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OPTIMAL OPERATION OF LARGE HYDROPOWER 
RESERVOIRS WITH UNREGULATED INFLOWS 

Khalid AHMAD-RASHID1, Al. G. DIACON2, B. POPA3 

Articolul prezintă un model de optimizare stocastică de tip explicit, bazat pe 
programarea dinamică şi destinat operării pe termen lung a unui lac energetic de 
mari dimensiuni. Ca şi caz de studiu s-a folosit lacul Dokan din Irak. Tabloul 
deciziilor optime găsit de model permite să se traseze o serie de traiectorii optime 
pentru variaţia nivelului în lac pe parcursul anului, care sunt utile pentru a asista 
operatorul în efectuarea  exploatării curente. 

This paper presents an explicit stochastic optimization model based on 
dynamic programming, for long-term operation of a large hydropower reservoir. 
The Dokan reservoir from Iraq was selected as case study. The table of optimal 
decisions allows to tracing several optimal storage guide curves, which are useful to 
assist decision maker in current operation.  

Keywords: explicit stochastic optimization, stochastic dynamic programming, 
optimal hydropower reservoir operation 

1. Introduction 

 Although the reservoir system optimization is placed among the few areas 
of application of optimizations models with many opportunities, actual 
implementations of these models in real-world are still limited. Often, in public 
water management agencies, avoidance of difficulties is the major goal, rather 
than improving efficiency or reducing costs. A reason for this situation may be 
that the reservoir operators have lacked confidence in models, which purport to 
replace their judgment and prescribe solution strategies under risk and 
uncertainty. 
 Determining operational policies for the efficient management of available 
water in large reservoirs is a complex problem because it involves random 
hydrological events. For such a reservoir, a long-term (annual, with monthly time 
step) strategy must be derived, taking into account the hydrologic uncertainties. 
However, if long unregulated inflow time series are available, there are some 
optimization models for reservoir operation in stochastic conditions. Authors as 
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Yeh [1], Wurbs et al. [2], Simonovic [3], Wurbs [4] have summarized and 
reviewed the use of optimization models and their applications to reservoir 
systems. Two basic approaches may be defined. 
 
 In implicit stochastic optimization methods, some deterministic models are 
used together with long historical or synthetically generated inflow time series, or 
several shorter equally-likely sequences, to derive optimal operational policies. 
Unfortunately, these policies are unique to the assumed hydrologic time series and 
a multiple regression analysis can be then applied to the optimization results for 
developing monthly operating rules. The operating rules provide the optimal 
decision variables as functions of observable information (such as current storage 
levels, previous period inflows) and forecasted inflows for current month. Among 
the most used optimization methods is the simplex of linear programming and its 
variants, favored by [5] for a large reservoirs system. Paper [6] derived general 
operating rules using regression from dynamic programming results, while in [7] a 
neural network model is proposed to treat the same results. Some other nonlinear 
programming models have been developed in [8], [9], [10]. 
 
 Explicit stochastic optimization procedures attempt to operate directly on 
probabilistic descriptions of random inflows or other random variables, rather 
than long recorded (or generated) hydrologic time series. In this way, optimization 
is performed without the presumption of perfect foreknowledge of future inflows, 
and optimal policies are obtained without the need for regression analysis or other 
manipulation on the optimization results. Some chance-constrained models have 
been developed using linear decision rule and several extensions to this one, as in 
[11], [12], [13] etc. In [14] the optimal storage guide curves are derived by a 
stochastic dynamic programming (SDP) formulation. Other authors have applied 
SDP to single reservoir problems as in [15] and [16], but there are few extensions 
of SDP to multireservoir systems where the curse of dimensionality is more 
aggravated than in the deterministic case. 
 In this paper, an explicit stochastic optimization is performed by an SDP-
type model for the large hydropower Dokan reservoir from Iraq. Its size and much 
unregulated monthly inflows justify an optimization analysis to improve the 
efficiency of hydroelectric energy generation and tradeoff with other conflicting 
project uses and purposes. 
 
