" from Automata Theory and that of free dynamics. Lemma 
2 describes the free monoids in terms of dynamics and lemma 3 explicits the 
generalized Peano axioms for free dynamics. In §3 we propose a generalization of 
the above results to free small categories. 
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