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DESIGN OF PID CONTROLLER FOR NONLINEAR 

MAGNETIC LEVITATION SYSTEM USING FUZZY-TUNING 

APPROACH 

Laith S. ISMAIL1 2, Ciprian LUPU1, Hamid ALSHAREEFI1, Duc Lich LUU1 3 

This paper presents a dynamic model of a magnetic levitation system (Maglev) 

and suggests a Fuzzy Tuning of a proportional—integral--derivative controller (PID) 

that uses a fuzzy approach system to determine the PID controller's settings. The 

controller allows a steel ball to be suspended in free fall in the chosen position in 

reference to the electromagnet bottom end. The electromagnet levitation system can 

be controlled with a traditional PID controller, however because of the highly 

nonlinear of this system, it is unpredictable in the case of load and air gap changes. 

The fuzzy rules are developed to fuzzy tune PID while considering the control 

response and behavior of the system to find a solution to this problem. This paper 

shows excellent stability, rising time, settling time overshoot, and robust response 

results. The results reveal that this fuzzy PID controller solution can stabilize the 

ball's location and has strong disturbance rejection. The real time platform is 

designed for educational laboratory and test all the proposed control systems 

Keywords: Magnetic Levitation System, Fuzzy PID tuning, Matlab 

implementation, Maglev System Dynamics and Modeling, Real time 

implementation 

1. Introduction 

Magnetic levitation technologies have been used in a wide range of 

applications in recent years, its major performance has led to its deployment in a 

wide variety of uses, including wind turbines, high-speed rails, building 

management systems, personal rapid transit, nuclear reactors, food inspection 

systems, military weapons, household appliances, and biomedical devices [1]. 

The magnetic levitation technology with no physical friction with the railway has 

advantages such as low noise, frictionless motion, and high speed in the process. 

The system's stability, on the other hand, is a difficult problem to solve [2]. 

There are a variety of controllers that may be used to design feedback systems in 

linear systems, but the PID controller is one of the most common. This controller is 
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designed to strike a balance between the amount of control effort required and the 

system's reaction. 

In an ideal world, the magnetic force produced by an electromagnet powered by 

electricity would be greater than the weight of the steel ball. However, because the 

fixed electromagnetic force is particularly sensitive to noise, the noise creates 

acceleration pressures on the steel ball, causing the Maglev system model to 

become unstable due to unstable (positive) poles, causing the ball to move into the 

unstable (unbalanced) zone. 

In this research, the fuzzy logic (FL) approach is utilized to optimize the parameters 

of a (PID) controller for controlling the position of a suspended steel ball utilizing 

a magnetic levitation system to the required level. As a result, the results reveal that 

this optimal control strategy can stabilize the ball's location and has a strong 

stability even in the presence of disturbance using multi steps such as modeling, 

linearization and optimal strategy control (Fuzzy- PID controller). 

2. MAGNETIC LEVITATION SYSTEM (MAGLEV) 

This section is devoted to a thorough examination of the magnetic levitation 

system (Maglev) and nonlinear modeling. Analyzing the mechanical and 

electromagnetic subsystems yields the nonlinear model. The model's linearization 

is accomplished using the Jacobian formula [3]. 

 

a) Magnetic Levitation System overview 

     A ferromagnetic steel ball is suspended in a magnetic field (voltage-

controlled) in the MAGLEV system considered. The schematic diagram of 

MAGLEV is shown in Fig. (1).  

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Magnetic Levitation System Schematic Diagram. 
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Ferromagnetic (steel) ball is moved by electromagnetism, while an 

optoelectronic sensor measures its position. Steel ball floats in mid-air due to a 

controller's ability to manage the flow of electricity in a circuit so that the 

electromagnetic force is equal to the weight of the steel ball. For an open-loop 

system, a nonlinear controller is required to keep it stable. [4]. 

b)  The (Maglev) System Dynamics and Modeling  

The magnetic levitation system's mathematical model can be found by 

constructing appropriate differential equations based on common electrical and 

mechanical principles. In the impending mode, the components' paths might be 

anticipated to be easier or more complex. Within the system, the energetic balance 

formula is [5][12]: 

𝚫𝐖𝒆𝒍𝒆𝒄 = 𝚫𝐖𝒎𝒆𝒄 + 𝚫𝐖𝒕𝒉𝒆𝒓 + 𝚫𝐖𝒎𝒂𝒈                            (1) 