 Section 1 describes the mathematical formulation of a SDP model for 
optimal long-term reservoir operation.  

In Section 2, some relevant input data to this project and case study are 
presented and prepared.  
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Section 3 includes the main results of optimization analysis, under 
stochastic unregulated inflows conditions with priority on power generation. 

 
A next paper will be devoted to develop a simulation model for system 

operation, based on stochastic optimization results, but corrected to allow the 
current operation with medium-term forecasting on inflow discharges. Some 
different objective functions will be tested, and simulation model performances 
will be compared with recorded data from real-world operation. 

2. SDP model formulation 

Discrete dynamic programming (DP) is an ideal optimization procedure 
for solving sequential decision problems such as reservoir system optimization. 
Other advantages of DP are as follow: 1) Objective function and constraints can 
be nonlinear, nonconvex, and even discontinuous functional relationships; 2) A 
large number of constraints can be imposed, so that the number of feasible 
combinations of discrete decisions is highly reduced; 3) Produces closed-loop 
decision policies that allow flexibility in operation by conditioning optimal 
decision on current state of the reservoir; 4) Is more readily extensible to explicit 
stochastic optimization problems than the other procedures. 

 As originally developed by Bellman [17], DP decomposes the original 
problem into subproblems, which are solved sequentially over each stage (time 
periods in operational context, but can generally represent locations, activities 
etc.). Fig. 1 presents a stage from a typical multistage problem. 
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Fig. 1. Illustration of reservoir operation as sequential decision process. 
 
 



K. Ahmad-Rashid, A. G. Diacon, B. Popa 
 
28

 Any DP formulation involves specification of two variables: state variable 
and decision (or control) variable. In reservoir optimization problem, the state 
variable is selected as storage level at beginning of period k, ks  and the system 
evolution is completely defined by sequence of states during the all k = 1,2,…,K 
stages of interest. Decision variable must be among the controllable parameters, 
at system operator disposal (i.e. volume of release during time step k, kR ). 

 The state transformation equation describes relation between the two state 
and decision variable from stage k, to generate ending period state, 1+ks . 

 A return / cost is produced at each stage k by a performance function 
( )kkkkk QsRsf ,,, 1+ , and is assumed independent of decisions made in other 

stages. This separability property implies that the system state must embody all 
information to be communicated from stage to stage. The objective may be to 
maximize total returns or minimize accumulated costs over all K stages. By 
“return” may be defined a monetary or technical objective (i.e., annual total 
hydro-energy, annual firm energy, annual water yield etc.), and also for cost case. 

 Finally, system operation must be accomplished assuring mass balance on 
the reservoir content, and under constraints associated with both state and 
decision variables, for each stage. 

  Solution of DP optimization problem is obtained by calculation of an 
optimal performance (return or cost) function ( )kk sC  representing the optimum 
performance accumulated from the current stage k through the final stage K, 
conditioned on a given initial state ks . This function is evaluated using a 
backward-looking DP recursion relation based on Bellman’s principle of 
optimality, which states that: no matter what the initial stage and state of a 
Markovian decision process, there exists an optimal policy from that stage and 
state to the end. 
 For Dokan reservoir case study the above-mentioned DP elements are as 
follow: 

state variable: i
kV  – stored volume in reservoir at the beginning of month k; 

decision variable: f
kV  – stored volume in reservoir at the end of month k. 

 By this selection the state transformation equation becomes very simple: 
 f

k
i
k VV =+1 , for k = 1, 2,…, K–1. (1) 

 Stage performance function: 
 ( ) kkk

f
k

i
kk SEQVVf −=,, , (2) 

where kE  is hydro-energy produced during month k, and kS – hydro-energy 
spilled during month k, so that kf  represents a sort of “net” energy production in 
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stage k. This performance function is conditioned on the state and decision 
variables, and also on inflow discharge during month k, kQ  (expressed in storage 
units per time interval), accepted as random variable with known probabilities. 
 