𝚫𝐖𝒆𝒍𝒆𝒄: is the variance of the electrical energy, 

𝚫𝐖𝒕𝒉𝒆𝒓: is the variance of the thermal energy, 

𝚫𝐖𝒎𝒆𝒄: is the variance of the mechanical energy, 

𝚫𝐖𝒎𝒂𝒈: is the variance of the magnetic energy. 

c) The Mechanical Subsystem Modeling 

The variation of magnetic energy when levitated bodies move within a magnetic 

field and the magnetic fluxes vary is [6]: 

∆𝑾𝒎𝒂𝒈 = 𝒊. 𝚫∅ − 𝑭𝒆𝒎(𝒙, 𝒊, 𝒕). ∆𝒙                                (2) 

Where; 

𝒊: is the coil winding DC current, 

𝚫∅: represented the variation of magnetic flux through the magnetic field,  

∆𝒙: is the variance of levitated body (steal ball) position with respect to 

electromagnet coil. 

𝑭𝒆𝒎(𝒙, 𝒊, 𝒕): represents the electromagnetic sustentation Force. 

The electromagnetic levitation force 𝑭𝒆𝒎(𝒙, 𝒊, 𝒕) can be calculated using the 

generalized forces theorems as follows: 
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𝑭𝒆𝒎(𝒙, 𝒊, 𝒕) =  − (
𝝏𝑾𝒎𝒂𝒈

𝝏𝒙
)
𝒊=𝒄𝒔𝒕

                                 (3) 

A coil's specific magnetic energy is: 

 𝑾𝒎𝒂𝒈 =
∅.𝒊

𝟐
=

𝑳(𝒙).𝒊𝟐

𝟐
                                            (4) 

The inductivity 𝑳(𝒙) can be determined directly or by utilizing the reluctance. 

According to this relationship, the coil inductivity 𝑳(𝒙) is dependent on the 

ferromagnetic ball's position x: [4, 6]: 

𝑳(𝒙) = 𝑳𝒐 + 𝑳𝟏.
𝒙𝒐

𝒙
                                              (5) 

Where: 

𝑳𝒐: represented the coil inductivity when the ball is away, 

𝑳𝟏: represented the coil inductivity when the ball is ready, 

𝒙𝒐: represented the equilibrium position of the ball. 

 

Substituting Eq. (4) and Eq. (5) into Eq. (3), yields:                              

𝑭𝒆𝒎(𝒙, 𝒊, 𝒕) = −
𝒊𝟐

𝟐

𝝏𝑳(𝒙)

𝝏𝒙
= −

𝒊𝟐

𝟐

𝝏

𝝏𝒙
(𝑳𝒐 +

𝑳𝟏.𝒙𝒐

𝒙
) = 𝒄. (

𝒊

𝒙
)
𝟐

         (6)  

Where: 

 𝒄 =
𝑳𝟏.𝒙𝒐

𝟐
, is the magnetic force constant. 

Fig. (2) depicts a ferromagnetic ball in equilibrium with its electromagnetic 

force𝑭𝒆𝒎(𝒙, 𝒊, 𝒕) and gravitational force 𝐅𝐠. 

Newton's 3rd law of motion determines the net force 𝑭𝒏𝒆𝒕 acting on the ball [7]: 

𝑭𝒏𝒆𝒕 = 𝑭𝒈 − 𝑭𝒆𝒎 

𝒎𝒙̈ = 𝒎𝐠 − 𝒄 (
𝒊

𝒙
)
𝟐

                                             (7) 

𝒎: is the mass of the ball, 

𝐠: is the gravitational acceleration constant. 
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d) The Electromagnetic Subsystem Modeling 

Kirchhoff's voltage law describes the magnetic force created by current: 

𝒖(𝒕) = 𝑽𝑹 + 𝑽𝑳 = 𝒊𝑹 +
𝒅𝑳(𝒙)

𝒅𝒕
                                        (8) 

Where; 

𝐮(𝐭): Applied terminal voltage, 

𝐕𝐑: Coil’s resistance voltage. 

 𝐕𝐋: Coil’s inductance voltage. 

𝐢(𝐭): current flowing through an electromagnet's coil, 

𝐑: Coil’s resistance; and, 

𝐋(𝐱): Coil’s inductance. 

e) The Nonlinear Model 

In the context of the situation, it is possible to isolate the dynamic model of the 

levitation system by using electro-mechanical modeling. The following equations 

describe this dynamic model of the system: 

𝒅𝒙

𝒅𝒕
= 𝒗 

 
Fig.2. Free Body Diagram of Magnetic Levitation System. [8] 
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𝒖 = 𝑹. 𝒊 +
𝒅(𝑳(𝒙).𝒊)

𝒅𝒕
= 𝑹. 𝒊 + 𝑳

𝒅𝒊

𝒅𝒕
− 𝟐. 𝒄 (

𝒊

𝒙𝟐
)

𝒅𝒙

𝒅𝒕
                         (9) 

𝒎.
𝒅𝒗

𝒅𝒕
= 𝒎. 𝐠 − 𝑭𝒆𝒎(𝒙, 𝒊, 𝒕) = 𝒎.𝒈 − 𝒄. (

𝒊

𝒙
)

𝟐

 

Based on the current system status, the mathematical model can be developed by 

considering state variables.  

When 𝑿 = (𝒙𝟏 𝒙𝟐 𝒙𝟑)
𝑻 = (𝒙 𝒗 𝒊)𝐓; then  𝒙𝟏 𝒙𝟐 𝒙𝟑 =

(𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝒄𝒖𝒓𝒓𝒆𝒏𝒕) Eq. (9) can be expressed in vector format in the 

following way; 

[

𝒙̇𝟏

𝒙̇𝟐

𝒙̇𝟑

] =

[
 
 
 
 
 

𝒙𝟐

𝐠 −
𝒄

𝒎
(
𝒙𝟑

𝒙𝟏
)
𝟐

−
𝑹

𝑳
𝒙𝟑 +

𝟐. 𝒄

𝑳
(
𝒙𝟐. 𝒙𝟑

𝒙𝟏
𝟐

)
]
 
 
 
 
 

+ [

𝟎
𝟎
𝟏

𝑳

]𝒖 

𝒙̇ = 𝒇(𝒙) + 𝐠(𝒙)𝐮                                           (10) 

f) Maglev Linearization Model 

In order that control the position of the ball to a desired position 𝒙𝒐𝟏, The 

MAGLEV system will be linearized around this equilibrium, if the ball position at 

equilibrium to 𝒙𝒐𝟏, then, the time rate derivative of ball position 𝒙 is equal to zero, 

i.e. 

𝒙𝒐𝟐 =
𝒅𝒙𝒐𝟏

𝒅𝒕
=

𝒅𝒚𝒐

𝒅𝒕
= 𝟎                                                 (11) 

The value of coil current 𝒊𝒐 is obtained; 

𝒊𝒐 = 𝒙𝒐𝟑 = 𝒙𝒐𝟏√
𝒎𝐠

𝒄
                                                  (12) 

The linearized state equations are produced in the following formula using 

coefficient matrices 𝑨 and 𝑩 by deriving the Jacobian formula and substituting the 

equilibrium vector 𝑿𝒐 = [𝒙𝒐𝟏 𝒙𝒐𝟐 𝒙𝒐𝟑] into this matrix: 
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𝑨 =

[
 
 
 
 
 

𝟎 𝟏 𝟎
𝒄. 𝒙𝒐𝟑

𝟐

𝒎.𝒙𝒐𝟏
𝟑

𝟎 −𝟐.
𝒙𝒐𝟑

𝒎.𝒙𝒐𝟏
𝟐

𝟎 𝟐.
𝒄. 𝒙𝒐𝟑

𝑳. 𝒙𝒐𝟏
𝟐

−
𝑹

𝑳 ]
 
 
 
 
 

 

𝑩 = [

𝟎
𝟎
𝟏

𝑳

]                                             (13) 

Where the foregoing coefficient matrices Eq. (13) can be used to illustrate the 

linearized system dynamics as follows: 

𝒙̇ = 𝑨𝒙 + 𝑩𝒖                                            (14) 

3. Control System Design 

Different techniques, such as the Proportional-Integral-Derivative (PID) 

controller, have been proposed in recent years. The design steps of a fuzzy PID 

controller to stabilize the nonlinear model of a Maglev system are presented in this 

section. [8] The optimum PID controller is determined by the parameters chosen. 