 Optimization objective is then:  

 ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑

=

=

12

1
,,max

K

k
k

f
k

i
kk QVVfFE , (3) 

where E represents the expectation operator applied to annual net hydro-energy 
production, which must be maxim in stochastic conditions. 
 
 Reservoir mass balance is computed by: 
 kk

i
k

f
k RQVV −+= , (4) 

where kR  is monthly released discharge in storage units, and any losses due to 
evaporation or seepage have been neglected (input data on inflows were obtained 
by operation balance, and thus the losses are implicitly included). 
 
 Operational constraints are concerned with bounds on storage and 
releases. 
 
 The live storage in reservoir during stage k should be less than or equal to 
the maximum active storage capacity, Max

kV , and also greater than or equal to the 

minimum storage capacity, min
kV , accepted for this stage: 

 Max
k

f
kk VVV ≤≤min , for k = 1, 2,…, K. (5) 

By eq. (1), this constraint operates on state variable as well. 
 Irrigation demand constraint is imposed by lower bound of release during 
each month: 
 min

kk RR ≥ , for k = 1, 2,…, K, (6) 

where min
kR  is the minimum irrigation demand to sustain the crops. 

If Max
kR  denotes the monthly release corresponding to maximum capacity 

of turbines, then the two terms in eq. (2) are computed by: 
 ( ) kkk RVeE .= ,                    if  Max

kk RR ≤ ,  

 0=kD ,                                if  Max
kk RR ≤ , (7) 

 ( )( )Max
kkkk RRVeD −= . ,     if  kR  > Max

kR ,  
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where ( )kVe  is specific hydro-energy production in (GWh/ 106 m3), conditioned 
on average storage level over period k, kV . 
 

The backward DP recursion relation for optimal return function 
computation in stochastic problem is: 

 ( ) ( ) ( ) ( )[ ]
⎪⎭

⎪
⎬
⎫
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⎪
⎨
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+= ∑
=

++
kJ
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i
kkkj

f
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i
kkjkjkj

i
kk VCQVVfQpVC

1
11,,.max , (8) 

where kjQ  denotes the j-th discrete realization of random variable kQ , with 

associated independent discrete probability of occurrence ( )kjkj Qp , and kJ  is 
number of classes used in frequency analysis for stage k. Obviously, it must that 

 ( )∑
=

=
kJ

j
kjkj Qp

1
1, for k = 1, 2,…, K, (9) 

and backwards recursive process begins with terminal condition 
 ( ) 011 =++

i
KK VC . (10) 

Each successive ( )i
kk VC  is evaluated as a function of all discrete values of 

i
kV  used in analysis for stage k, and stored together with the corresponding 

optimal decision ( )i
kk VV * . The two matrices obtained for all K stages represent the 

results of SDP analysis. 

3. Input data for SDP analysis in Dokan reservoir case study 

Dokan dam and reservoir is a multipurpose project built on Little Zab river 
in Kurdistan, Iraq. This project was conceived primarily for flood control, with 
other purposes being irrigation, hydropower, pisciculture and recreation. The 
catchment area of reservoir up to the dam site is about 12,000 km2, and the 
multiannual mean inflow attains about 200 m3/s. 
 The active storage capacity is placed between the reservoir levels of 480 m 
(minimum hydropower operating level), and 511 m respectively (level of an 
uncontrolled bell mouth spillway), involving a volume of about 5,400 106 m3. The 
gross storage capacity is about 7,000 106 m3, and reservoir water surface at level 
511 m exceeds 270 km2. 
 There are 5 Francis type turbines at the Dokan power plant with 80 MW 
power capacity each, operating at net heads between 60 and 95 m, with discharges 
of 50 – 111 m3/s. 