As a result, the Fuzzy system can be used to self-tune the PID parameters, 

combining the advantages of Fuzzy and PID controllers to produce optimal control 

strategies. The "self-tuning parameter fuzzy-PID controller" is portrayed in Fig. 3 

as a general construction. Where 𝑟(𝑡) denotes the desired location and 𝑦(𝑡) denotes 

the ball's actual position. The fuzzy control's inputs are the error (𝑒) and its change 

(𝛥𝑒) and the outputs are the parameter changes (𝐾𝑝, 𝐾𝑖, 𝐾𝑑). [9] [11]  

 
 

Fig. 3 Basic structure for “Self-Tuning Parameter Fuzzy PID Controller”. 
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a) Fuzzy PID Controller Design 

It is necessary to control the ball position to 𝑥1𝑟𝑒𝑓, thus if the ball position 

is at equilibrium to  𝑥1𝑟𝑒𝑓, the time rate derivative of the ball position 𝑥̇1𝑟𝑒𝑓 is equal 

to zero, i.e. 

𝑥2𝑟𝑒𝑓 =
𝑑𝑥1𝑟𝑒𝑓

𝑑𝑡
= 0                                               (15) 

Eqn. (15) is substituted into the velocity dynamics 𝑥̇2 (Eqn. (10) returns the 

value of coil current 𝑥3𝑟𝑒𝑓: 

𝑥3𝑟𝑒𝑓 = 𝑥1𝑟𝑒𝑓√
𝑚g

𝑐
                                                (16) 

The nonlinear Maglev mathematical model [detailed in detail in the 

preceding section (Eq. (10)) coordinates are modified in the following manner: 

𝑧1 = 𝑥1 − 𝑥1𝑟𝑒𝑓 

𝑧2 = 𝑥2                                                        (17) 

𝑧3 = 𝑥3 − 𝑥3𝑟𝑒𝑓 

With updated coordinates (Eq. (17)), it is evident that if the optimal 

controller succeeds in regulating Maglev model to the origin (𝑧1 = 𝑧2 = 𝑧3 = 0), 

the main objective of managing ball position 𝑥1 = 𝑥1𝑟𝑒𝑓 and the coil current 𝑥3 =

𝑥3𝑟𝑒𝑓 would be attained. Eq. (10) can now be reworked in the following manner: 

the nonlinear dynamical model: 

 [
𝑧̇1

𝑧̇2

𝑧̇3

] =

[
 
 
 
 

𝑧2

g −
𝑐

𝑚
(
𝑧3+𝑥3𝑟𝑒𝑓

𝑧1+𝑥1𝑟𝑒𝑓
)
2

−
𝑅

𝐿
(𝑧3 + 𝑥3𝑟𝑒𝑓) +

2.𝑐

𝐿
(
𝑧2.(𝑧3+𝑥3𝑟𝑒𝑓)

(𝑧1+𝑥1𝑟𝑒𝑓)
2 )

]
 
 
 
 

+ [

0
0
1

𝐿

] 𝑢           (18) 

Using the Jacobian formula, the new shifted coordinates Maglev system 

(Eq. (18)) may be linearized around the origin in order to regulate the ball's position 

to the desired position 𝑥1𝑟𝑒𝑓.  [𝑧1𝑜 𝑧2𝑜 𝑧3𝑜] = [0 0 0] is the equilibrium 

vector. The following formula, using matrices A and B as coefficients, yields the 

linearized state equations: 

𝐴 =

[
 
 
 
 

0 1 0

2.
𝑐

𝑚
.
(𝑧3+𝑥3𝑟𝑒𝑓)

2

(𝑧1+𝑥1𝑟𝑒𝑓)
3 0 −2.

𝑐

𝑚
.

𝑧3+𝑥3𝑟𝑒𝑓

(𝑧1+𝑥1𝑟𝑒𝑓)
2

−4.
𝑐

𝐿
. [

𝑧2.(𝑧3+𝑥3𝑟𝑒𝑓)

(𝑧1+𝑥1𝑟𝑒𝑓)
3 ] 2.

𝑐

𝐿
. [

𝑧3+𝑥3𝑟𝑒𝑓

(𝑧1+𝑥1𝑟𝑒𝑓)
2] −

𝑅

𝐿
+ 2.

𝑐

𝐿
. [

𝑧2

(𝑧1+𝑥1𝑟𝑒𝑓)
2]

]
 
 
 
 

                

𝐵 = [

0
0
1

𝐿

]                                        (19)  
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Where the linearized system dynamics can be expressed as follows (Eq. 

(19)) using the following coefficient matrices: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢                                               (20)  

The structure of classical PID control law is taken as follows: 

𝑢∗ = −𝑘𝑝1𝑧1 − 𝑘𝑑1𝑧2 − 𝑘𝑖1 ∫ 𝑧1𝑑𝑡
𝑡

0
− 𝑘𝑝2𝑧3                        (21) 

To specify the performance of the Maglev system's reaction, a purposeful 

optimal selection of gain values utilizing the Fuzzy-Tuning approach should be 

made as follows: 

i. Let  

𝑧4 = ∫ 𝑧1

𝑡

0

𝑑𝑡 

𝑧̇4 = 𝑧1                                                   (22) 

As a result, the control law (Eqn. (21)) will be as follows: 

𝑢 = −𝑘𝑝1𝑧1 − 𝑘𝑑1𝑧2 − 𝑘𝑝2𝑧3 − 𝑘𝑖1𝑧4 

𝑢 = −𝑘𝑧 = [𝑘𝑝1 𝑘𝑑1 𝑘𝑝2 𝑘𝑖1] [

𝑧1

𝑧2
𝑧3

𝑧4

]                           (23) 

ii. It is possible to write the linear MAGLEV system dynamics as follows 

by augmenting the linearized system dynamics (Eqn. (20)) with Eqn. 

(22): 

𝐴𝑎𝑢

=

[
 
 
 
 
 
 
 

0 1           0                                      0

2.
𝑐

𝑚
.
(𝑧3 + 𝑥3𝑟𝑒𝑓)

2

(𝑧1 + 𝑥1𝑟𝑒𝑓)
3 0 −2.

𝑐

𝑚
.

𝑧3 + 𝑥3𝑟𝑒𝑓

(𝑧1 + 𝑥1𝑟𝑒𝑓)
2           0

−4.
𝑐

𝐿
. [

𝑧2. (𝑧3 + 𝑥3𝑟𝑒𝑓)

(𝑧1 + 𝑥1𝑟𝑒𝑓)
3 ]

1

2.
𝑐

𝐿
. [

𝑧3 + 𝑥3𝑟𝑒𝑓

(𝑧1 + 𝑥1𝑟𝑒𝑓)
2]

0

−
𝑅

𝐿
+ 2.

𝑐

𝐿
. [

𝑧2

(𝑧1 + 𝑥1𝑟𝑒𝑓)
2] 0

        0                                        0 ]
 
 
 
 
 
 
 

 

𝐵𝑎𝑢 = [

0
0

1
𝐿⁄

0

]                                           (24) 

 

iii. Now the selection of the feedback gains [𝑘𝑝1 𝑘𝑑1 𝑘𝑝2 𝑘𝑖1], Follow 

the processes given in Tables 1, 2, 3, and 4, which illustrate the Fuzzy 

rules for tweaking the PID parameters in the following order: table 1, 

table 2, and table 3. Fig. 3 illustrates the membership function for the 

inputs (𝑒 𝑎𝑛𝑑 𝛥𝑒) [10]: 
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Table (1): 

Fuzzy rules for 𝒌𝒑𝟏. 

e ∆e 

M.H M.M M.L Z.E A.L A.M A.H 

M.H A.H A.H A.M A.M A.L A.M Z.E 

M.M A.H A.H A.M A.L A.L Z.E M.L 

M.L A.M A.M A.M A.L Z.E M.L M.L 

Z.E A.M A.M A.L Z.E M.L M.M M.M 

A.L A.L A.L Z.E M.L M.L M.M M.M 

A.M A.L Z.E M.L M.M M.M M.M M.H 

A.H Z.E Z.E M.M M.M M.M M.H M.H 

 

Table (2): 

Fuzzy rules for 𝒌𝒑𝟐. 

e ∆e 

M.H M.M M.L Z.E A.L A.M A.H 

M.H A.H A.H A.M A.M A.L A.M Z.E 

M.M A.H A.H A.M A.L A.L Z.E M.L 

M.L A.M A.M A.M A.L Z.E M.L M.L 

Z.E A.M A.M A.L Z.E M.L M.M M.M 

A.L A.L A.L Z.E M.L M.L M.M M.M 

A.M A.L Z.E M.L M.M M.M M.M M.H 

A.H Z.E Z.E M.M M.M M.M M.H M.H 

 