Optimal operation of large hydropower reservoirs with unregulated inflows 
 

31

 In present-day conditions, the irrigation demand is reduced to only about 
20 m3/s, and this value was used to compute the lower bound min

kR , which is 

imposed for all K months. The maximum capacity of turbines, Max
kR , was limited 

to 470 m3/s (94 m3/s per turbine being a discharge possible on the whole domain 
of heads). 
 Specific hydro-energy production is estimated by relation: 
 ( )4150023.0 −⋅= ze , (GWh/106⋅m3), (11) 
where z represents storage level (m), connected by volume in storage as in               
Table 1. 
 The lower bound for volume in storage, min

kV , is imposed to 1,400⋅106⋅m3 
over months k=1,2…,11, and to 2,400⋅106⋅m3 at the end of year, while upper 
bound, Max

kV , is accepted as 6,800⋅106⋅m3 during the all stages. Using a 
discretization step VΔ = 50⋅106⋅m3, a total of 109 discrete values results for state / 
decision variables. 
 

Table 1 
Water level (m) – volume in storage (106 m3) relation for Dokan reservoir 

z 470 474 478.11 480.5 484 486 488 490.03 492.01 
V 741.5 969.1 1261.5 1462.6 1801.5 2021.8 2262.4 2528.6 2810.2 

 
z 494.06 496.01 498.04 500.04 502.1 504.1 506.4 508.04 510.75 512.36 
V 3126.1 3450.2 3813.2 4196.8 4619.2 5055.4 5589.8 5991.2 6694.5 7135.3 

 
 From the system operator, a lot of recorded data time series has been 
obtained, including monthly inflow discharges between October 1958 and January 
2001. These values vary from a minimum of 11 m3/s in August to about 1510 m3/s 
in March, while mean multiannual data are placed between 64 m3/s for September 
and 483 m3/s for April. 
 Because unregulated monthly inflows in Dokan reservoir are poorly 
correlated from month to month, these have been accepted as independent random 
variables for each stage. A number of 10 classes is selected for frequency analysis, 
and the classical synthetic generation Thomas–Fiering model was used to give 
more consistency to frequency distributions. For example, Table 2 includes some 
results of frequency analysis over a 200 years time series, where inflows are 
expresses in storage units (106 m3/month), and computed as average value of all 
data in any class. 
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4. Main results of SDP analysis for Dokan reservoir 

Input data as shown in Section 2 were used in SDP optimization model 
described in Section 1. 

From table with optimal return function as function of storage level for 
first stage (October), one ascertains that the expected maximum annual net hydro-
energy is placed between 913 GWh (489.05 m storage level at beginning of year) 
and 1903 GWh (511.14 m as initial storage level). One note that recorded data 
during 1980 – 1999 interval reveals an average annual production of about           
963 GWh/year. 

However, more useful are results from optimal decisions table because 
these allow to tracing several optimal storage guidecurves. A fragment with 
optimal decisions (expressed as ending storage level for each month) is included 
in Table 3. 
 

The data from this table must be understood as follows (for example): 
- If storage level at beginning of March is 490.53 m (first column), then the 
optimal ending storage level for March is 492.27 m (column of month 3); 
- To the same initial storage level but for September corresponds an optimal 
ending storage level in September of 489.05 m. 

Positions marked by “0” values in Table 3 correspond to unacceptable 
states for the used input data, and in the context of SDP formulation. 

Fig. 2 presents a lot of optimal storage guidecurves traced with data from 
Table 3 for various storage levels at the beginning of hydrological year.  
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Fig. 2. Several optimal storage guidecurves for Dokan reservoir in stochastic conditions. 
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Such a guidecurve may be or may not be followed during a year of real 
operation, depending on the effective monthly inflows. However, these 
guidecurves are very useful to assist the decision maker for reservoir operation. 
 Because of the objective function (expected maximum annual net hydro-
energy), all guidecurves attains minimum storage level accepted for ending of the 
year.  

Using only the inflow volumes (lower guidecurve), an expected annual 
production of 913 GWh is obtained by this stochastic optimization model, very 
closed to the recorded value of 963 GWh/year during a 19 years time interval. 

5. Conclusion 

 SDP optimization model for Dokan reservoir produced a table with 
optimal decisions (ending storage level) as functions of the beginning storage 
level for each month, under unregulated inflows conditions.  

A simulation model, runned with the recorded monthly inflows, will verify 
performances of these optimal decisions. 
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