Table (3): 

Fuzzy rules for 𝒌𝒊𝟏. 

e ∆e 

M.H M.M M.L Z.E A.L A.M A.H 

M.H M.H M.H M.M M.M M.L Z.E Z.E 

M.M M.H M.H M.M M.L M.L Z.E Z.E 

M.L M.H M.H M.L M.L Z.E A.L A.L 

Z.E M.M M.M M.L Z.E A.L A.M A.M 

A.L M.M M.M Z.E A.L A.L A.M A.H 

A.M Z.E Z.E A.L A.L A.M A.H A.H 

A.H Z.E Z.E A.L A.M A.M A.H A.H 

 

Table (4): 

Fuzzy rules for 𝒌𝒅𝟏. 

e ∆e 

M.H M.M M.L Z.E A.L A.M A.H 

M.H A.L M.L M.H M.H M.H M.M Z.E 

M.M A.L M.L M.H M.M M.L M.L Z.E 

M.L Z.E M.L M.M M.M M.L M.L Z.E 

Z.E Z.E M.L M.L M.L M.L M.L Z.E 

A.L Z.E Z.E Z.E Z.E Z.E Z.E Z.E 

A.M A.H M.L A.L A.L A.L A.L A.H 

A.H A.H A.M A.M A.M A.L A.L A.H 
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b) Fuzzy-PID Controller Gain Calculation 

Table (5) summarizes the system parameters, and the ideal controller 

design is based on the augmented linearized model (Eqn. (24) to get the best 

performance. 
Table (5):  

Physical Parameters of Magnetic Levitation System  

 

Parameter Value Unit 

𝑚 0.05 𝑘𝑔 

g 9.81 𝑚 𝑠2⁄  

𝑅 1.0 Ohms (Ω) 

𝐿 0.01 𝐻 

𝑐 --- 0.0001 

𝑥1𝑟𝑒𝑓  0.6 𝑚 

𝑥2𝑟𝑒𝑓  0.0 𝑚 𝑠⁄  

 

In this case, we will assume that the desired ball position is 𝑥1𝑟𝑒𝑓 = 0.6𝑚, 

and the augmented linearized model (Eqn. (24)) will be obtained after substituting 

the system parameters, the desired ball position 𝑥1𝑟𝑒𝑓 and the desired velocity 

𝑥2𝑟𝑒𝑓, and the equilibrium vector [𝑧1𝑜 𝑧2𝑜 𝑧3𝑜] = [0 0 0], the model will 

be: 

𝐴𝑎𝑢 = [

0 1      0          0
1635 0 −23.345 0

0
1

116.7262
0

−100
  0

      
0
0

] 

𝐵𝑎𝑢 = [

0
0

100
0

]                                                 (25) 

It is determined whether or not the augmented system is stable by 

calculating the Eigen values of the system matrix 𝐴𝑎𝑢, which results in the 

following results: 

𝑒𝑖𝑔(𝐴𝑎𝑢) = 
[0 −65.6864 + 29.9471𝑖 −65.6864 − 29.9471𝑖 31.3728]    (26) 

 

The augmented system is unstable, as shown by the presence of a positive 

Eigen value, and hence the proposed optimal controller should be built to stabilize 

the system. Now, before calculating the optimal PID gain, it is necessary to evaluate 

the linearized model's controllability (Eq. (25), which is readily accomplished by 
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computing the controllability matrix and determining its rank. The controllability 

matrix 𝑆 is found to be: 

𝑆 = [

0 0 −2334.5235          233452.3506
0 −2334.5235 233452.3506 −20800604.4383

100
0

−10000
0

727500
0

                     
−45500000
−2334.5235

]    (27)  

 

 The controllability matrix above has a full rank, which suggests that we 

may proceed with the controller design process. The second stage is to calculate the 

gains of controllers using the Fuzzy-PID method: 

𝐾 = [𝑘𝑝1 𝑘𝑑1 𝑘𝑝2 𝑘𝑖1] = 

   [−1381359.567 −35862.8766 9890.2456 −9678.87]       (28) 

 

So the Eigen values of the closed-loop system (𝐴𝑎𝑢 − 𝐵𝑎𝑢𝐾) can be 

calculated to be: 
 

𝑒𝑖𝑔(𝐴𝑎𝑢 − 𝐵𝑎𝑢𝐾) = [−989039.91 −55.22480 −29.41109 −0.014065] 
                                                                                                                     

(29) 

It should be noted that all of the Eigen values are negative, indicating that 

the developed controller is capable of stabilizing the Maglev system and replacing 

the unstable Eigen values. 

4. Simulation implementation 

A Fuzzy PID Controller tuning was proposed in the previous sections to 

test the proposed tuning. Matlab/Simulink is used to simulate the best PID 

controller for the Maglev system. Fig. (4) depicts the Maglev system's Simulink 

model. Nonlinear system model of the Maglev (Eq. (10), which is a foundation for 

building a Maglev Simulink model, uses the optimal PID control law Eq. (25). 

Fig. (7) depicts the effect of applying Fuzzy logic to the three PID 

parameters. 
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Fig. 

(5), show the simulation results of time history of ball position 𝑥1, it is obvious that 

the optimal PID controller succeed to bring the ball position from its initial position 

(0.2 mm) to its desired position (0.6) with no more than (0.2 sec) with a smooth 

exponential behavior. Fig. (6) demonstrates the behavior of ball velocity 𝑥2, where 

the ball is suspended with zero velocity in less than (0.2 sec). 
 

 

 

 

 

 

 

Fig.4 Matlab/Simulink Model of Maglev System with 

Optimal PID Controller. 

 

Fig.5 Simulation Results of Ball’s Position 𝑥1. 
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5. Real time platform and implementation 

 

In this section, the results of experiments and simulations is showed that 

were done using the methods from the previous section and the platform system 

design proposed educational laboratory stand. Fig. (8) shows the hardware-

controlled unit parts interface. Simulink's real-time control feature for 

microcontrollers (Arduino) was used and depicts real-time operating environment 

with object.  

 
Fig.6 Simulation Results of Ball’s Velocity 𝑥2. 

 

 

 
Fig.7.   𝛥𝐾𝑝1, 𝛥𝐾𝑑1, 𝛥𝐾𝑝2, 𝛥𝐾𝑖1 Response curve 
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Fig.8 Proposed educational Laboratory Stand of MAGLEV 

 

Fig. (9) depicts the total system architecture, which includes the data 

acquisition hardware Hall effect 49E sensor, electromagnetic coils, Arduino Due, 

and real-time operating environment.  

 

Fig.9 The Block diagram of the proposed MAGLEV system 
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The suggested platform has 10 kHz sampling rates and is flexible, complete, 

and inexpensive. Moreover, (the proposed platform) is fully integrated with 

MATLAB and Simulink. Arduino Due is used because has 96 Kbytes of SRAM 

and this point is very important to work with big data and blocks in Matlab-

Simulink. Fig. (10) depicts the output controlled with the target. 

6. Conclusion 

The following findings can be drawn from the research: 

1. A magnetic-levitation (maglev) system is the subject of this paper. 

Experimentation and computer simulations have both confirmed the 

effectiveness of the maglev transportation system's control strategy. 

2.  After linearizing around the operational point, the system is determined to be 

unstable using the nonlinear model of the Magnetic levitation system for the 

ball suspension problem. 

3. Achieve desired ball location, ball velocity, and coil current by stabilizing the 

Maglev system. After the user sets the desired ball position, the desired ball 

velocity and coil current can be determined using the Maglev nonlinear 

mathematical model. 

4. 3. The best PID controller structure is Eq. (21), where the integral control for 

the first objective (control the ball location) is deliberately introduced as a fake 

. 

 

 
Fig.10 The response of System with tuned coefficients 
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state. With the maglev-shifted dynamics, this dummy state becomes a four 

state augmented system. 

5. The augmented system is next subjected to the Fuzzy-PID Tuning technique 

in order to determine the appropriate controller gain values. 

6. The simulation results show that the recommended controller can stabilize the 

Maglev system and replace unwanted Eigen values with good Eigen values. 

7. The PID-Fuzzy control law was tested in a Matlab simulation by running 

regulation and tracking experiments. with the same PID-Fuzzy controller was 

done with the real-time platform system. The results of the experiments show 

that this method is very good with strong response and stable. 

Smooth and exponential convergence of system variables (ball position, ball 

velocity, and coil's current) to their desired levels. 
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